Как самому собрать солнечную электростанцию: Солнечная электростанция на дом площадью 200 м² своими руками — Техника на vc.ru

Содержание

Как построить свою солнечную электростанцию

В этой статье я хочу рассказать как можно самостоятельно собрать небольшую автономную электростанцию на солнечных панелях, что для этого понадобится, и почему выбор пал на те или иные составляющие электростанции. Допустим нам нужно сделать электричество в (дачном домике, вагончике охраны, в гараже, и т.п.), но бюджет ограничен, и хочется за минимум средств получить хоть что-то. И как минимум нам нужен свет, питание и зарядка мелкой электроники, а так-же иногда мы хотим к примеру пользоваться электро-инструментом.

Солнечная электростанция

Фото солнечных панелей на крыше домика, две панели по 100 Ватт Для этого по минимуму нам понадобится солнечные панели на 200-300 Ватт, можно конечно и на 100ватт всего, и даже меньше, если вам требуется совсем немного энергии. Но лучше брать с запасом, и сразу определится на какое напряжение строить систему. К примеру если вы хотите все питать от напряжения 12вольт, то лучше покупать панели на 12вольт, а если все будет питаться через инвертор, то систему можно стоить на 24/48 вольт. Например две панели по 100 Ватт, которые смогут дать 700-800 Ватт энергии за световой день. Когда есть солнце тут и от одной панели энергии много, но лучше брать сразу 2-3 штуки чтобы и в пасмурную погоду, и зимой энергия тоже была, так-как в пасмурную погоду выработка падает в 5-20 раз и чем больше панелей будет тем лучше.

На 12вольт есть масса электроники и различных зарядных устройств, у нас большинство автомобилей имеют бортовую сеть 12v и для этого напряжения есть практически все, и это доступно. К примеру от 12v работают светодиодные ленты, которые хорошо подходят для освещения, есть светодиодные лампочки 12v в любом магазине. Так-же для зарядки телефонов и планшетов есть автомобильные адаптеры, которые из 12/24v делают 5v. Такие адаптеры имеют или USB выход один или два и более, или с проводом под конкретную модель телефона или планшета, в общем заряжать электронику от 12-ти вольт проблем нет.

Если вам нужно питать от 12вольт ноутбук, то для этого тоже есть автомобильные зарядные адаптеры, которые из 12v делают 19v. В общем практически все есть чтобы питаться от двенадцати вольт, даже кипятильники, холодильники и электро чайники. Так-же есть и телевизоры на 12вольт, которые диагональю 15-19 дюймов и обычно ставятся на кухню. Но конечно если мощность солнечных панелей небольшая и емкость аккумуляторов тоже, то рассчитывать на то можно постоянно пользоваться мощными потребителями не приходится, разве что летом. фото потребители на 12в

Приборы и адаптеры на 12v

Для примера некоторые виды преобразователей работающих от 12 вольт, и некоторые приборы работающие от 12 вольт, такие как чайник, кипятильник, холодильник. Освещение на 12вольт Если все делать на 12v, то тут преимущество в экономии электроэнергии, так-как инвертор 12/220 вольт тоже имеет свой КПД около 85-90%, и дешевые инверторы на холостом ходу потребляют 0,2-0,5 А, а это 3-6 ватт/ч., или 70-150 ватт в сутки. Согласитесь что просто так 70-150 ватт энергии в сутки тратить не хочется, этого же к примеру хватит чтобы дополнительно еще несколько часов светила светодиодная лампочка, проработал телевизор часов 5-7, зарядить телефон раз двадцать этой энергией можно. Плюс к тому еще при работе на инверторе теряется 10-15% энергии, и в итоге общее количество энергии теряющейся на инверторе получается существенной. И особенно это не рационально когда мы из 12вольт делаем 220вольт, а потом в розетку включаем блок питания на 12вольт, или 5вольт. В этом случае КПД всей системы очень низок так-как много энергии тратится на преобразователях.

Единственное неудобство в том что на 12 вольт мало электроинструмента, и он не распространен, так-же в продаже трудно найти холодильники, насосы и пр. По-этому если нужно питать от своей автономки что-то еще кроме всякой мелкой электроники, то без инвертора 12/220 вольт не обойтись. И тут нужно учитывать что и сам инвертор имеет КПД, и некоторые приборы не особо экономичны. Все это влечет за собой необходимость увеличивать пропорционально потреблению емкость аккумуляторов, и мощность солнечных панелей.

Тут как-бы два варианта, или оптимизировать все на низкое напряжение 12вольт, или тогда сразу переводить все на 220вольт. Ну еще можно просто установить инвертор и пользоваться им когда это нужно, а все что работает постоянно (свет, телевизор, зарядные) питать от 12 вольт. В этом случае может подойти даже дешевый инвертор с модифицированной синусоидой.

Через инверторы с модифицированным синусом часто отказываются работать насосы и холодильники, так-как частота и форма напряжения не подходит для требовательного оборудования. Но через такие инверторы нормально работают лампочки любые на 220вольт, электроинструмент (дрели, болгарки и пр.), и электроника с импульсными блоками питания (современные телевизоры и прочая электроника). Вообще чтобы точно не было проблем лучше сразу брать инвертор с чистой синусоидой на выходе, а то если что-то выйдет из строя из-за инвертора — то убытка больше будет чем экономии.

Контроллер заряда аккумуляторов, инверторы

Не смотря на то что к примеру у нас небольшая мощность солнечных панелей, но контроллер лучше брать с двукратным запасом по мощности, особенно если покупать дешевый контроллер. Выход из строя контроллера может повлечь за собой еще много проблем, он может испортить аккумуляторы, или неправильно их заряжать от чего они быстро потеряют емкость. Так-же если контроллер подаст все напряжение от СП в сеть, то может испортится электроника питающаяся от 12в, так как СП в холостую дают до 20вольт. Подробнее про контроллеры — Контроллеры для солнечных батарей

Кстати если вы будете питать все через инвертор, то систему можно строить не только на 12вольт, но и к примеру на 24 или 48 вольт. Основное отличие при этом в том что толщина проводов требуется значительно меньше так-как ток по проводам будет меньше. К примеру если у нас система на 12вольт, то ток зарядки по проводам будет доходить до 12 Ампер, а если через MPPT контроллер, то до 18А. И чтобы провода не грелись и не-было потерь, сечение провода должно быть толстым, и чем дальше солнечные панели от аккумуляторов тем провод должен быть толще.

Так к примеру для тока в 6 Ампер сечение провода должно быть 4-6кв. а если у нас ток 12А, то уже нужен провод 10-12кв. А если у нас будет 50 Ампер, то и провода должны быть толще чем сварочные (50кв.), чтобы не грелись и не-было потерь. Вот чтобы экономить на толщине и не терять энергию, систему строят на 24v 48v. В случае с 48 вольт толщину провода можно уменьшить в четыре раза и на этом прилично сэкономить. А инверторы есть и на 24v и на 48v. Так-же есть и контроллеры, думаю вам понятно, основной смысл это экономия в проводах и меньше потери на передаче электроэнергии от солнечных панелей до аккумуляторов.

Контроллеров существует два типа, это MPPT и PWM контроллеры. Первый тип может с солнечных панелей выжимать до 98% мощности, но стоит дороже. А PWM контроллеры простые и заряжают тем током что есть, то-есть с ними мощность от солнечных батарей всего 60-70%. MPPT контроллер работает лучше при ярком солнце и из высокого напряжения СП делает более низкое 14в и больше тока. А обычные PWM не могут преобразовывать, но зато в пасмурную погоду, когда ток с панелей совсем маленький, такие контроллеры дают немного больше энергии в аккумуляторы.

Какой контроллер покупать тут я думаю четко не определить, кому-то нужно с солнца брать всю энергию, а у кого-то при солнце и так энергии с запасом приходит, а вот в пасмурную погоду хочется хоть немного, но по-больше. В принципе если вместо дорогова MPPT купить еще одну солнечную панель, то как-раз и компенсируются преимущество MPPT, и плюс в пасмурную погоду толку больше будет. Я лично склоняюсь больше к обычным контроллерам, так-как когда есть солнце энергию и так девать некуда, а когда его нет, то тут лишняя солнечная панель очень поможет. К примеру три панели по 100ватт дадут с обычным контроллером 18А, а с MPPT дадут 27А. Но когда будет пасмурная погода, то три панели через MPPT дадут к примеру 3А, а с обычным контроллером уже около 3,6А, а если купить вместо MPPT четвертую панель, то 4,8А.

Это все я привожу для примера, разница конечно для солнечного дня 18 и 27 А большая, но если и при 18А все равно аккумуляторы за день заряжаются, то зачем тогда больше мощности, все равно ведь когда зарядятся контроллер отключит панели и они просто так будут освещаться солнцем. А вот когда нет солнца, то и лишнему амперу радуешься, по-этому лучше больше панелей чем дорогой контроллер.

Про аккумуляторы для автономных систем

Аккумуляторы это наверно самая дорогая и важная часть системы, они очень капризны и быстро портятся, их много типов и с ними нужно относится нежно, иначе они быстро теряют емкость и портятся. По этому и контроллер нужно покупать умный, чтобы его можно было настраивать на разные типы, или там уже должны быть пред-установлены настойки для работы с разными типами АКБ.

К приму автомобильные стартерные аккумуляторы очень быстро теряют емкость в автономных системах, всего 1-2 года и они уже теряют 90% емкости. Это связано с глубокими разрядами, так-как дешевые контроллеры отключают потребителей при 10вольт, а автомобильные АКБ не рассчитаны на это, по-этому если уж их использовать, то не разряжать их более 110,8-12,0 вольт.

Тяговые аккумуляторы более выносливые и их можно разряжать на 80%, но они дороже и их тоже не желательно разряжать до 10вольт. Еще есть например гелиевые аккумуляторы, которые критичны к пере-заряду. Тонкостей много и лучше все изучить чтобы не терять свои деньги. Подробнее можно почитать про свинцовые аккумуляторы здесь — Автомобильные и тяговые аккумуляторы

Щелочные аккумуляторы очень выносливы, но и очень дорогие. И если свинцовые АКБ имеют КПД 85-90% то щелочные аккумуляторы здесь немного проигрывают, а если их эксплуатировать заряжая и разряжая большими токами, то их КПД заметно ухудшается. Не выгодны такие аккумуляторы особенно зимой, тут и так энергии мало приходит, да еще и аккумуляторы отдают на 30% меньше энергии чем получают от солнечных батарей. Хотя сейчас вроде появились щелочные АКБ с улучшенным КПД, но картина в общем такая.

Литий-железо-фосфатный АКБ самые перспективные для автономных систем, они имеют высокий КПД 95-98%, и при этом совсем не боятся недо зарядов, глубоких разрядов, и больших токов разряда-заряда. Но они тоже дорогие и требуют дополнительно BMS систему контроля состояния ячеек. Если такой аккумулятор зарядить или разрядить ниже положенного, то он безвозвратно теряет емкость или ячейка вообще перестает работать. Но за состоянием акб следит БМС и она так-же занимается балансировкой заряда аккумулятора, по-этому если что-то пойдет не так, то она защитит аккумулятор и все отключит, и он не испортится.

В одной статье все не опишешь, но основное я постарался упомянуть и описать чтобы было понятно тем кто с этим совсем не знаком. Более подробно можно почитать в других статьях из раздела. Но в общем на данный момент судя по своему опыту строить небольшую электростанцию без инвертора и всю электронику питать от 12вольт выгоднее, а если уж все переводить на 220вольт, то строить систему на 48в. Особенно зимой даже немного лишней энергии очень нужно. Так-же и аккумуляторы у меня этой зимой литий-железо-фосфатные (lifepo4), и явно энергии в общем заметно больше чем при использовании автомобильных АКБ, плюс к тому lifepo4 совсем не испортились и потери емкости нет, хотя они целый месяц не заряжались до конца и постоянно разряжались до отключения.

Как собрать солнечную электростанцию для дома своими руками

Собственное электроснабжение выручит как в условиях отсутствия централизованной сети (в удаленных и труднодоступных регионах, на даче, в походе), так и при построении более экологичного подхода к потреблению природных ресурсов.

Автономная солнечная электростанция для дома своими руками

Собрать собственную гелиостанцию несложно, она содержит всего четыре составных элемента:

  • солнечные панели;
  • аккумулятор заряда;
  • контроллер;
  • инвертор.

Все их легко найти и заказать через интернет-магазины. А вот как сделать солнечную электростанцию своими руками, чтобы создать полноценную автономную систему энергоснабжения дома? Для начала необходимо собрать информацию о ваших потребностях, возможностях местности, где будет работать гелиостанция, и произвести все необходимые расчеты для подбора составных элементов.

Как рассчитать количество гелиопанелей

Выбор гелиостанции начинается с поиска информации по инсоляции в вашей местности — количеству солнечной энергии, которое попадает на земную поверхность (измеряется в ваттах на кв. метр). Эти данные можно найти в специальных метеосправочниках или интернете. Обычно инсоляцию указывают отдельно для каждого месяца, потому что уровень сильно зависит от сезона. Если вы планируете пользоваться гелиостанцией круглый год, то ориентироваться нужно по месяцам с самыми низкими показателями.

Далее нужно подсчитать ваши потребности в электроэнергии на каждый месяц. Помните, что для автономной системы электроснабжения роль играет не только эффективность накопления энергии, но и экономное ее использование. Меньшие потребности позволят значительно сэкономить при покупке гелиопанелей и создании бюджетной версии солнечной электростанции своими руками.

Сравните ваши потребности в электричестве с уровнем инсоляции в вашей местности и вы узнаете площадь гелиопанелей, которая необходима для вашей гелиостанции. Учтите, что КПД панелей составляет всего 12-14%. Всегда ориентируйтесь на самый низкий показатель.

Таким образом, если уровень инсоляции в самый неблагоприятный месяц в вашей местности равен 20 кВт-час/м², то при КПД равном 12% одна панель площадью 0.7м² будет вырабатывать 1.68 кВт-час. Ваша энергопотребность, например, составляет 80 кВт-час/месяц. Значит, в самый несолнечный месяц удовлетворить эту потребность смогут 48 панелей (80/1,68). Подробнее о том, как выбирать солнечные батареи, вы можете почитать в нашей предыдущей статье. А тут можно узнать, как сделать свечи в домашних условиях.

Как установить гелиопанель

Для наилучшего КПД устанавливать гелиопанель нужно так, чтобы лучи солнца падали на нее под углом 90 градусов. Поскольку солнце постоянно перемещается по небу, то здесь есть два решения:

  • Динамичная установка. Используйте сервопривод, чтобы гелиопанель поворачивалась по мере того, как солнце перемещается по небосводу. Сервопривод позволит собрать на 50% больше энергии, чем статичная установка.
  • Стационарная установка. Чтобы извлечь максимальную пользу из неподвижного положения гелиопанели, необходимо найти тот угол установки, при котором панель соберет максимально возможное количество лучей солнца. Для круглогодичной работы этот угол рассчитывается по формуле +15 градусов к широте местности. Для летних месяцев это -15 градусов к широте местности.

Как подобрать контроллер заряда

Еще один способ, как самому собрать солнечную электростанцию, чтобы заставить ее работать эффективно, это использовать контроллер заряда, который позволяет отслеживать точки максимальной мощности (англ. MPPT). Такой контроллер может накапливать энергию даже во время низкой освещенности и продолжает подавать ее на аккумулятор в оптимальном режиме.

Как выбрать аккумулятор

Итак, от солнечных панелей энергия поступает на аккумулятор. Это позволяет накапливать энергию, чтобы использовать ее даже при отсутствии солнечного света. Кроме того, аккумуляторы сглаживают неравномерное поступление энергии, например, при сильном ветре или облачности.

Чтобы правильно выбрать и установить аккумулятор для домашней солнечной электростанции своими руками, необходимо учесть два параметра:

  • Очень важно, чтобы ток зарядки (от панелей) не превышал 10% от уровня номинальной емкости для кислотных аккумуляторов и 30% — для щелочных устройств.
  • Конструкция инвертора с напряжением на низкой стороне.

Учитывайте показатели саморазряда аккумуляторов (не всегда указываются производителями). Например, кислотные устройства во избежание поломки подзаряжают каждые полгода.

Как выбрать инвертор

Описание параметров и обязательных функций идеального инвертора:

  • сигнал синусоидальный с искажениями не выше трех процентов;
  • при подключении нагрузки амплитуда напряжения изменяется не более чем на десять процентов;
  • двойное преобразование тока — постоянного и переменного;
  • аналоговая часть преобразования переменного тока с хорошим трансформатором;
  • защита от короткого замыкания;
  • запас по перегрузке.

При моделировании электросистемы вашего дома сгруппируйте нагрузки так, чтобы разные их виды получали питание от разных инверторов.

Другие схемы солнечных электростанций своими руками

Гелиостанции — это работающий альтернативный способ энергоснабжения дома. Но не во всех регионах инсоляция достаточна для окупаемости гелиооборудования и для полноценного обеспечения электроэнергией. Иногда стоит обратить внимание на гибридные солнечные электростанции, которые тоже можно построить своими руками, но где кроме солнечных батарей могут быть ветряки, а также дизельные или даже бензиновые генераторы.

Если же вы хотите лишь попробовать «приручить» гелиоэнергию, но не готовы полностью изменить электроснабжение своего дома, сделайте мини солнечную электростанцию своими руками. Она будет состоять из нескольких солнечных панелей, аккумулятора и контроллера. Это все поместится в чемодане, но обеспечит вас энергией при внезапном отключении электричества, поездке на дачу или на природу. Расчеты и подбор компонентов происходят по тому же принципу, что и для полноценной домашней станции.

Солнечная электростанция своими руками. Подбор компонентов.

Попытаемся понять подход к выбору автономной солнечной системы, какие факторы имеют большее, а какие меньшее значение.

Прежде всего, надо определить, сколько энергии вам понадобится в месяц, и, чтобы стоимость солнечной электростанции не стала фантастически высокой, по мере возможности уменьшить потребности. Затем необходимо определить, сколько солнечной энергии можно получить в той местности, где будет работать солнечная установка. Примерные данные приводятся в метеорологических справочниках, кое-какую информацию по солнечной инсоляции можно найти в Интернете. Обычно уровень солнечной инсоляции выражается в Ваттах/м2 с разбивкой по месяцам. Причём сезонные колебания могут быть очень значительными.

 

Солнечные электростанции. Схема электроснабжения дома от солнечных батарей

   

Как выбирать солнечную батарею?

Если предполагается использовать солнечную электростанцию круглогодично, расчёт надо производить по месяцам с наихудшими параметрами по инсоляции (конечно, если предполагается использовать только солнечную энергию). КПД солнечных батарей для расчётов надо принимать не выше 14% (а лучше 12%), т.к., несмотря на КПД элементов 16 или даже 17 % (а чаще используются элементы с КПД 14-15%), часть излучения отразится от поверхности стекла закрывающего элементы (даже если используется антибликовое стекло), часть излучения погасится в толщине стекла, т.к. не вся поверхность солнечной батареи закрыта кремниевыми пластинами (между ними есть зазоры 2-3 мм). Кроме этого некоторые элементы имеют обрезанные углы, что также уменьшает полезную площадь. Некоторые изготовители приводят примерную выработку энергии в месяц при разных уровнях солнечного излучения.

Карта инсоляции России. Продолжительность солнечного сияния.

Теперь, чтобы определить количество солнечных батарей, необходимо разделить желаемую потребность в энергии на возможную выработку энергии одной батареей в те месяцы, когда будет использоваться солнечная электростанция. Естественно, расчёт ведется по самым наихудшим параметрам по инсоляции.

Например, установка будет эксплуатироваться круглогодично, потребность в энергии 100 кВт час/месяц, одна батарея из выбранных вами произведёт в декабре не более 2 кВт-час энергии, 100 : 2 = 50 батарей. При тех же условиях, но неизвестной производительности батареи, а известной её площади 0,7 м², определяем, что за месяц будет произведено примерно 20 х 0,7 х 0,12(КПД) = 1,68 кВт-час энергии (инсоляция в декабре составляет примерно 20 кВт-час/м²). Для определения количества солнечных батарей необходимо разделить желаемое количество энергии на выработку одной батареи: 100 : 1,68 =59,5 шт., округляем в большую сторону 60 шт.

Следует отметить, что все эти расчёты носят приблизительный, ориентировочный характер, т.к. количество солнечных дней может сильно отличаться в разные годы. Всегда надо учитывать, что запас только улучшает параметры системы.

Увеличение производительности солнечных батарей – это отдельная большая тема. Можно отметить только несколько способов увеличения производительности:

Выбор оптимального угла установки. Желательно, чтобы поверхность солнечной батареи располагалась перпендикулярно к лучам солнца, с максимальным отклонением в ту или иную сторону на не более, чем 15°. В связи с тем, что солнце в течении года постоянно меняет высоту над горизонтом, желательно устанавливать солнечные батареи под тем углом, который обеспечивает максимальный выигрыш по производительности в нужное время. Например, если предполагается использовать солнечную электростанцию круглогодично, то батареи устанавливают под углом + 15° к широте местности, а если только в летние месяцы, то под углом – 15° от широты местности.

Поворот солнечной батареи вслед за солнцем в течение дня(применим только для небольших систем), таким образом можно увеличить выработку энергии вплоть до 50% от выработки в стационарном положении.

Применение контроллера заряда с функцией ОТММ (Отслеживания Точки Максимальной Мощности, по-английски MPPT (Maximum Power Point Tracking)). Такой контроллер при наличии достаточной освещённости не препятствует поступлению энергии от солнечных батарей на аккумуляторы, а при недостатке освещённости накапливает энергию и подаёт её на аккумулятор порциями с оптимальными значениями тока и напряжения.

Но, конечно, если с таким трудом полученную энергию расходовать не экономно, то все ухищрения по получению дополнительной энергии пропадут впустую. Наибольший выигрыш в автономных системах электроснабжения можно получить, экономя энергию. Замена ламп накаливания на люминесцентные или компактные люминесцентные (энергосберегающие), а там где надо получать большие световые потоки (освещение территорий, торговых залов и т.д.), на металлогалогеновые даёт снижение затрат на освещение примерно в 4-5 раз. Применение бытовой техники с индексом энергопотребления «А» или «А+» даёт ещё более значительный выигрыш. Вообще, вопрос энергосбережения, в условиях значительного роста цен на энергоносители приобретает первостепенное значение.


Немного коснёмся принципов конструирования систем автономного электроснабжения на солнечных батареях. Мы уже пробовали рассчитать необходимое количество солнечных батарей, теперь перейдём к остальным компонентам системы. Энергия, полученная от солнечных батарей, направляется на зарядку аккумуляторов. Это необходимо по двум причинам:

— сглаживание неравномерности поступления энергии, например, в облачную погоду;

— реализация потребности в электроэнергии тогда, когда нет солнечного излучения (ночью и в пасмурные дни).

Для подбора количества и типа аккумуляторов также используются два параметра: конструкция инвертора (напряжение на низкой стороне) и ток зарядки, который может поступать от нескольких источников и не должен превышать 10 % от номинальной ёмкости для кислотных аккумуляторов и 25-30% от номинальной ёмкости для щелочных. Если в инверторе имеется зарядное устройство от сети, то оно должно автоматически регулировать зарядный ток в зависимости от степени заряда аккумуляторов. Кроме этого, особенно если подзарядка от существующей сети отсутствует, необходимо, чтобы аккумуляторы не боялись сульфатации пластин, иначе подзарядка маленьким током, который часто бывает в не очень ясную погоду, быстро выведет аккумуляторы из строя.

К необходимым свойствам аккумуляторов, применяемых в солнечных электростанциях, добавим и низкий уровень саморазряда (иногда изготовители указывают эту отличительную черту). Обычный кислотный аккумулятор требует подзарядки не реже чем один раз в шесть месяцев, иначе выходит из строя. Через год после начала эксплуатации уровень саморазряда обычного кислотного аккумулятора достигает 1,5% в день от его номинальной ёмкости. Поэтому к аккумуляторам, применяемым в солнечных системах, предъявляются специфические требования.

Теперь перейдём к инверторам. Вообще, идеальной конструкцией солнечной электростанции следует считать ту, где разные группы нагрузок получают питание от разных инверторов, и количество и мощность инверторов соответствует количеству и мощности автоматических выключателей в распределительном щитке. Эти параметры выбираются при конструировании домашней электросети. Например, в распределительном щитке — 4 автомата на 16 А (максимально допустимая нагрузка на бытовые сети: розетки и освещение) и 2 автомата на 25 А (для питания силовой техники). Идеальным считаем применение 4 инверторов мощностью 16А х 220В=3520 Ватт и двух инверторов мощностью 25А х 220В=5500 Ватт. Причём питание эти инверторы могут получать от одной группы аккумуляторов, заряжаемых одной группой солнечных батарей.

Обычно изготовители указывают не мощность в Ваттах, а пиковую мощность в вольт-амперах, т.к. этот параметр выше по значению примерно на 20-30%. Многие фирмы выпускают инверторы с самыми различными свойствами. Они могут отличаться формой выходного сигнала (наиболее простые и дешёвые на выходе дают прямоугольный сигнал, так называемый «меандр», изготовители которого, правда, чаще называют его: модифицированной синусоидой, имитированной синусоидой, псевдо синусоидой, квазисинусоидой и т.д.), способом компенсации нагрузок (за счёт сохранения амплитуды напряжения или площади кривой), применяемым схемным решением (одно или два преобразования напряжения, импульсным или аналоговым преобразованием сигнала).

Некоторые инверторы имеют встроенное зарядное устройство от существующей сети, другие могут осуществлять подпитку сети и направлять энергию, полученную от солнца, в сеть. Вообще, конструкция инвертора может быть самой разнообразной.

Но в целом качественный инвертор должен выдавать чистый синусоидальный сигнал с искажениями меньше 3 %, не менять значение амплитуды напряжения при подключении нагрузки более 10 %, осуществлять двойное преобразование (первое — постоянного тока, второе – переменного), иметь аналоговую часть вторичного преобразования с качественным трансформатором, иметь значительный запас по перегрузке и набор защитных функций от короткого замыкания в нагрузке, от неправильного подсоединения к аккумуляторам, от перегрузки, от неисправности аккумуляторов, не допускать глубокого разряда аккумуляторов. Все остальные функции могут быть, а могут и отсутствовать. Иногда лишние сервисные функции затрудняют пользование подобным прибором, пользователь должен в идеале включить прибор и забыть об его существовании.

Ещё один достаточно важный вопрос, на который необходимо обратить внимание при выборе солнечных систем, вопрос запаса параметров. При использовании солнечной энергии мы применяем непредсказуемые природные явления. Поэтому для обеспечения стабильности электроснабжения необходимо иметь запас по источникам энергии (солнечным батареям), по хранилищам энергии (аккумуляторам) и по преобразователям энергии (инверторам). Естественно, подходить к вопросу избыточности надо разумно. Иногда бывает лучше и дешевле применять гибридную схему электроснабжения с применением других источников энергии: разного рода генераторов, существующего подключения к электросети и т.д.

В заключение можно сделать вывод, что в условиях, когда традиционные энергоносители дорожают, а на горизонте истощение природных ресурсов, обоснованность и необходимость применения альтернативных источников электроснабжения возрастает многократно.

Так же Вы можете приобрести готовые комплекты солнечных электростанций.

Как правильно самому собрать солнечную электростанцию?

На сегодняшний день солнечная энергия — один из самых популярных источников получения тепла и электричества. В этой статье мы расскажем как правильно собрать солнечную электростанцию и какие элементы в нее входят.

Каждая солнечная установка предусматривает наличие таких составляющих:

  • солнечные панели;
  • контроллер;
  • аккумулятор;
  • инвертор и кабель

Солнечные батареи

Существует 2 основных вида солнечных панелей. Они отличаются конструкцией, а также эффективностью в тех или иных условиях.

  1. Монокристаллические
  2. Поликристаллические

Монокристаллические обладают меньшими размерами, однако имея те же параметры, что и у поликристаллов наделены более высоким КПД. Это связано с тем, что для производства используется самый качественный и чистый кремний, который отлично проявляет свойства именно в условиях низких температур. Этим же обусловлена достаточно высокая начальная стоимость, которая превышает аналоги из поликристаллов на 10-15%. При этом поликристаллические панели лучше подходят, если нет прямых лучей солнца. Поэтому достаточно сложно сказать какой из видов эффективнее. Каждый из них в лучшей степени решает определенные задачи.

Во время монтажа, обратите внимание, что солнечные батареи из кремния необходимо устанавливать под углом 40-50° по отношению к горизонтальной плоскости. Также это должно быть открытое пространство с прекрасным проникновением солнечного света.

Подбирая изделие для самостоятельного монтажа, отдавайте предпочтение фотопанелям на 12 вольт, такие изделия проще подстроить под аккумуляторы на 12 В. Желательно, чтобы панели были оснащены диодными мостами. Поскольку именно они блокируют переток напряжения, который чреват выходом из строя системы.

Контроллер

Данное приспособление предназначено для управления зарядом аккумулятора. Оно позволяет избежать перезаряда и полного разряжения. Таким образом, задача контроллера — прервать зарядку, когда напряжение достигло максимума. Система работает таким образом, что в ночное время суток, из-за отсутствия солнечных лучей, потребители черпают энергию из аккумулятора. И если напряжение достигает до минимума, контроллер при помощи автоматики отключает питание. Это дает возможность избежать полной разрядки.

Аккумулятор

Днем, вырабатываемая энергия фотоэлементами, накапливается в аккумуляторе. Затем во время отсутствия внешней подачи электричества из солнечных панелей, энергетические ресурсы аккумулятора используются в качестве источника энергии. Существует огромное множество вариантов аккумуляторных батарей и каждый может выбрать наиболее подходящее изделие, отталкиваясь от своих потребностей. Главное это то, чтобы напряжение соответствовало техническим характеристикам солнечных батарей.

Инвертор и кабель

Задача инвертора — преобразовывать постоянное напряжение в переменное. Именно благодаря ему становится возможным применение бытовых приборов. Обратите внимание, что лучше для монтажа фотоэлементов использовать специальную проводку, оснащенную изоляцией, которая устойчива к ультрафиолетовым лучам.

Как работает солнечная электростанция?

На фотоэлементы попадают солнечные лучи, которые трансформируются в электричество, подающееся контроллеру. После этого оно поступает к аккумулятору, подключенному к инвертору, преобразовывающему постоянное напряжение в переменное. Это обеспечивает возможность питания бытовых приборов.

Остались вопросы? Позвоните к нам и специалисты “Вольт и Джоуль” с радостью помогут Вам. Консультация БЕСПЛАТНО!

← Предыдущая статья Следующая статья →

Монтаж солнечной электростанции своими руками пошаговая инструкция

Научно-технический прогресс не стоит на месте. Люди научились пользоваться силой природы и ее ресурсами, которые полностью бесплатные и не обедняют природу. Использование энергии ветра, воды и солнца – абсолютно безвредно для природы, что делает этот факт особенно ценным. Солнечные батареи – отличный вариант экономии на оплате за коммунальные услуги. Солнечные батареи работают за счет энергии солнца, поглощая солнечный свет, они вырабатывают энергию.

Оглавление:

  1. Сборка солнечной электростанции своими руками
  2. Электростанция на солнечных батареях своими руками
  3. Схема сборки солнечной электростанции
  4. Собрать солнечную электростанцию руками
  5. Домашняя солнечная электростанция руками, особенность установки на крыше
  6. Самодельная электростанция на солнечных батареях
  7. Как собрать солнечную электростанцию для дома

Сборка солнечной электростанции своими руками

Купить гелиоустановку для выработки электричества для дома не составляет никакого труда, на рынке можно найти много различных предложений, но стоимость такого оборудования достаточно высокое. Купить систему доступно далеко не каждому. Есть альтернатива – изготовление гелиоустановки собственноручно.

Сила тока, которую сможет создавать фотоэлемент, будет зависеть от количества попавших на поверхность солнечных элементов. Количество этих элементов напрямую зависит от ряда факторов:

  • размера аккумуляторов;
  • силы и интенсивности солнечного света;
  • длительности использования;
  • КПД сооружения;
  • температурных показателей.

От размера батареи зависит количество вырабатываемой энергией. Чем больше площадь конструкции, тем больше энергии вырабатывается и тем выше стоимость оборудования.

В зависимости от стоимости и мощности оборудования, солнечные батареи для преобразования солнечной энергии в электричество, разделяются на:

  • Конструкции с малой мощностью – мощность данного оборудования сможет обеспечить зарядку планшета и других электронных приборов. Но при высокой стоимости и столь малой мощности, данное оборудование не пользуется высокой популярностью
  • Универсальные конструкции – чаще всего приобретаются для использования в походах и кемпингах. Это более мощная конструкция, способная питать несколько электроприборов одновременно.
  • Солнечные батареи – плоские фотопластины, крепящиеся на специальной основе. Устанавливаются на крышах домов и благодаря сложному устройству, позволяют полностью покрывать все потребности в электрической энергии.

Электростанция на солнечных батареях своими руками

Уже перестают быть редкостью и диковинкой солнечные электростанции в быту. Данная конструкция повышает комфортность проживания, обеспечивает независимость от работы коммунальных служб. При запасе базовых знаний в электротехнике, можно сделать солнечную электростанцию собственноручно и при этом сэкономить ощутимые деньги. Различают три вида солнечных электростанций:

  • автономные;
  • сетевые;
  • комбинированные.

Для обеспечения дома электроэнергией автономная солнечная электростанция считается наиболее оптимальным вариантом.

Любая солнечная электростанция, продуцирующая переменный ток, состоит из четырех основных компонентов:

  • Фотомодули – количество и площадь фотоэлементов определяется в зависимости от потребностей дома и солнечной активности в конкретной географической местности. Смонтировать модули можно собственными силами, купить придется только кремниевые фотоячейки или купить гелиоблоки, при условии, что размеры блоков совпадают со всеми требованиями.
  • Аккумуляторные батареи – нужны для предотвращения перебоев с подачей электроэнергии. В непогоду и пасмурные дни аккумуляторы смогут поддержать подачу электричества в дни без солнца.
  • Контроллеры – своего рода «часовые», контролирующие аккумуляторы от чрезмерной зарядки. Когда батарея будет полностью заряжена, они понизят ток, вырабатываемый солнечной батареей до той величины, которая необходима для поддержания саморазряда. В самодельной установке данное оборудование необходимо для продления срока эксплуатации.
  • Инверторы – специальные приборы, преобразующие постоянный ток в переменный, который питает всю технику в доме. В частной солнечной электростанции речь идет о синусоидальных батареях. Данный вариант дешевле и подходит для домашнего использования. При переизбытке электроэнергии инверторы выступают связующим звеном между домашней и коммунальной энергетической системой. Они перенаправляют избыток электричества в общую сеть.
  • Кабели – им отводится важная роль. Все уличные кабеля должны быть высокого качества и устойчивости к непогоде и перепадам температур. Для уменьшения энергетических потерь рекомендуется короткий путь и специальное сечение, не меньше четырех миллиметров.

Схема сборки солнечной электростанции

Солнечные модули следует установить на крыше дома. Располагается конструкция в соответствии с инструкцией: расположение под прямым углом к падающему свету, угол отклонения не должен быть больше, чем пятнадцать градусов. При условии, что планируется круглогодичное использование гелиоустановки, батареи располагаются под углом +15 градусов к географической широте. Если используется батарея только в летний период – требуется придерживаться угла наклона – минус пятнадцать градусов к широте. Попросить помочь расположить солнечные батареи правильно, можно человека, который компетентен в данном вопросе. Устанавливаются батареи друг над другом с учетом того, как будет ложится тень, чтобы не перекрывать доступ солнца.

Остальные составляющие конструкции рекомендуется устанавливать отдельно, в специально отведенного для этого помещении. Это поможет избежать энергопотери, да и вся система станет работать намного эффективнее.

При расположении панелей в несколько рядов, между приборами следует придерживаться определенного расстояния. В таком случае не будет затенения. Закрепляют панели в четырех, а лучше в шести местах. Закрепляются батареи только «родными» фиксаторами, в противном случае не будет никакой гарантии надежного крепления.

Собрать солнечную электростанцию руками

Чтобы сэкономить на установке оборудования, которое бригада специалистов произведет за определенную стоимость, необходимо соблюсти правила и прислушаться к рекомендациям опытных людей. Иначе фотопанели не смогут работать с максимально возможной мощностью и материальные затраты на изготовление или приобретение будут напрасными.

Собственноручно изготовленная электростанция солнечной энергии собирается с учетом таких правил:

  • Освещенность – панели обязательно должны быть установлены на самом освещенном месте без малейшего затенения. Как правило, это крыша помещения или фасад.
  • Направление – установка фотобатарей осуществляется с южной стороны крыши, с учетом корректного угла наклона. Южная сторона максимально получают энергию солнца.
  • Угол наклона – для результативности и максимальной эффективности работы панелей, необходимо брать во внимание правильный угол наклона по отношению к горизонту. Выше было описано правило выбора угла, но, если такой вариант недоступен к применению, выбирается постоянный угол, равный географической широте.
  • Обслуживание – если допускать загрязнение поверхностей солнечных батарей, происходит заметная потеря производительности поверхности панели. Необходимо регулярно очищать поверхность: летом от пыли и листьев, зимой от снега и загрязнений.
  • Если батареи устанавливаются на поверхности грунта, то необходимо приподнять конструкцию над землей примерно на полметра.

Но помимо этих нюансов, большую роль во время установки батареи играет тип кровли.

Домашняя солнечная электростанция руками, особенность установки на крыше

От варианта крыши зависит способ расположения батареи. Даже расцветка кровли играет значительную роль. Например, темная крыша сильнее прогревается на солнце и становится причиной перегрева солнечной панели. Если покрытие кровли имеет темную расцветку, в месте расположения батареи необходимо предусмотреть светлую вставку. Если фотопанель устанавливается на плоскую кровлю собственными силами, этот процесс не должен вызвать затруднений. Плоская крыша считается самым лучшим вариантом для расположения солнечной батареи. Для установки приобретают опорные рамы для удобного расположения панели под правильным углом. Ухаживать за панелями и чистить их поверхность на плоских крышах намного удобнее.

Скатные крыши требуют немного другого варианта монтажа. На специальных креплениях устанавливаются батареи с учетом материала, из которого изготовлена кровля. К каждому варианту используется свой крепежный материал. Также монтажные технологии отличаются в каждом конкретном случае. Для естественного охлаждения солнечной батареи рекомендуется делать зазор между крышей и оборудованием, это обеспечивает циркуляцию воздушных масс.

Самодельная электростанция на солнечных батареях

Перед началом самостоятельного изготовления солнечной электростанции, необходимо определиться с материалом. Чаще всего в основу фотопанели идет поликристаллический кремний или монокристаллический материал. Поликристаллический материал имеет невысокий коэффициент полезного действия, но панель из такого материала эффективна при любой силе солнца. Что касается монокристаллических веществ, они имеют более высокую производительность, но заметно снижают эффективность при отсутствии солнца в пасмурную погоду. Из-за этого домашние умельцы отдают предпочтение поликристаллам.

Следует учесть такой факт: все фотоячейки покупаются у одного производителя, чтобы исключить ситуации, когда возникают сложности с определением общей мощности или элементы будут иметь различный срок годности. Некоторые предприимчивые мастера покупают наборы на онлайн-аукционах, что означает выгодное приобретение. Помимо перечисленного, необходимо купить проводники, служащие соединительными элементами для гелиоячеек, приспособления для пайки.

Для корпуса панели применяются легкие материалы, наподобие алюминиевых уголков. Дерево также может служить основой для батарей, но учитывая тот факт, что оно будет подвергаться бесконечному отрицательному воздействию, не рекомендуется использовать этот материал. Следует помнить, что на аукционах продаются многие элементы установки, в том числе и готовый корпус. Для внешнего прозрачного покрытия применяют поликарбонат или оргстекло. В идеале, подойдет любой прозрачный материал, не пропускающий инфракрасные лучи, которые ухудшают качество работы системы.

Как собрать солнечную электростанцию для дома

После подготовки всех материалов, можно заняться непосредственно сборкой солнечной электростанции. Сначала спаивают проводники с гелиоячейками. Так как эта процедура довольно трудоемка и сопровождается порчей элементов из-за их хрупкости, рекомендуется приобретение ячеек с припаянными проводниками. Но если товар приобретен отдельно и нуждается в соединении, существует такой алгоритм действия:

  • подготовить проводники требуемой длины;
  • крайне осторожно переместить проводники в ячейку;
  • на место соединения нанести специальное средство – паяльную кислоту и припой;
  • не оказывая давления на кристалл, следует припаять проводник.

Процесс пайки – кропотливый и затратный по времени.

Соединять элементы можно по разным схемам: последовательно, параллельно, последовательно, со средней точкой. Это не принципиально, главное, чтобы были шунтирующие диоды, благодаря которым не произойдет разрядка в ночное время. Перед установкой проводятся испытания на ток, напряжение, фиксацию элементов и герметизацию. Можно загерметизировать каждую ячейку специальным средством и запечатать пластиком.

Справиться с такой задачей, как монтаж солнечной электростанции своими руками поможет пошаговая инструкция в видео. Гелиобатареи – это выгодно, доступно и недорого. В результате установки инновационной системы, можно не зависеть от погодных условий, когда пропадает электричество из-за сильного ветра или дождя в результате замыкания или выхода из строя оборудования. Солнечные электростанции – это удобно.

Солнечная электростанция для дома | Каталог самоделок

Установить на крыше солнечные фотоэлементы, которые за день зарядят аккумуляторы, а вечером пользоваться дармовой энергией — это путь к полной независимости от государственного электроснабжения, цен на газ и так далее.

Простейшая схема солнечной станции

Преимуществ у домашней солнечной электростанции предостаточно:

  1. Простота установки и подключения. Не надо строить высокую башню, как для ветровой электростанции, бетонировать фундамент.
  2. Для строительства не нужны большие площади. Многие укладывают светоактивные листы на крышу частного дома.
  3. Простой и нематериалозатратный монтаж сильно сокращает денежные расходы.
  4. Возможно, по мере накопления средств, добавлять к имеющимся панелям новые, увеличивая мощность установки в целом, чего нельзя сделать для ветровой станции.
  5. Отсутствуют вращающиеся части, которые нужно смазывать, подтягивать. Профилактический осмотр солнечных элементов специалисты рекомендуют проводить раз в 1–2 года.
  6. Может эксплуатироваться без капитального ремонта до 25 лет.
  7. Все компоненты электроустановки подвозятся к месту установки в собранном виде.
  8. Солнечные станции бесшумны, безопасны для людей, не мешают птицам. Они самые экологически безопасные среди зелёных технологий.

 

Перейдем к недостаткам:

  1. Ограничено применение в некоторых регионах количеством солнечных дней.
  2. Имеют низкий КПД и слабую мощность, особенно в хмурые зимние дни, по сравнению с другими источниками энергии.

 

Подбор PV-элементов

 

Черные фотоэлектрические панели, photovoltaic PV-элементы, те, которые в диковинку видеть на крышах российских домов, сплошь покрывают любые строения в Японии. А японцы очень практичны и не будут городить то, от чего мало проку. Главная задача — правильно выбрать тип солнечного элемента.

 

В продаже представлены четыре типа фотоэлектрических элементов:

  1. монокристаллические;
  2. поликристаллические;
  3. аморфные;
  4. тонкоплёночные.

 

  • Монокристаллические делают из отполированного листа кремния. Примерно 1 кВт энергии от таких изделий можно получить с площади 7 квадратных метров.
  • Поликристаллические кремниевые менее производительные, чем первые. Чтобы получить 1 кВт уже потребуется занять площадь более 8 кв. метров.
  • Аморфные наиболее экономичны при изготовлении: аморфный кремний наносится тонким слоем на подложку и расходуется гораздо меньше. Эти батареи имеют самую низкую мощность и относительно дешевы.
  • Тонкопленочные имеют наибольший КПД в 25 процентов, по сравнению с показателем 12–17 у первых трёх типов. Могут вырабатывать энергию при слабом освещении, даже зимой в облачную погоду. Производят такие пленки на нескольких американских заводах для промышленного использования. Стоят они очень дорого.

 

Оптимальным вариантом для южной полосы: Одесса – Ростов на Дону – Астрахань – побережье северное Каспийского моря являются монокристаллические элементы. Можно собрать эффективную солнечную установку мощностью до 500 кВт/час за месяц.

 

Другие компоненты солнечной электростанции

 

  1. Инвертор, преобразующий постоянный ток в переменный. Фотоэлектрические элементы вырабатывают постоянный ток низкого напряжения, а большинство бытовых приборов работает на переменном высоком напряжении.
  2. Аккумуляторы, сохраняющие энергию для ночного времени.
  3. Контроллер – зарядное устройство, не допускающее перезарядки аккумуляторов и защищающее от утечки обратного тока на PV-элементы ночью.
  4. Автоматическое реле, которое при полной разрядке аккумуляторов переключает питание домашних приборов к общей сети.
  5. Электросчетчик, остается для контроля потребленной энергии.

 

Цена солнечной установки

 

Покупать солнечную электростанцию под ключ, к примеру, СЭС-5 удобно тем, что специалисты компании-производителя сами всё привезут, соберут, подключат, проверят и гарантию дадут.

СЭС-5, производитель Термо Технологии, Украина

Стоимость СЭС-5, вместе с монтажом составляет 8250, 9100 долларов. Такая система замечательна тем, что излишки выработанной энергии можно продать в общую сеть по зеленому тарифу. Установка состоит из 25 фотоэлектрических элементов, средней производительностью за месяц – 521 кВт/час. Есть установки равной мощности по цене 15000 долларов. Если в вашем доме все бытовые приборы расходуют за сутки около 10 кВт/час, то этой электростанции вполне достаточно, чтобы всё светилось, крутилось. Кроме отопления, конечно.

 

Обогрев дома зимой такая электростанция не потянет. Надо увеличить количество солнечных элементов и аккумуляторов как минимум вдвое, соответственно и цена возрастет вдвое.

 

Если же комплектовать домашнюю электростанцию самостоятельно, то собранная установка обойдется в 8032 доллара. Из расчета, если каждый компонент будет стоить:

  • PV-элементы Yabang Solar YBP 250-60 (250 Вт, 24 В), 20 штук — 4250 долларов;
  • контроллер (зарядное устройство) — 25 долларов;
  • аккумуляторы SIAP PzS 4 APH 420 (2 В, 420 А), 24 шт. — 3624 доллара;
  • инвертор — 69 долларов;
  • автоматическое реле — 33 доллара;
  • электросчетчик — 31 доллар.

 

Итого: если умудрится самому собрать и подключить солнечную электростанцию для дома, то можно сэкономить лишь 218 долларов.

 

Автор: Виталий Петрович, Украина Лисичанск.

 


 

как подключить своими руками, схема, комплект, отзыв и опыт эксплуатации автономной станции на солнечных батареях

В 2017 году я установил на участке одну солнечную батарею мощностью 260Вт для выработки электроэнергии. В июне выработка панели составила 34кВт электроэнергии, что в 4.5 раза превысило её нормативную мощность.

Далее я расскажу о том, как работает солнечная электростанция, из каких элементов состоит, кому подойдет и как её подключить. Кроме того, поделюсь реальной статистикой выработки одной панели.

Кому подойдет домашняя солнечная электростанция

  1. Тем, у кого на участке нет электричества. Солнечные батареи смогут автономно обеспечивать объект электроэнергией. В качестве альтернативы также можно рассматривать ветряк (для которого должна быть соответствующая роза ветров) или дизельный генератор (который не очень удобен в эксплуатации и неэкономичен).
  2. Также солнечную станцию можно рассматривать как инвестицию, чтобы на фоне постоянно растущих тарифов в будущем меньше платить за электроэнергию. К тому же срок службы батарей очень большой, а солнце светит всегда.
  3. И последний вариант — всем, кто хочет заработать. В Украине существует закон о зеленом тарифе, согласно которому государство выкупает выработанную электроэнергию с помощью альтернативных источников энергии по особой цене.

Как устроена солнечная батарея

Солнечная батарея (или ФЭМ – фотоэлектрический модуль) работает за счет кремниевых элементов, которые преобразовывают световую энергию в электрическую (в отличие от солнечных коллекторов, которые работают за счет солнечного тепла).

Сзади у панели есть выход двух кабелей, которые подключатся на инвертор или аккумулятор, в зависимости от схемы использования (об этом далее подробнее).

Как подключить, если на участке нет электричества

Если участок не подключен к сети, то главная задача — накапливать электроэнергию, чтобы использовать её в будущем по мере необходимости.

Какое оборудование понадобится:

  • Солнечные батареи.
  • Аккумулятор для накопления заряда.
  • Контролер заряда (чтобы контролировать ток заряда аккумулятора).
  • Преобразователь в 220В. По умолчанию солнечная панель выдает 12В, 24В, тогда как большинство электроприборов подключаются к 220В. Если вы используете приборы, работающие от 12В, то преобразователь не понадобится.
  • Оборудование для фиксации и крепежа самой батареи.

Самый простой вариант, «своими руками»

Самый примитивный, но рабочий вариант «для дачи»: солнечная батарея + аккумулятор, которые соединяются между собой клеммами. В таком виде станция уже готова к эксплуатации и её можно даже не ставить на крышу, а просто установить на землю. Электроэнергия будет накапливаться на аккумуляторе, от которого можно зарядить телефон, подключить освещение и т.д.

Такую станцию очень легко собрать своими руками. Достаточно просто купить аккумулятор (подойдет даже обычный автомобильный), солнечная батарея, провода и клеммы. Если вы приезжаете на дачу только по выходным, то станция может быть переносной, так как легко разбирается и прячется (или увозится с собой).

Более сложная реализация

Схема для повседневной эксплуатации и разводкой по розеткам. Солнечные батареи устанавливают на крышу (или отдельную металлическую конструкцию), а кабель от них прокладывают к аккумулятору, от которого электричество через преобразователь поступает на розетки.

По мере необходимости станцию легко масштабировать, подключая дополнительные батареи и аккумуляторы.

Как подключить, если на участке есть электричество

Если участок подключен к сети, то установка солнечной электростанции сделает дом более энергонезависимым, позволит сократить затраты на электроэнергию и даже заработать на этом благодаря зеленому тарифу.

В этой схеме подключения отсутствует аккумулятор, так как не нужно накапливать электроэнергию (но если вы хотите иметь резервный источник питания на случай выключения света, то аккумулятор необходим).

Для подключения такой станции нужна только солнечная батарея (или несколько), которая через сетевой инвертор подключается в розетку. В таком виде станция уже готова к работе. Батарея вырабатывает электричество и вы сразу же его потребляете для внутренних нужд: работы холодильника, освещения, чайника и т.п.

Например, выработка станции в сутки — 1кВт электроэнергии, а здание суммарно потребляет 5кВт. По факту из сети вы берёте лишь 4кВт. Но если станция вырабатывает в сутки 5кВт, а вы реально потребляете только 2кВт, то остаток (3кВт) сгорает. В этом случае можно подключить зеленый тариф и продавать разницу государству по более высокой цене, либо же поставить аккумулятор и накапливать избыток на него.

Сейчас существуют компании которые подключают зеленый тариф «под ключ». Начиная от подбора и установки станции, до заключения договора с ОБЛЭНЕРГО.

Реальная выработка солнечной электростанции для дома

Выработка зависит от мощности и угла наклона панелей, интенсивности солнца и продолжительности светового дня.

Между собой батареи отличаются площадью, что отражается на их мощности. Это может быть 10Вт, 100Вт, 150Вт, 260Вт и так далее. Однако реальная выработка панели обычно выше её номинальной мощности, так как необходимо учитывать коэффициент интенсивности солнца. В южных регионах солнце светит сильнее и дольше, а в северных слабее и меньше, поэтому одна и та же панель вырабатывает разное количество электроэнергии.

Пример из практики

Это график выработки электроэнергии одной панелью мощностью 260Вт за июнь 2018 года. Суммарная выработка станции за месяц — 34,89 кВт. Из расчета, что номинальная месячная мощность батареи — 7,8кВт (260Вт Х 30 дней), её фактическая мощность оказалась в 4.5 раза выше (поправочный коэффициент). Летом он больше, зимой – меньше или вообще отсутствует.

Из графика видно, что выработка непостоянна и присутствуют резкие спады – это пасмурные дни, когда световой день короче, а солнечная активность очень слабая. Худшая производительность была зафиксирована 17.06 — около 0.4кВт, а максимальная 25.06 — около 1.4кВт.

А вот так выглядит выработка солнечной батареи по часам в течение дня:

Выработка начинается ближе к 9 утра, достигает пика к 13:00, затем постепенно снижается и прекращается около 19:00. В течение дня есть небольшие провалы — когда солнце было закрыто облаками.
Примерно с 13:00 до 15:00 выработка электроэнергии была нестабильна из-за облачности. Но и это не сильно сказалось на итоговой производительности станции — 1.32кВт.
В течение дня было множество провалов, что и отразилось на итоговой выработке станции — 0.98кВт.    
А это пасмурный дождливый день, когда солнечная активность очень слабая и выработка в течение дня составила 0.45кВт.

Из этого можно сделать вывод, что целиком полагаться на солнечную электроэнергию сложно. Производительность станции сильно зависит от интенсивности солнца и даже летом она может быть непостоянна из-за пасмурной погоды.

Угол наклона солнечной батареи

Панель вырабатывает максимум электроэнергии тогда, когда солнечные лучи падают на неё под прямым углом. В этом случае лучи практически не отражаются и потери энергии минимальны. Но так как солнце в течения дня постоянно движется и меняет высоту, то поддерживать постоянным угол падения в 90° сложно.

Для этого существуют специальные механизмы, которые поворачивают панель вслед за солнцем в течение дня и изменяют угол её наклона, что дает максимально возможную выработку электроэнергии. Однако для домашней станции они нецелесообразным: при малой мощности станции дополнительные 5-15% электричества не покроют затраты на их установку.

Поэтому рекомендуется универсальное положение солнечной панели: для северного полушария направление на юг (которое охватывает максимальную траекторию движения солнца) и угол наклона в 30 ° на лето и 60 ° на зиму. Либо же средний вариант в 45 °, если панель работает круглый год.

Как рассчитать мощность электростанции на солнечных батареях

Оттолкнуться нужно от того, сколько электроэнергии вам нужно для нормального функционирования здания. Самый простой способ — выписать все эл. приборы, которые вы планируете использовать, время их работы и потребляемую мощность.

Пример:

  • Холодильник: 100Вт – 24ч – 2400Вт
  • Освещение: 100Вт – 5ч – 500Вт
  • Чайник: 15мин – 1,5кВт – 0,03кВт
  • Стиральная машина:
  • Ноутбук:
  • Итого: 3кВт

3кВт — это мощность, которую должна производить солнечная электростанция для нормальной жизнедеятельности здания. Т.е. понадобится 12 панелей мощностью по 260Вт. На практике их производительность будет выше (при коэффициенте солнечной активности 4.5 суточная выработка станции составит 14кВт), однако мы отталкиваемся от самого пессимистичного сценария, при котором каждый день — пасмурный. Также учитывайте: если вы не подключены к зеленому тарифу или не запасаете энергию на аккумулятор, то избыток будет сгорать.

Если вы устанавливаете солнечную электростанцию для заработка на зеленом тарифе,  то начать можно с любой мощности и постепенно её наращивать.

Заключение

Солнечные электростанции для дома решают две основные задачи:

  • могут обеспечивать электроэнергией участок, который не подключен к сети. В самом простом варианте вам понадобится только панель, аккумулятор и контролер заряда, которые уже способны генерировать электроэнергию. Также возможна более сложная реализация, когда станция генерирует электричество и через инвертор передает его в розетки. В этой схеме дополнительно необходим преобразователь из 12В в 220В.
  • служить инвестицией и источником дохода. В Украине существует  закон о зеленом тарифе, согласно которому государство готово покупать у населения электроэнергию, выработанную на альтернативных источников энергии, по более высокому тарифу. Другими словами: каждый может установить в доме солнечную электростанцию и продавать электроэнергию государству.

Производительность станции зависит от мощности панели и коэффициента интенсивности солнца. Для южных регионов, где солнце светит долго и интенсивно, выработка панелей может быть в 4.5 — 5 раз больше номинала. Зимой коэффициент практически отсутствует.

При пасмурных днях даже летом выработка сильно падает. Поэтому целиком полагаться на солнечную энергию не стоит (особенно если у вас автономное энергообеспечение объекта) и не лишним будет иметь резервный источник, например — дизельный генератор.

Пошаговое руководство по настройке солнечной энергии дома

Автор — Алисия Гордан

Чистая энергия быстро набирает обороты именно тогда, когда парниковые газы и выбросы углерода наносят огромный вред нашей экосистеме. С 2011 года во всем мире установлено две трети мощностей солнечной энергии. К счастью, Индия идет в ногу с быстрым развитием чистой солнечной энергетики. Отчеты показывают, что производство солнечной энергии в Индии увеличилось на 86% в 2017 году.

Сейчас идеально использовать солнечную энергию не только в коммерческих, но и в жилых помещениях. Стоимость установки солнечной электростанции неуклонно снижается, но вы всегда можете попробовать вариант «сделай сам», чтобы не выходить за рамки своего бюджета. Такие инициативы, как scoop.solar, помогают профессионалам в установке солнечных фотоэлектрических установок. Однако вы можете сэкономить деньги, установив солнечную фотоэлектрическую систему самостоятельно, прочитав это простое руководство по настройке солнечной энергии. Вот подробный обзор того, как вы можете построить и установить солнечную электростанцию ​​для вашего дома:

Пошаговое руководство по установке солнечной электростанции

Шаг 1: Соберите компоненты солнечной энергии

Все начинается со сбора основных компонентов солнечной электростанции.Вам понадобятся четыре основных предмета — солнечные панели, контроллер заряда, инвертор и аккумулятор. В дополнение к этим предметам вам, среди прочего, потребуются прерыватель, измеритель, разъем MC4 и предохранители. Имейте в виду, что необходимо прочитать инструкции к модулю солнечной панели.

Шаг 2: Рассчитайте мощность нагрузки

Перед тем, как приступить к установке солнечной энергии, очень важно подвести итог мощности, которую вы используете в своем доме. Это не ракетостроение. Все, что вам нужно сделать, это записать бытовую технику, которую вы используете ежедневно, в том числе телевизор, свет, вентилятор и так далее.Затем добавьте время, в течение которого эти устройства работают в день. Просмотрите таблицу характеристик своих бытовых электроприборов, чтобы проверить их продолжительность использования или время работы, а также их номинальную мощность.

Теперь рассчитайте «Ватт-час», умножив время работы прибора на его номинальную мощность. Выполните этот шаг для каждого электрического устройства, затем просуммируйте отдельные числа ватт-часов, чтобы получить общую сумму. Вы также можете упростить этот расчет, используя онлайн-калькулятор автономной нагрузки.

Шаг 3: Выберите и зарядите аккумулятор

Основная проблема с солнечной энергией заключается в том, что она не обеспечивает электричеством, когда солнце садится. Однако вы можете легко решить эту проблему, используя аккумулятор. Свинцово-кислотный или литий-ионный аккумулятор накапливает солнечную энергию, генерируемую днем, и разряжает ее ночью. Это обеспечивает стабильную подачу энергии при условии, что вы выбрали оптимальную емкость аккумулятора. Вам понадобится контроллер мощности, чтобы контролировать зарядку аккумулятора.Они проходят между панелями и аккумулятором. Такие контроллеры обычно оснащены небольшой светодиодной лампочкой, которая сообщает о состоянии зарядки аккумулятора и регулирует мощность, поступающую в аккумулятор.

Шаг 4: Настройте инвертор

Солнечные батареи вырабатывают электричество постоянного тока (DC), но электрические приборы используют энергию в виде переменного тока (AC). Инвертор — это устройство, которое экономит время, позволяя использовать электрические устройства без адаптеров.Инверторы бывают разной мощности и типов, включая прямоугольные, модифицированные синусоидальные и чисто синусоидальные инверторы. Прямоугольные волны совместимы не со всеми устройствами, а выходной сигнал модифицированной синусоидальной волны не подходит для некоторых устройств, таких как холодильник. Это делает инвертор синусоидальной волны лучшим выбором для вашей солнечной системы.

Шаг 5: Закрепите солнечные панели на крыше

Когда аккумулятор, контроллер и инвертор готовы, вам нужно приступить к установке солнечных панелей.Выберите лучшее место для панелей на крыше или на открытом грунте, которое беспрепятственно получает солнечное излучение. Подставку для крепления можно сделать самостоятельно или приобрести в магазине. Наклон монтажной стойки должен быть почти равным углу широты вашего местоположения. Правильная настройка солнечных панелей имеет решающее значение для их эксплуатации и обслуживания. Следовательно, важно, чтобы панели были обращены к солнцу в течение дня.

На последнем этапе этого шага подключите солнечные панели.Вы можете проследить небольшую распределительную коробку на задней части солнечной панели. Распределительная коробка имеет отрицательный и положительный знаки полярности. В большой панели распределительная коробка также имеет клеммные провода с разъемом MC4. Однако вам придется самостоятельно выровнять распределительную коробку с внешними проводами, если вы используете небольшие солнечные батареи. Используйте черный и красный провод для отрицательного и положительного клемм соответственно.

Шаг 6: Подключите солнечные панели к батарее

Необходимо подключить солнечные батареи к аккумулятору.В некоторых фотоэлектрических системах они объединяются вместе, поэтому вам не нужно прилагать дополнительных усилий. В случаях, которые не указаны как единое целое, необходимо выполнить последовательное и параллельное соединение. Вы можете выполнить последовательное соединение, соединив положительную клемму одного устройства с отрицательной клеммой другого устройства. Для параллельного подключения вам необходимо соединить отрицательную клемму одного устройства с отрицательной клеммой другого устройства и так далее.

Шаг 7: Установка означает инвертор и аккумулятор

Ваш жилой солнечный блок неполон без подставок для аккумулятора и инвертора.Опять же, у вас есть возможность построить трибуны или получить их. Как только выделенные позиции для инвертора и батареи готовы, вы можете приступить к работе с проводкой. Начнем с подключения контроллера. Первое соединение слева предназначено для подключения контроллера к солнечным панелям. Второе соединение предназначено для сопряжения аккумулятора с контроллером. Последнее подключение предназначено для подключения контроллера к прямому подключению нагрузки постоянного тока.

Для подключения солнечной панели к контроллеру заряда вам понадобится отдельный разъем, называемый разъемом MC4.После подключения контроллера к батарее должны загореться его светодиодные индикаторы. Точно так же вам нужно будет соединить клемму инвертора с клеммой аккумулятора.

Следуя этим шагам, вы сможете установить солнечную электростанцию ​​у себя дома. Высокие затраты, понесенные при установке, могут быть окуплены позже, поскольку солнечная энергия не только чистая, но и экономически выгодное вложение.

Об авторе

Алисия Гордан — писатель-фрилансер, любит читать и писать статьи о здравоохранении, технологиях, фитнесе и образе жизни.Она увлекается технологиями и делит свое время между путешествиями и писательством. Вы можете найти ее в Twitter: @meetalycia

Как работают солнечные панели | Служба поддержки Tesla

Как в моем доме подаётся электричество ночью?

Мы подключаем вашу солнечную систему к электрической панели вашего дома, как и другие цепи в вашем доме. Ночью солнечная система отключится, и ваш дом будет питаться от электросети. В течение этого времени счетчик электроэнергии будет записывать, сколько энергии потребляет ваш дом, как и сегодня.

В качестве альтернативы вы можете использовать Powerwall для хранения излишков солнечной энергии, генерируемой вашим домом, и использовать эту энергию в ночное время, что позволит вам создать дом с автономным питанием.

Куда девается солнечная энергия, если я не использую ее полностью?

Когда светит солнце, энергия, вырабатываемая солнечной системой на вашей крыше, поступает в электрическую панель вашего дома. Поскольку ваша система вырабатывает больше энергии, чем может сразу потребить ваш дом, ваш электросчетчик будет отражать это как таковой.Некоторые коммунальные счетчики будут стоять на месте, в то время как двунаправленные счетчики будут вращаться в обратном направлении, когда солнечная энергия питает ваш дом. В вашем счете за электроэнергию будет указано нулевое использование в течение этого времени. В солнечный летний день ваши солнечные панели могут производить больше энергии, чем нужно вашему дому. В это время ваша солнечная система будет полностью обеспечивать энергией ваш дом, и вся избыточная энергия будет течь обратно через ваш электросчетчик, где она будет потребляться другими домами и предприятиями, подключенными к сети. Узнайте больше о кредитах на сверхнормативную солнечную энергию.

Экосистема Tesla

Ваша солнечная система будет использовать энергию, которую она собирает, для питания всех электрических нагрузок в вашем доме, включая зарядные устройства для электромобилей. Количество энергии, необходимое для ежедневной зарядки вашего автомобиля, будет зависеть от ваших привычек вождения. Для автомобилей Tesla в нормальных условиях вы можете проехать от 3 до 4 миль на киловатт-час энергии.

Объединив все энергетические продукты Tesla, вы можете генерировать, хранить и потреблять возобновляемую энергию в доме с автономным питанием и ездить на солнце.Эта энергетическая независимость сделает электрические сети чище, надежнее и ускорит переход мира к устойчивой энергетике.

Солнечная энергия | Город Лонгмонт, Колорадо

Быстрые ссылки

Процесс установки солнечных батарей

Подходит ли вам солнечная энергия?

Solar 101: Как работает солнечная энергетическая система?

Часто задаваемые вопросы

Показатели самостоятельной генерации солнечной энергии

Приветственный пакет Solar

Процесс установки солнечных батарей

Приведенные ниже инструкции предназначены только для клиентов Longmont Power & Communications (LPC).Если вы не являетесь клиентом LPC и хотите установить солнечную электрическую систему, обратитесь в свою электроэнергетическую компанию для получения дополнительной информации.

Установка солнечных батарей в пределах Лонгмонт-Сити

  • Если вы являетесь клиентом LPC и проживаете в округе Велд, ваш адрес находится в пределах городских границ
  • Если вы живете в округе Боулдер, но не уверены, живете ли вы в пределах города, пожалуйста, свяжитесь с округом Боулдер

Щелкните здесь, чтобы загрузить инструкции по установке, если вы являетесь клиентом, живущим в городской черте

Нажмите здесь, чтобы подать заявку на получение разрешения на солнечную батарею в Департамент строительства города Лонгмонт

Солнечная установка за пределами Лонгмонт-Сити

  • Если вы живете в округе Боулдер, но не уверены, живете ли вы в пределах города, пожалуйста, свяжитесь с округом Боулдер

Щелкните здесь, чтобы загрузить инструкции по установке, если вы являетесь клиентом, живущим за пределами города

Подходит ли вам солнечная энергия?

Ваш дом энергоэффективен? Прежде чем рассматривать солнечную энергию, важно сосредоточиться на сокращении общего энергопотребления за счет энергоэффективных обновлений.Максимально увеличив энергоэффективность вашего дома, вы можете быть уверены, что электричество, производимое вашей солнечной электрической системой, не будет потеряно из-за негерметичных воздуховодов, недостаточной изоляции или неэффективной системы отопления и охлаждения. Более того, если вы максимизируете эффективность своего дома, вы компенсируете большую часть своего потребления за счет солнечной энергии или сможете установить меньшую солнечную энергетическую систему (снизив стоимость установки солнечной энергии).

Город Лонгмонт предлагает предложения по энергоэффективности и скидки через Efficiency Works ™.Как частный клиент LPC, вы можете поговорить с экспертом Efficiency Works Energy Adviser, подписаться на энергоаудит дома и подать заявку на скидки за эффективность. Просто посетите веб-сайт Efficiency Works или позвоните по телефону 877-981-1888, чтобы поговорить с консультантом по энергетике сегодня.

Подходит ли ваша крыша? Если вы планируете установить солнечные панели на крыше, убедитесь, что ваша крыша выдержит столько же, сколько и сами панели. Солнечные панели рассчитаны на срок службы более 20 лет, и удаление и повторное прикрепление их к крыше может быть дорогостоящим, если вам нужно отремонтировать или заменить крышу.Лучше всего отремонтировать крышу до покупки солнечной электрической системы.

Вы арендуете или владеете домом? Если вы арендуете или ваша крыша не подходит для установки солнечных батарей, вы можете подумать об инвестировании в альтернативные предложения LPC по возобновляемым источникам энергии. Узнайте больше о нашей программе покупки возобновляемой энергии.

Как долго вы планируете жить в своем доме? Покупка солнечной фотоэлектрической системы — это крупное вложение, которое может занять некоторое время, чтобы окупиться. Подумайте, как долго вы планируете оставаться в своем доме и какую расплату вы, вероятно, получите за это время.

Фотоэлектрическая система какого размера мне нужна? Этот калькулятор можно использовать для определения размера, стоимости и преимуществ подключенной к сети солнечной фотоэлектрической системы для вашего дома или бизнеса. Его можно использовать как для владения, так и для аренды системы.

Солнечная 101

Термин «солнечный» может означать разные вещи для разных людей. Некоторые думают о солнечной энергии как о способе более экологичной жизни или экономии денег, в то время как другие могут не знать, что такое солнечная энергия и какую пользу она может им принести.Ниже представлена ​​некоторая основная информация о солнечной энергии, в том числе о том, как она используется и о преимуществах, связанных с солнечной энергетической системой.

Как работает солнечная энергетическая система?

Что происходит ночью?

Ваша фотоэлектрическая (PV) система вырабатывает электричество только тогда, когда светит солнце, но вашему дому по-прежнему требуется электричество в пасмурные дни и после захода солнца. LPC обеспечивает чистые измерения для всех клиентов, которые устанавливают фотоэлектрические системы. Net metering — это программа выставления счетов, которая позволяет клиентам с системами солнечной энергии покупать и продавать электроэнергию в LPC и обратно.Участвуя в программе чистых измерений, клиент может покупать электроэнергию, когда их солнечная энергетическая система не производит достаточно энергии для удовлетворения спроса в их доме или на работе, и продавать избыточную генерацию в сеть, когда они производят больше, чем нужный.

Часто задаваемые вопросы для потребителей солнечной энергии

Что нужно сделать, чтобы перейти на солнечную энергию? Вы, ваш подрядчик и LPC играете важную роль в обеспечении вашей собственности чистой энергией:

  1. Вы: Рекомендуем сначала начать с эффективности! Подготовьте свой дом с помощью энергоаудита Efficiency Works.После того, как вы завершили повышение эффективности и / или решили продолжить установку солнечной энергии, обратитесь к квалифицированному подрядчику по солнечной энергии.
  2. Подрядчик: Ваш подрядчик поможет с оценкой площадки, порекомендует размер системы, проведет вас через все необходимые документы и предоставит предложение / стоимость проекта. LPC рекомендует получить оценку от нескольких подрядчиков и выбрать тот, который лучше всего соответствует вашим потребностям. Затем подрядчик подает заявку на получение разрешения на проект в Департамент строительной инспекции Longmont.
  3. LPC: Наши инженеры рассмотрят и утвердят контрольный список и однолинейные схемы , представленные вместе с вашей заявкой на получение разрешения на строительство. После завершения установки LPC завершит предварительное параллельное тестирование, чтобы убедиться, что система безопасна для подключения к сети, и установит ваш новый двунаправленный счетчик, который измеряет энергию, которую вы используете из сети, и любую энергию, которую ваш дом возвращает обратно. сетка от вашей солнечной батареи.

Будет ли у меня ежемесячный счет за электричество? Да.Все клиенты, у которых есть собственное электрогенерирующее оборудование, включая бытовых потребителей солнечных / фотоэлектрических систем, оплачиваются по тарифу LPC RGEN (Самостоятельная генерация в жилых помещениях). Эта ставка помогает гарантировать, что клиенты оплачивают свою справедливую долю за электрическую инфраструктуру, используемую всем сообществом, и учитывает как энергию, которую LPC поставляет потребителю, так и энергию, которую система клиента передает LPC. Они фиксируются на постоянной основе с помощью нашего процесса чистых измерений. Узнайте больше о биллинге LPC за солнечную энергию.

Почему количество электричества, которое я отправил в сеть LPC, не соответствует выходной мощности, указанной на устройстве мониторинга моей солнечной энергетической системы? Количество электроэнергии, за которое вы получаете кредит, скорее всего, не будет соответствовать заявленной мощности устройства мониторинга вашей системы. Электроэнергия отправляется обратно в сеть только тогда, когда ваша система вырабатывает больше, чем использует ваш дом или бизнес в данный момент. Если ваш дом или бизнес использует всю электроэнергию, которую вырабатывает ваша система, вам нечего отправлять обратно в сеть, и, следовательно, нет кредита на вашем счете.

Что входит в мою ежемесячную абонентскую плату? Для потребителей, самостоятельно генерирующих электроэнергию, большая часть постоянных затрат на систему распределения электроэнергии входит в ежемесячную плату потребителя и снимается с платы за киловатт-час. Это приводит к тому, что фиксированная ежемесячная плата потребителя, самостоятельно генерирующего энергию, больше, чем плата для потребителя, не генерирующего самостоятельно, с соответствующим уменьшением их платы за киловатт-час. В отличие от потребителя, который потребляет только электроэнергию, самогенерирующий потребитель использует систему распределения электроэнергии двумя способами: потребляет электроэнергию из сети и возвращает электроэнергию в сеть.Если бы сборы, предназначенные для сбора фиксированных затрат на коммунальные услуги, оставались бы в составе платы за киловатт-час для самогенерирующего потребителя, и этот потребитель произвел бы столько или больше электроэнергии за год, чем потреблял бы, это привело бы к занижению сборов за свои доля затрат на систему распределения электроэнергии. Поскольку LPC является некоммерческой организацией, принадлежащей потребителю, это привело бы к тому, что другие потребители субсидировали бы затраты на сбыт собственных услуг потребителям.

Почему в моем счете за коммунальные услуги в разделе «Электрообслуживание» указано несколько линий потребления электроэнергии? В верхнем разделе подробных сведений об использовании электроэнергии показано количество энергии, использованной из сети LPC, в кВтч за месяц и соответствующая плата.В нижнем разделе отображается количество энергии, возвращаемой в сеть LPC, в кВтч и соответствующий кредит. Это не количество энергии, которое генерирует ваша фотоэлектрическая система, это просто количество, которое ваша система генерирует сверх того, что вы используете во время генерации. Чтобы узнать больше о чистом выставлении счетов LPC, ознакомьтесь с приветственным пакетом Solar.

Есть ли у LPC утвержденный список установщиков / подрядчиков солнечных батарей? LPC не поддерживает никаких исключительных партнерских отношений с установщиками солнечных батарей и не несет ответственности за процесс установки.При выборе установщика LPC рекомендует поговорить и получить предложения как минимум от трех подрядчиков.

Осуществляет ли LPC контроль за процессом установки? LPC не предлагает услуги по установке и не обеспечивает надзор за процессом установки; тем не менее, мы проводим выездную проверку, чтобы убедиться, что установка соответствует нашим требованиям. Выбор опытного подрядчика по солнечной энергии — один из самых важных шагов в общем процессе установки.

Как мне решить, подходит ли мне покупка или аренда? Установщик может посоветовать вам плюсы и минусы покупки по сравнению с лизингом. Если вы предпочитаете владеть своей солнечной установкой, вам следует проконсультироваться со своим налоговым консультантом, чтобы определить ваше право на получение федеральных налоговых льгот и налогов штата.

SolSmart — обладатель серебряной награды SolSmart Silver 2020


SFC — Награда «Сообщества, дружественные к солнечной энергии» в 2014 году

ДА — Ваша энергия Колорадо известна тем, что предоставляет Coloradan’s ресурсы, основанные на исследованиях, в области энергии через Университет штата Колорадо.

Установка собственных солнечных панелей? Сначала проверьте этот контрольный список.

Фото © Heshphoto, inc., Выдержка из Установите собственные солнечные панели .

Если вас интересует солнечная энергия, вы наверняка уже знаете, что солнечное электричество полезно для окружающей среды, национальной безопасности и воздуха, которым мы дышим, не говоря уже о вашем счете за электричество. И что это один из лучших способов уменьшить вклад вашей семьи в глобальное потепление. Вы также, вероятно, слышали, что использование солнечной энергии на самом деле может быть дешевле, чем платить за электроэнергию, и вы можете задаться вопросом, верно ли это утверждение.Что ж, в большинстве случаев это правда. Просто требуется время, чтобы дополнительная экономия превысила первоначальные вложения (после этого солнечная энергия бесплатна). Если вы установите солнечную систему самостоятельно, вы сможете достичь этого переломного момента намного раньше — в некоторых случаях в два раза быстрее.

Это подводит нас к следующему важному вопросу: действительно ли вы можете установить свои собственные солнечные батареи? Опять же, да. Если вы умеете забивать болты и собирать готовые детали, и если вы готовы провести день или два на крыше (или нет, если вы монтируете панели на земле), вы можете установить свою собственную солнечную систему.Вам не нужно знать, как подключить солнечные панели к электричеству в вашем доме или к электросети. Вы наймете электрика для подключения к дому, а коммунальная компания позаботится обо всем остальном, как правило, бесплатно. В полностью автономной системе коммунальное предприятие вообще не участвует.

Возможно, к сожалению, эта работа даже не является хорошим поводом для покупки нового электроинструмента, так как единственное, что вам нужно, — это хорошая дрель.

Итак, если это такой выполнимый проект, почему большинство людей используют профессиональных установщиков? Во-первых, у многих людей есть веские причины сдавать в аренду практически все, от замены масла до покупки продуктов.(Вероятно, это не вы, но даже если это так, наша книга может помочь вам спланировать установку солнечной энергии и найти хорошего местного установщика.) Профессионалы в области солнечной энергетики занимаются не только установкой. Они проектируют систему, подают заявки на скидки и кредиты, заказывают все необходимые детали, получают разрешения и проходят все проверки. Но дело в том, что вы можете сделать все это самостоятельно, при условии, что у вас есть полезный советник и вы готовы следовать правилам местного строительного управления (именно там вы получите эти разрешения).

Установка солнечных батарей становится все проще, и вы можете быть удивлены тем, насколько доступна помощь «сделай сам». Двумя хорошими примерами являются PVWatts и База данных государственных стимулов для возобновляемых источников энергии и повышения эффективности (DSIRE). PVWatts — это онлайн-калькулятор, который поможет вам определить размер солнечно-электрической системы в зависимости от местоположения и положения вашего дома, а также угла наклона вашей крыши. Специалисты по солнечной энергии используют тот же простой инструмент, но он бесплатен для всех. DSIRE предлагает актуальный и исчерпывающий список скидок, налоговых льгот и других финансовых льгот для возобновляемых источников энергии, доступных в любой части США.Кроме того, он бесплатный и простой в использовании.

Только эти два ресурса помогают ответить на два наиболее распространенных вопроса домовладельцев о солнечной энергии: Насколько большая система мне нужна? и Сколько это будет стоить? Другие ресурсы включают поставщиков солнечного оборудования, которые обслуживают домашних мастеров и предлагают покупки и техническую поддержку, а также удобные для потребителей отраслевые источники, такие как журнал Home Power и онлайн-сообщество Build It Solar. И нет закона, который запрещал бы домашним мастерам нанять специалиста по солнечной энергии для помощи в определенных аспектах своего проекта, таких как создание проектных спецификаций, выбор оборудования или подготовка разрешительных документов.

Мы также должны сразу сказать, что установка ваших собственных солнечных панелей — это не тот процесс, которому нужно срезать углы. Мы не хотим, чтобы вы устанавливали свою систему без разрешения или без привлечения электрика для окончательных подключений. (Даже профессиональные установщики солнечных батарей используют для этого электрика.) Процесс получения разрешения может быть болезненным, да, но он нужен для обеспечения безопасности вашей системы не только для вас, но и для аварийных служб, которым может потребоваться работа с вашим мини-устройством. электростанция.Работая с местным строительным отделом, вы также узнаете о критических факторах проектирования, таких как ветровые и снеговые нагрузки, которые характерны для вашего района.

Фото © Heshphoto, inc., Выдержка из Установите собственные солнечные панели .

Могу ли я установить свою собственную фотоэлектрическую систему? Контрольный список для домашнего мастера

Пришло время лакмусовой бумажки, которая подскажет, действовать ли смело, как любитель-установщик солнечных батарей, или передать бразды правления профессионалу. Для большинства из вас решение будет сводиться к правилам местного строительного управления (скорее всего, вашего города, округа, поселка или штата) или вашего поставщика коммунальных услуг, в любом из которых может потребоваться, чтобы установка солнечных батарей выполнялась лицензированным профессионалом. .Это также лучшее время, чтобы подтвердить, что ваш проект не будет отклонен отделом зонирования, стандартами исторического района или ассоциацией домовладельцев.

  • Любительская установка разрешена местными строительными властями и вашим поставщиком коммунальных услуг.
  • Требования к любительской установке разумны и приемлемы. Некоторые органы власти требуют, чтобы непрофессионалы прошли тесты, демонстрирующие базовые знания в области электрических и других бытовых систем, но такие тесты могут быть не такими обширными.
  • Вы согласны с несколькими часами физической работы на крыше (те, у кого есть наземные системы, получают здесь пропуск), И вы достаточно мудры, чтобы носить законное оборудование для защиты от падений (а не веревку, привязанную к вашей талии). Вы можете чувствовать себя так же уверенно, как Мэри Поппинс, танцующая на крышах, но она умеет летать; вы должны быть привязаны.
  • Вы не живете в историческом районе или, если вы живете, орган зонирования разрешает использование фотоэлектрических систем (с приемлемыми ограничениями).
  • Ассоциация вашего домовладельца, если она у вас есть, разрешает использование фотоэлектрических систем (с приемлемыми ограничениями).Иногда ассоциации домовладельцев нужно немного подтолкнуть, чтобы дать разрешение.
  • У вас есть стандартная кровля (битумная черепица, металлочерепица, деревянная черепица, стандартная плоская кровля). Если у вас есть шиферная, бетонная черепица, глиняная черепица или другая хрупкая / специальная кровля, проконсультируйтесь со специалистом по кровле и / или арендуйте фотоэлектрическую установку. Это не обязательно является препятствием для сделки.

ВНИМАНИЕ: фотоэлектрические системы по своей природе опасны и потенциально смертельны. Как установщик и владелец системы своими руками вы должны понимать, уважать и снижать риски, связанные со всеми задачами установки и обслуживания.Обратите особое внимание на предупреждения по технике безопасности, а также на все требования местных строительных и электрических норм и инструкций по эксплуатации оборудования.

Текст взят из
Установите собственные солнечные панели © 2017 Джозеф Бурдик и Филип Шмидт. Все права защищены.
Джозеф Бердик

Джозеф Бердик имеет более чем 30-летний опыт работы в фотоэлектрической отрасли — от исследований и разработок, измерений и испытаний до проектирования, установки и проектирования систем … См. Биографию

Филип Шмидт

Филип Шмидт учил читателей делать вещи почти два десятилетия.Бывший плотник, давний писатель и редактор, он… См. Биографию

солнечных панелей | Конкорд, Массачусетс

Солнечные скидки

(последнее обновление: 06.08.21)

CMLP предлагает две различных программ скидок , обеспечивающих тысячи долларов на установку солнечных панелей в вашем доме или офисе.

1) Скидка по программе MLP Solar: Предлагает единовременное вознаграждение в размере 1200 долларов США за кВт (DC) установленной солнечной фотоэлектрической (PV) мощности, ограниченное 50% стоимости системы или 30 000 долларов США, в зависимости от того, что меньше.Этот стимул финансируется за счет соразмерных взносов в размере 600 долларов США за кВт (DC) от CMLP и Министерства энергетики штата Массачусетс (DOER). Допускаются бытовые и коммерческие массивы мощностью 25 кВт (постоянный ток) или менее, установленные потребителями с хорошей репутацией. Обратите внимание на выделенных жирным шрифтом крайних сроков на этапах B2 и D1, согласно которым кандидаты на скидку должны соответствовать , чтобы получить этот стимул.

ОБНОВЛЕНИЕ :
Скидка на программу солнечной энергии штата MLP закрыла свои двери для новых приложений.Средства DOER были израсходованы до истечения срока подачи заявок 30 июня 2021 года. Это означает, что многие заявки, полученные раньше установленного срока, не были приняты в программу. Если вы получили электронное письмо от [email protected], в теме которого указано «Утверждение установки солнечной энергии MLP и уведомление о резервировании », значит, вы участвуете в программе. Если вы не получили это письмо, ваша заявка не попала в программу до того, как финансирование будет исчерпано.
Финансирование скидки CMLP на солнечную энергию (см. Ниже) будет продолжено и полностью отделено от государственной программы DOER.

2) CMLP Solar PV Rebate : Предлагает дополнительную единовременную скидку в размере 625 долларов США за кВт (постоянного тока) установленной солнечной фотоэлектрической генерирующей мощности, но не более 3 125 долларов США за адрес обслуживания. Допускаются бытовые установки мощностью до 167 кВт (переменного тока) и коммерческие установки любого размера. Срок действия данной скидки не истекает.

*** ВАЖНОЕ ПРИМЕЧАНИЕ: Если в вашей собственности уже есть или вы рассматриваете возможность установки субсчетчика — например, для электромобиля, зимнего электрического обогрева и т. Д.- пожалуйста, прочтите эту страницу и ее подстраницы, чтобы ознакомиться с вариантами и компромиссами при объединении субсчетчиков с солнечными панелями. ***

Шаги по установке солнечной энергии

Вот шаги, которые нужно подать как на скидки, так и на установите солнечную батарею у себя дома или на работе. Если вы подаете заявку на скидку CMLP Solar PV только , , вы можете пропустить шаги A1, B1, C2-3 и G1-7. Вот 11 подходящих для вас шагов: A2-3, B2, C1, D1-3, E1-3 и F1. Если вы подаете заявку на получение скидки по программе MLP Solar и на скидку CMLP Solar PV, все 22 шага ниже подходят для вас.

A. Изучите варианты и подпишите контракт:

  1. Узнайте о программе MLP Solar, которая администрируется для CMLP компанией Energy New England (ENE). Щелкните здесь, чтобы ознакомиться с программой и инструкциями по началу работы.
  2. Мы рекомендуем вам запросить предложения по крайней мере от трех специалистов по установке солнечных батарей для вашей новой солнечной фотоэлектрической системы. Вы найдете информацию, которая поможет вам на этом этапе, на веб-сайте программы MLP Solar Program компании ENE и на веб-странице CMLP, посвященной лизингу / покупке / выбору установщика.Люди, которые уже установили солнечную батарею, также являются хорошим источником информации о производительности установщика. Просмотрите онлайн-обзоры, поговорите с людьми, которых вы знаете, или попросите специалиста по энергетике CMLP Памелу Кэди ([email protected] или (978) 318-3149) связаться с домовладельцами или предприятиями Concord, которые установили солнечные батареи и вызвались обучать другие.
  3. При запросе предложений от установщиков солнечных батарей сообщите им, что вы заинтересованы в подаче заявки на скидку CMLP Solar PV Rebate. Подтвердите, что они знакомы с критериями проектирования, установки и оборудования фотоэлектрической системы и производственного счетчика для требований CMLP Solar PV Rebate и требований к межсетевому подключению, изложенных в следующем шаге.

B. Подайте заявку на подключение со связанными документами:

  1. Документы по скидке на программу солнечной энергии MLP, требуемые DOER, которые должны быть загружены установщиком через онлайн-портал до 30.06.2021 . Электронное письмо от [email protected] со словом «заявка получена» в строке темы означает успешное завершение этого шага.
    1. Заявление о скидке на программу солнечной энергии MLP
    2. Соглашение участника
    3. Доказательство права собственности (акт или недавний налоговый счет)
    4. Копия контракта между установщиком и домовладельцем / владельцем бизнеса
    5. Анализ Shade
      (утвержденные DOER инструменты затенения можно найти в пакете Подрядчика или Руководстве по программе)
  2. Документы о скидке и подключении солнечных панелей CMLP, которые должны быть отправлены установщиком по электронной почте в CMLP:
    1. Приложение для подключения жилых или коммерческих помещений, с батареей или без
      (или дополнение только для батарей для зданий с уже существующей солнечной батареей)
    2. Заявка на скидку CMLP Solar PV
    3. Положения и условия скидки CMLP Solar PV
    4. Подтверждение политики измерения чистоты в жилых или коммерческих помещениях
    5. Схема подключения
    6. Листы спецификаций для всего оборудования
      (т.е. солнечные фотоэлектрические панели, инверторы и (если применимо) системы хранения энергии)
    7. (Примечание: установщик должен подать отдельное разрешение в Строительный отдел Конкорда)

C. Разрешение на установку от CMLP (все приложения) и DOER ( для заявления о скидке в рамках программы MLP Solar):

  1. Персонал CMLP просматривает документы и, если все требования соблюдены, отправляет T собственное подписанное Утверждение документа на установку владельцу собственности, установщику и ENE.(Примечание: текущие ограничения системы распределения электроэнергии CMLP могут препятствовать установке солнечных батарей мощностью более 25 кВт без сопутствующей системы накопления энергии. Решения принимаются в каждом конкретном случае после инженерного анализа.) Электронное письмо от CMLP с «одобрением на установку» в строке темы означает успешное завершение этого шага.
  2. ENE проверяет документы, отправляет заполненный пакет запроса на скидку в DOER к середине июля 2021 года и уведомляет клиента и установщика. Электронное письмо от noreply @ anbetrack.com с пометкой «отправлено ДОЭР для присуждения бронирования» в строке темы означает успешное завершение этого шага.
  3. DOER отправит уведомление о награждении домовладельцу и установщику по электронной почте до августа 2021 года или когда средства закончатся, в зависимости от того, что наступит раньше. Это служит утверждением штата для установки . Электронное письмо от [email protected] с «Уведомлением о резервировании награды» в строке темы означает успешное завершение этого шага.

Д.Установка оборудования:

  1. Солнечные фотоэлектрические панели, установленные на участке
    (если вы подаете заявку на скидку в рамках государственной программы MLP Solar Program, это должно быть выполнено установщиком до 6/9/2022)
  2. Инспектор по электромонтажу Департамента городского строительства посещает объект дать одобрение.
  3. Электрик CMLP, инициированный электронным письмом об одобрении Строительного департамента, устанавливает счетчик «отправки и получения»
    (требуется кратковременное отключение электроэнергии; новый счетчик установлен рядом с солнечным счетчиком; собственнику недвижимости не обязательно находиться на месте)

E .Разрешение на эксплуатацию от CMLP:

  1. Инженер CMLP проводит окончательную проверку проекта (выезд на объект обычно не требуется)
  2. Электронные письма CMLP подписаны Документ «Разрешение на эксплуатацию » владельцу собственности и установщику
    (при подаче заявки на государственную программу MLP Solar Program) скидка, это должно быть завершено CMLP до 30.06.2022 .) Электронное письмо от CMLP с «Approval to Operate» в строке темы означает успешное завершение этого шага.
  3. Собственник начинает вырабатывать собственную электроэнергию!

Ф.Получите скидку CMLP на солнечную батарею:

  1. Владелец недвижимости получит одноразовый чек по почте от Town of Concord для получения скидки на солнечную батарею CMLP (если запрошен чек на скидку, а не кредит по счету). Он приходит через 4–6 недель после электронного письма об утверждении к эксплуатации.
    (См. Шаг G6 ниже для получения информации о проверке бонуса программы солнечной энергии MLP)

G. Получите скидку программы солнечной энергии MLP от CMLP & DOER:

  1. Установщик загружает следующие документы запроса проверки программы солнечной энергии MLP сюда.Электронное письмо от [email protected] с «полученными документами о завершении проекта» в строке темы сопровождает этот шаг. ENE просматривает документы Validation Request и при необходимости запрашивает дополнительную информацию у установщика.
    1. Копия электронного письма с разрешением CMLP на эксплуатацию (см. Шаг E2 выше)
    2. Соглашение о межсетевом соединении CMLP с подписью с разрешением на эксплуатацию (прилагается к электронному письму CMLP — см. Шаг E2 выше)
    3. Форма завершения проекта (предоставляется DOER после резервирования присуждения контракта) — см. шаг C3 выше)
    4. Форма подключения измерителя Locus
    5. Форма запроса на изменение (если применимо)
    6. Счет-фактура установщика
    7. Фотографии обоих:
      1. Локус-метр включен Подтверждение Запросить у DOER документы для утверждения платежа.Электронное письмо от [email protected] с «формами заполнения, отправленными DOER» в строке темы означает успешное завершение этого шага.
      2. DOER утверждает скидку на программу MLP Solar с уведомлением по электронной почте, отправляемому заказчику, установщику и CMLP.
      3. ENE выставляет счета как DOER, так и CMLP на возврат средств в рамках программы MLP Solar Program Rebate.
      4. После получения средств ENE отправляет покупателю два чека со скидкой по программе MLP Solar: один чек представляет долю CMLP, а другой — часть штата.Этот шаг сопровождает электронное письмо от [email protected] с указанием в теме письма «компенсация платежа по почте».
      5. ENE подключает счетчик Locus и обеспечивает доступ для CMLP, установщика и клиента.

      Если у вас есть какие-либо вопросы, обращайтесь:
      Concord Municipal Light Plant
      PO Box 1029
      1175 Elm Street
      Concord, MA 01742
      ВНИМАНИЕ: Pamela Cady
      [email protected] (Примечание: лучший метод во время Covid)
      (978) 318-3149

      Безопасность вокруг солнечных панелей | Кооператив Southern Maryland Electric

      Как и любой другой источник электричества, солнечные батареи могут представлять опасность.Если у вас есть панели установлен на вашей крыше или в другом месте вашей собственности, обратите внимание на риски и держитесь на безопасном расстоянии от электрического оборудования.

      Emergency Лица, отвечающие за реагирование, также должны знать о рисках, связанных с солнечной батареей. (Солнечные водонагревательные системы немного отличаются и не обсуждаются здесь.)

      Как они работай?

      Массив солнечных панели генерируют электричество постоянного тока (DC). Инверторы преобразуют мощность в переменный ток (AC), который могут использовать ваши приборы.Система может иметь множество небольших индивидуальных инверторов, прикрепленных к отдельным солнечным панелям или более крупным инверторы, расположенные рядом с электросчетчиком в здании или главным распределительным щитом.

      Большая часть электрические провода проходят через кабелепровод снаружи здания. Обычно выключатель переменного тока устанавливается возле электросчетчика или домашней электросети. распределительный щит. Каждый размыкающий выключатель должен иметь маркировку, позволяющую идентифицировать солнечная батарея, к которой она подключена.

      Выключатель-разъединитель только отключит дом от солнечной батареи. Панели по-прежнему будут вырабатывать постоянный ток и могут вызвать поражение электрическим током. . Если Солнечная система имеет резервную батарею, она также будет продолжать производить электроэнергию.

      Помните, пока пока светит солнце, солнечные батареи будут оставаться под напряжением.

      Остерегайтесь опасностей:

      Разнообразие Опасности связаны с монтируемыми на крыше и отдельно стоящими солнечными системами. Быть известно о следующем:

      • Ударная или поражение электрическим током от прикосновения к проводке
      • Вдыхание токсичного дыма от горящих солнечных панелей
      • Крыша коллапс от веса солнечных батарей
      • Травма и опасность для других от ходьбы, споткнуться и падать на солнечную панели

      Предотвратить травмы:

      Осталось не менее 10 футов от солнечной установки.

      • Никогда ходить по солнечным батареям.
      • Никогда перерезать кабелепровод или электрическую проводку солнечной системы.
      • Никогда сломать панель или связаться с поврежденной системой.

      В экстренных случаях:

      Для широкой публики:
      1. Позвонить 911 и активируйте систему экстренного реагирования. Сообщите службе 911 и службам быстрого реагирования, что у вас есть солнечная фотоэлектрическая система.
      2. Открыть выключатели переменного тока солнечной батареи для обесточивания стороны переменного тока солнечной системы.Массив будет продолжать производить мощность постоянного тока, пока есть источник света.
      3. Подождите чтобы сотрудники службы быстрого реагирования напомнили им, что у вас есть солнечная фотоэлектрическая система.
      Для первых респондентов:
      1. Круг здание и проследуйте по любому электрическому кабелепроводу, определенному солнечной батареей, чтобы найти солнечную панели.
      2. Открыть выключатель солнечной батареи переменного тока, если владелец здания или дома еще не сделал так. Солнечная батарея будет продолжать работать производят мощность постоянного тока, пока есть источник света.
      3. Крышка солнечные панели с черным или синим брезентом, чтобы блокировать попадание света на панели. Убедитесь, что брезент надежно закреплен и не сдувается.
      4. Спрей воды, если это необходимо для безопасного тушения пожара.

      Крупные солнечные установки:

      Лечить большой солнечная ферма, как электрическая подстанция.

      1. Не входить в солнечную ферму без разрешения электроэнергетической компании. Только войдите в объекта, когда коммунальное предприятие подтверждает, что оборудование обесточено.
      2. Если прохожий находится внутри помещения и требует помощи, не входите, пока он безопасно сделать это. Произнесите инструкции окружающему с безопасного расстояния.
      3. Предупредить и подайте сигнал любому прохожему, чтобы тот оставался на безопасном расстоянии от этой зоны.

      Направляющие по безопасности:

      Загрузите и распечатайте наши руководства по безопасности солнечных батарей.

      Безопасное использование солнечных батарей (PDF)
      Руководство по аварийным ситуациям с солнечными батареями (PDF)

      солнечной энергии | Национальное географическое общество

      Солнечная энергия — это любой тип энергии, вырабатываемый солнцем.

      Солнечная энергия создается за счет ядерного синтеза, происходящего на Солнце. Синтез происходит, когда протоны атомов водорода яростно сталкиваются в ядре Солнца и сливаются, образуя атом гелия.

      Этот процесс, известный как цепная реакция PP (протон-протон), выделяет огромное количество энергии. По своей сути, Солнце каждую секунду сплавляет около 620 миллионов метрических тонн водорода. Цепная реакция PP происходит в других звездах размером с наше Солнце и обеспечивает их непрерывной энергией и теплом.Температура этих звезд составляет около 4 миллионов градусов по шкале Кельвина (около 4 миллионов градусов по Цельсию, 7 миллионов градусов по Фаренгейту).

      В звездах, которые примерно в 1,3 раза больше Солнца, цикл CNO способствует созданию энергии. Цикл CNO также преобразует водород в гелий, но для этого полагается на углерод, азот и кислород (C, N и O). В настоящее время менее 2% солнечной энергии создается за счет цикла CNO.

      Ядерный синтез посредством цепной реакции полипропилена или цикла CNO высвобождает огромное количество энергии в форме волн и частиц.Солнечная энергия постоянно уходит от солнца и по всей солнечной системе. Солнечная энергия нагревает Землю, вызывает ветер и погоду, а также поддерживает жизнь растений и животных.

      Энергия, тепло и свет солнца уходят в форме электромагнитного излучения (ЭМИ).

      Электромагнитный спектр существует в виде волн разных частот и длин волн. Частота волны показывает, сколько раз волна повторяется за определенную единицу времени. Волны с очень короткими длинами волн повторяются несколько раз в заданную единицу времени, поэтому они высокочастотны.Напротив, низкочастотные волны имеют гораздо большую длину волны.

      Подавляющее большинство электромагнитных волн для нас невидимо. Наиболее высокочастотные волны, излучаемые солнцем, — это гамма-лучи, рентгеновские лучи и ультрафиолетовое излучение (УФ-лучи). Наиболее вредные ультрафиолетовые лучи почти полностью поглощаются атмосферой Земли. Менее сильные ультрафиолетовые лучи проходят через атмосферу и могут вызвать солнечный ожог.

      Солнце также излучает инфракрасное излучение, волны которого намного более низкочастотны. Большая часть тепла от солнца поступает в виде инфракрасной энергии.

      Между инфракрасным и ультрафиолетовым светом находится видимый спектр, содержащий все цвета, которые мы видим на Земле. Красный цвет имеет самую длинную длину волны (ближайшую к инфракрасному), а фиолетовый (ближайшую к ультрафиолетовому излучению) самую короткую.

      Естественная солнечная энергия

      Парниковый эффект
      Инфракрасные, видимые и УФ-волны, достигающие Земли, участвуют в процессе нагревания планеты и создания возможности для жизни — так называемого «парникового эффекта».

      Около 30% солнечной энергии, которая достигает Земли, отражается обратно в космос.Остальное поглощается атмосферой Земли. Радиация нагревает поверхность Земли, и поверхность излучает часть энергии обратно в виде инфракрасных волн. Когда они поднимаются в атмосфере, их улавливают парниковые газы, такие как водяной пар и углекислый газ.

      Парниковые газы задерживают тепло, которое отражается обратно в атмосферу. Таким образом они действуют как стеклянные стены теплицы. Этот парниковый эффект сохраняет на Земле достаточно тепла, чтобы поддерживать жизнь.

      Фотосинтез
      Почти все живое на Земле прямо или косвенно использует солнечную энергию для получения пищи.

      Производители напрямую полагаются на солнечную энергию. Они поглощают солнечный свет и превращают его в питательные вещества в процессе фотосинтеза. Производители, также называемые автотрофами, включают растения, водоросли, бактерии и грибы. Автотрофы — основа пищевой сети.

      Потребители полагаются на производителей питательных веществ. Травоядные, плотоядные, всеядные и детритофаги косвенно полагаются на солнечную энергию.Поедают травоядные растения и других производителей. Плотоядные и всеядные животные едят как производителей, так и травоядных. Детритофаги разлагают растительные и животные вещества, потребляя их.

      Ископаемое топливо
      Фотосинтез также отвечает за все ископаемое топливо на Земле. По оценкам ученых, около 3 миллиардов лет назад первые автотрофы появились в водных условиях. Солнечный свет позволил растениям процветать и развиваться. После гибели автотрофов они разложились и ушли вглубь Земли, иногда на тысячи метров.Этот процесс продолжался миллионы лет.

      Под сильным давлением и высокими температурами эти останки стали тем, что мы называем ископаемым топливом. Микроорганизмы стали нефтью, природным газом и углем.

      Люди разработали процессы добычи ископаемых видов топлива и их использования для получения энергии. Однако ископаемое топливо — невозобновляемый ресурс. На их формирование уходят миллионы лет.

      Использование солнечной энергии

      Солнечная энергия является возобновляемым ресурсом, и многие технологии позволяют использовать ее напрямую для использования в домах, на предприятиях, школах и больницах.Некоторые технологии солнечной энергии включают фотоэлектрические элементы и панели, концентрированную солнечную энергию и солнечную архитектуру.

      Существуют различные способы улавливания солнечного излучения и преобразования его в полезную энергию. В методах используется либо активная солнечная энергия, либо пассивная солнечная энергия.

      В активных солнечных технологиях используются электрические или механические устройства для активного преобразования солнечной энергии в другую форму энергии, чаще всего в тепло или электричество. Пассивные солнечные технологии не используют никаких внешних устройств.Вместо этого они используют преимущества местного климата для обогрева конструкций зимой и отражения тепла летом.

      Фотогальваника

      Фотогальваника — это форма активной солнечной технологии, которая была открыта в 1839 году 19-летним французским физиком Александром-Эдмоном Беккерелем. Беккерель обнаружил, что когда он помещал хлорид серебра в кислотный раствор и подвергал его воздействию солнечного света, прикрепленные к нему платиновые электроды генерировали электрический ток. Этот процесс производства электричества непосредственно из солнечного излучения называется фотоэлектрическим эффектом или фотоэлектрическим эффектом.

      Сегодня фотоэлектрическая энергия, вероятно, самый распространенный способ использования солнечной энергии. Фотоэлектрические батареи обычно включают солнечные панели, совокупность десятков или даже сотен солнечных элементов.

      Каждый солнечный элемент содержит полупроводник, обычно сделанный из кремния. Когда полупроводник поглощает солнечный свет, он выбивает электроны. Электрическое поле направляет эти свободные электроны в электрический ток, текущий в одном направлении. Металлические контакты в верхней и нижней части солнечного элемента направляют этот ток к внешнему объекту.Внешний объект может быть таким маленьким, как вычислитель на солнечной энергии, или большим, как электростанция.

      Фотоэлектрические элементы были впервые широко использованы на космических кораблях. Многие спутники, включая Международную космическую станцию, имеют широкие отражающие «крылья» солнечных батарей. МКС имеет два крыла солнечных батарей (ПАВ), в каждом из которых используется около 33 000 солнечных элементов. Эти фотоэлектрические элементы снабжают МКС всем электричеством, позволяя астронавтам управлять станцией, безопасно жить в космосе в течение нескольких месяцев и проводить научные и инженерные эксперименты.

      Фотоэлектрические электростанции построены по всему миру. Самые большие станции находятся в США, Индии и Китае. Эти электростанции вырабатывают сотни мегаватт электроэнергии, которая используется для снабжения домов, предприятий, школ и больниц.

      Фотоэлектрическая технология также может быть установлена ​​в меньшем масштабе. Солнечные панели и элементы могут быть прикреплены к крышам или наружным стенам зданий, обеспечивая электричество для конструкции. Их можно размещать как вдоль дорог, так и на легких магистралях.Солнечные элементы достаточно малы, чтобы питать даже небольшие устройства, такие как калькуляторы, паркоматы, уплотнители мусора и водяные насосы.

      Концентрированная солнечная энергия

      Другой тип активной солнечной технологии — это концентрированная солнечная энергия или концентрированная солнечная энергия (CSP). В технологии CSP используются линзы и зеркала для фокусировки (концентрации) солнечного света с большой площади на гораздо меньшей. Эта интенсивная область излучения нагревает жидкость, которая, в свою очередь, генерирует электричество или подпитывает другой процесс.

      Солнечные печи — пример концентрированной солнечной энергии. Есть много различных типов солнечных печей, в том числе солнечные энергетические башни, параболические желоба и отражатели Френеля. Они используют один и тот же общий метод для захвата и преобразования энергии.

      В солнечных электростанциях используются гелиостаты — плоские зеркала, которые поворачиваются, чтобы следовать по дуге солнца в небе. Зеркала расположены вокруг центральной «коллекторной башни» и отражают солнечный свет в концентрированный луч света, который падает на точку фокусировки на башне.

      В предыдущих проектах солнечных электростанций концентрированный солнечный свет нагревал емкость с водой, в результате чего производился пар, приводивший в действие турбину. В последнее время в некоторых солнечных электростанциях используется жидкий натрий, который имеет более высокую теплоемкость и сохраняет тепло в течение более длительного периода времени. Это означает, что жидкость не только достигает температуры от 773 до 1273 К (от 500 до 1000 ° C или от 932 до 1832 ° F), но и может продолжать кипятить воду и генерировать энергию, даже когда солнце не светит.

      Параболические желоба и отражатели Френеля также используют CSP, но их зеркала имеют другую форму.Параболические зеркала изогнутые, по форме напоминающие седло. В отражателях Френеля используются плоские тонкие полоски зеркала, чтобы улавливать солнечный свет и направлять его на трубку с жидкостью. Отражатели Френеля имеют большую площадь поверхности, чем параболические желоба, и могут концентрировать солнечную энергию примерно в 30 раз по интенсивности.

      Концентрированные солнечные электростанции были впервые разработаны в 1980-х годах. Самый большой объект в мире — это ряд заводов в пустыне Мохаве в Калифорнии. Эта система производства солнечной энергии (SEGS) вырабатывает более 650 гигаватт-часов электроэнергии ежегодно.Другие крупные и эффективные установки были разработаны в Испании и Индии.

      Концентрированная солнечная энергия также может использоваться в меньших масштабах. Например, он может генерировать тепло для солнечных плит. Люди в деревнях по всему миру используют солнечные плиты для кипячения воды для санитарии и приготовления пищи.

      Солнечные плиты обладают многими преимуществами по сравнению с дровяными печами: они не создают опасности возгорания, не производят дыма, не требуют топлива и сокращают потерю среды обитания в лесах, где деревья будут использоваться в качестве топлива.Солнечные плиты также позволяют сельским жителям уделять время учебе, работе, здоровью или семье в то время, которое раньше использовалось для сбора дров. Солнечные плиты используются в самых разных регионах, таких как Чад, Израиль, Индия и Перу.

      Солнечная архитектура

      В течение дня солнечная энергия является частью процесса тепловой конвекции или перемещения тепла из более теплого помещения в более прохладное. Когда солнце встает, оно начинает нагревать предметы и материалы на Земле.В течение дня эти материалы поглощают тепло солнечного излучения. Ночью, когда солнце садится и атмосфера остывает, материалы выделяют тепло обратно в атмосферу.

      Пассивные солнечные энергии используют преимущества этого естественного процесса нагрева и охлаждения.

      Дома и другие здания используют пассивную солнечную энергию для эффективного и недорогого распределения тепла. Примером этого является расчет «тепловой массы» здания. Тепловая масса здания — это основная масса материала, нагреваемого в течение дня.Примеры тепловой массы здания: дерево, металл, бетон, глина, камень или грязь. Ночью тепловая масса отдает тепло обратно в комнату. Эффективные системы вентиляции — коридоры, окна и воздуховоды — распределяют теплый воздух и поддерживают умеренную постоянную температуру в помещении.

      Пассивные солнечные технологии часто используются при проектировании зданий. Например, на этапе планирования строительства инженер или архитектор может выровнять здание по дневному пути солнца, чтобы получить желаемое количество солнечного света.Этот метод учитывает широту, высоту и типичный облачный покров определенной области. Кроме того, здания могут быть построены или переоборудованы для обеспечения теплоизоляции, тепловой массы или дополнительного затенения.

      Другими примерами пассивной солнечной архитектуры являются холодные крыши, лучистые барьеры и зеленые крыши. Холодные крыши окрашены в белый цвет и отражают солнечное излучение, а не поглощают его. Белая поверхность уменьшает количество тепла, которое достигает внутренней части здания, что, в свою очередь, снижает количество энергии, необходимой для охлаждения здания.

      Излучающие барьеры работают так же, как холодные крыши. Они обеспечивают изоляцию с помощью материалов с высокой отражающей способностью, таких как алюминиевая фольга. Фольга отражает, а не поглощает тепло, и может снизить затраты на охлаждение до 10%. Помимо крыш и чердаков, под перекрытиями могут быть установлены лучистые барьеры.

      Зеленые крыши — это крыши, полностью покрытые растительностью. Они требуют почвы и орошения для поддержки растений, а также водонепроницаемого слоя под ними. Зеленые крыши не только уменьшают количество поглощаемого или теряемого тепла, но и обеспечивают растительность.Посредством фотосинтеза растения на зеленых крышах поглощают углекислый газ и выделяют кислород. Они фильтруют загрязнители из дождевой воды и воздуха и компенсируют некоторые эффекты использования энергии в этом пространстве.

      Зеленые крыши были традицией в Скандинавии на протяжении веков, а недавно стали популярными в Австралии, Западной Европе, Канаде и США. Например, Ford Motor Company покрыла 42 000 квадратных метров (450 000 квадратных футов) крыш своего сборочного завода в Дирборне, штат Мичиган, растительностью.Крыши не только сокращают выбросы парниковых газов, но и уменьшают сток ливневых вод, поглощая несколько сантиметров осадков.

      Зеленые крыши и холодные крыши также могут противодействовать эффекту «городского теплового острова». В оживленных городах температура может быть постоянно выше, чем в прилегающих районах. Этому способствуют многие факторы: города построены из таких материалов, как асфальт и бетон, которые поглощают тепло; высокие здания блокируют ветер и его охлаждающие эффекты; и большое количество отработанного тепла генерируется промышленностью, транспортом и большим населением.Использование доступного пространства на крыше для посадки деревьев или отражение тепла с помощью белых крыш может частично снизить локальное повышение температуры в городских районах.

      Солнечная энергия и люди

      Поскольку в большинстве частей света солнечный свет светит только около половины дня, технологии солнечной энергии должны включать методы хранения энергии в темное время суток.

      В системах термической массы используется парафиновый воск или различные формы соли для хранения энергии в виде тепла.Фотоэлектрические системы могут отправлять избыточную электроэнергию в местную электросеть или накапливать энергию в аккумуляторных батареях.

      Есть много плюсов и минусов у использования солнечной энергии.

      Преимущества
      Основным преимуществом использования солнечной энергии является то, что она является возобновляемым ресурсом. У нас будет стабильный безграничный запас солнечного света еще на 5 миллиардов лет. За один час атмосфера Земли получает достаточно солнечного света, чтобы обеспечить потребности в электроэнергии каждого человека на Земле в течение года.

      Солнечная энергия экологически чистая. После того, как оборудование, использующее солнечную технологию, построено и введено в эксплуатацию, солнечная энергия не нуждается в топливе для работы. Он также не выделяет парниковые газы или токсичные материалы. Использование солнечной энергии может значительно снизить влияние, которое мы оказываем на окружающую среду.

      Есть места, где солнечная энергия практически применима. Дома и здания в районах с большим количеством солнечного света и низкой облачностью имеют возможность использовать обильную энергию солнца.

      Солнечные плиты представляют собой отличную альтернативу приготовлению пищи с использованием дровяных печей, от которых до сих пор полагаются 2 миллиарда человек.Солнечные плиты обеспечивают более чистый и безопасный способ дезинфицировать воду и готовить пищу.

      Солнечная энергия дополняет другие возобновляемые источники энергии, такие как энергия ветра или гидроэлектроэнергии.

      Дома или предприятия, которые устанавливают успешные солнечные панели, действительно могут производить избыточное электричество. Эти домовладельцы или владельцы бизнеса могут продавать энергию обратно поставщику электроэнергии, сокращая или даже отменяя счета за электроэнергию.

      Недостатки
      Основным сдерживающим фактором использования солнечной энергии является необходимое оборудование.Оборудование на солнечных батареях стоит дорого. Покупка и установка оборудования для отдельных домов может стоить десятки тысяч долларов. Хотя правительство часто предлагает сниженные налоги для людей и предприятий, использующих солнечную энергию, а технология может устранить счета за электричество, первоначальная стоимость слишком высока, чтобы многие могли ее учитывать.

      Гелиоэнергетическое оборудование тоже тяжелое. Чтобы переоборудовать или установить солнечные панели на крыше здания, крыша должна быть прочной, большой и ориентированной на путь солнца.

      Как активные, так и пассивные солнечные технологии зависят от факторов, которые находятся вне нашего контроля, таких как климат и облачность.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *