Номинальное напряжение трансформатора это – » :

Содержание

Номинальные параметры транс­форматора.

  1. Номинальное первичное ли­нейное напряжение — напряжение на зажимах первичной обмотки, на ко­торое она рассчитана,.

  2. Номинальное вторичное на­пряжение — напряже­ние на зажимах вторичной обмотки при от­ключённой нагрузке (ре­жим холостого хода) и при номинальном напряжении на первичной обмотке,.

  3. Номинальный линейный ток в первичной обмотке

    ,.

  4. Номинальный линейный ток во вторичной обмотке ,.

  5. Номинальная полная мощ­ность ,.

Каждый трансформатор рассчитан для работы на определённой частоте. В России частота составляет 50 герц.

Конструкция: Однофазный 2х обмоточный трансформатор состоит из стального сердечника и 2х расположенных на нём обмоток из изолированного медного провода и электрически несвязанных между собой. Стальной сердечник – из листовой электротехнической стали, служит для усиления магнитной связи между обмотками.

Первичная обмотка соединена с источником эквивалентного тока и потребляет энергию от источника.

Вторичная обмотка – к которой присоединена нагрузка и которая отдаёт электрическую энергию.

Принцип действия: основан на явлении электромагнитной индукции. При подключении первичной обмотки к источнику переменного тока, возникает ток в первичной обмотке, который создаёт переменное магнитное поле 1-ой обмотки. Это магнитное поле раскладывается на поле рассеивания и основное поле, которое создаёт магнитный поток, замыкающийся на сердечнике. Этот поток ЭДС самоиндукции в первичной обмотке и ЭДС взаимоиндукции во 2-ой обмотке. Если 2-ую обмотку закоротить или подключить нагрузку, то это приведёт к появлению тока во вторичной цепи, который в свою очередь создаёт магнитное поле, кторое также раскладывается на поле рассеивания и основное поле, создающее магнитный поток, замыкающийся на сердечнике, при этом поток направлен навстречу потоку поля первичной обмотки. Поток 2-ой обмотки, накладываясь, оказывает размагничивающее действие на 1-ую катушку, тем самым повышая в ней силу тока, понижая сопротивление, что приводит к возрастанию первичного потока. Суммарный поток равен их разности.

38. Опыт холостого хода (когда первичная обмотка включена на напряжение сети, а вторичная – разомкнута).

В первичной обмотке существует небольшой ток холостого хода I1X и трансформатор потребляет из сети электроэнергию, мощность которой называют п

отерями холостого хода РХ. Трансформатор в режиме хх – индуктивная катушка с магнитопроводом, в котором возникают потери энергии.

U1x=U1ном

.

При холостом ходе сопротивление нагрузки очень велико, то есть , поэтому ток через вторичную цепь не течёт, то есть.

Энергия, отбираемая трансформатором из сети при хх, теряется в магнитопроводе и в первичной обмотке. Но мощность потерь в обмотке, обладающей малым активным сопротивлением, при малом токе хх ничтожна. Поэтому мощность потерь хх Р

Х – магнитные потери в стали магнитопровода.

Т.к. напряжение питающей сети неизменно, то и мощность потерь хх РХ в трансформаторе постоянна, не зависит от тока приёмников.

39. Опытом холостого хода называется испытание трансформатора при разомкнутой цепи вторичной обмотки и номинальном первичном напряжении U1x=U1ном.

На основании этого опыта по показаниям измерительных приборов определяют коэффициент трансофрмации и мощность потерь в магнитопроводе трансформатора. Опыт холостого хода является одним из двух обязательных контрольных опытов при заводском испытании готового трансформатора.

40. Опыт короткого замыкания – испытание трансформатора при короткозамкнутой цепи вторичной обмотки и номинальном первичном токе I=I1ном. Этот опыт служит для определения важнейших параметров трансформаторов: мощности потерь в проводах , внутреннего падения напряжения. Опыт короткого замыкания, как и опыт холостого хода, обязателен при заводских испытаниях.

В режиме короткого замыкания(U2=0) ЭДС E, индуктируемая во вторичной обмотке, как следует из второго закона Кирхгофа, равна сумме напряжений на активном сопротивлении и индуктивном сопротивлении рассеяния вторичной обмотки.

Напряжение первичной обмотки в опыте короткого замыкания U при токе I=I1ном равно примерно 5-10% номинального U1ном . Поэтому действующее значение ЭДС E2 в работающем режиме. Пропорционально значению ЭДС уменьшается магнитный поток в магнитопроводе, а вместе с ним намагничивающий ток и мощность потерт в магнитопроводе, пропорциональная .Следовательно, можно считать, что при опыте короткого замыкания вся мощностьP

1к трансформатора равна мощности потерь в проводах первичной и вторичной обмоток.

41. Аварийный ре­жим короткого замыкания воз­никает при повреждении элек­трической сети, неисправностях аппаратов и других устройств во вторичной цепи, ошибочных действиях обслуживающего пер­сонала и  пр.

Большие токи, возникающие в трансформаторе при коротком замыкании, могут вызвать механи­ческое повреждение обмотки (а за­тем и пробой изоляции) или резкое повышение ее температуры, что угрожает целостности изоляции.

Отличие от опыта: Работа при номинальном или более высоком напряжении.

42. В общем случае параметры первичной обмотки трансформатора отличаются от параметров вторичной обмотки. Разница наиболее ощутима при больших коэффициентах трансформации, что затрудняет расчеты и особенно построение векторных диаграмм. Векторы электрических величин, относящиеся к первичной обмотке, значительно отличаются по своей длине от одноименных векторов вторичной обмотки. Затруднения можно устранить, если привести все параметры трансформатора к одинаковому числу витков, например, к w1. С этой целью параметры вторичной обмотки пересчитываются на число витков w1.

Приведенный трансформатор

Таким образом, вместо реального трансформатора с коэффициентом трансформации k = w1 / w2, получают эквивалентный трансформатор с k = w1 / w2 = 1. Такой трансформатор называется приведенным. Приведение параметров трансформатора не должно отразиться на его энергетическою процессе, то есть все мощности и фазы вторичной обмотки должны остаться такими же, что и в реальном трансформаторе.

Так, например, если полная мощность вторичной обмотки реального трансформатора S2 = E2 I2, то она должна быть равна полной мощности вторичной обмотки приведенного трансформатора:

Используя ранее полученное выражение I 2‘ = I2 w2/w1, напишем выражение для E2‘:

Приравняем теперь активные мощности вторичной обмотки:

Приведенное сопротивление трансформатора

Определим приведенное активное сопротивление:

по аналогии:

Уравнения ЭДС и токов для приведенного трансформатора теперь будут иметь вид:

43. Уравнение МДС: .Тогда:;;, где— ток нагрузки, приведённый к числу витков первичной обмотки.

Уравнение равновесия МДС для приведённого Трансформ.

После сокращения на преобразуем в:

Уравнение ЭДС и напряжений:

44. В электрических цепях обмотки трансформаторов связаны между собой магнитным полем. Это усложняет расчет цепи и анализ ее работы.

Поэтому целесообразно заменить трансформатор его моделью, которая называется схемой замещения. Построение схемы замещения должно удовлетворять требованиям, предъявляемым к моделям, т. е. математическое описание режима схемы замещения должно совпадать с математическим описанием электрического состояния трансформатора.

45.

studfile.net

Номинальное напряжение обмотки трансформатора — это… Что такое Номинальное напряжение обмотки трансформатора?


Номинальное напряжение обмотки трансформатора

9.2.7. Номинальное напряжение обмотки трансформатора

Указанное на паспортной табличке напряжение между зажимами трансформатора, связанными с обмоткой, при холостом ходе трансформатора.

Примечание. Для обмотки, снабженной ответвлениями, номинальным считают напряжение основного ответвления

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • номинальное напряжение конденсатора UN
  • Номинальное напряжение ответвления обмотки

Смотреть что такое «Номинальное напряжение обмотки трансформатора» в других словарях:

  • номинальное напряжение обмотки трансформатора — Указанное на паспортной табличке напряжение между зажимами трансформатора, связанными с обмоткой, при холостом ходе трансформатора. Примечание. Для обмотки, снабженной ответвлениями, номинальным считается напряжение основного ответвления [ГОСТ… …   Справочник технического переводчика

  • номинальное напряжение — 3.17 номинальное напряжение (rated voltage): Напряжение, установленное для выключателя изготовителем. Источник: ГОСТ Р 51324.1 2005: Выкл …   Словарь-справочник терминов нормативно-технической документации

  • номинальное напряжение вторичной обмотки трансформатора измерительной системы — номинальное напряжение вторичной обмотки трансформатора измерения напряжения [Интент] Тематики релейная защита Синонимы номинальное напряжение вторичной обмотки трансформатора измерения напряжения EN secondary nominal voltage of the system… …   Справочник технического переводчика

  • номинальное напряжение ответвления обмотки — Указанное на паспортной табличке напряжение ответвления при холостом ходе трансформатора [ГОСТ 16110 82] Тематики трансформатор Классификация >>> Обобщающие термины номинальные данные трансформатора …   Справочник технического переводчика

  • номинальное напряжение первичной обмотки трансформатора измерительной системы — [Интент] Тематики релейная защита EN primary nominal voltage of the system transformer …   Справочник технического переводчика

  • Номинальное напряжение ответвления обмотки — 9.2.8. Номинальное напряжение ответвления обмотки Указанное на паспортной табличке напряжение ответвления при холостом ходе трансформатора Источник: ГОСТ 16110 82: Трансформаторы силовые. Термины и определения оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • напряжение — 3.10 напряжение: Отношение растягивающего усилия к площади поперечного сечения звена при его номинальных размерах. Источник: ГОСТ 30188 97: Цепи грузоподъемные калиброванные высокопрочные. Технические условия …   Словарь-справочник терминов нормативно-технической документации

  • безопасное сверхнизкое напряжение — 3.22 безопасное сверхнизкое напряжение (safety extra low voltage SELV): Система со сверхнизким напряжением (обычно не более 50 В переменного тока или 120 В постоянного тока без пульсации), которая электрически изолирована от земли и от других… …   Словарь-справочник терминов нормативно-технической документации

  • обмотка низшего напряжения трансформатора — обмотка НН Основная обмотка трансформатора, имеющая наименьшее номинальное напряжение по сравнению с другими его основными обмотками. Примечание. Обмотка низшего напряжения регулировочного трансформатора может иметь более высокий уровень изоляции …   Справочник технического переводчика

  • номинальная мощность трансформатора малой мощности — Сумма мощностей вторичных обмоток трансформатора малой мощности, в котором мощность каждой обмотки определяется произведением номинального тока на номинальное напряжение [ГОСТ 20938 75] Тематики трансформатор Классификация >>> Синонимы… …   Справочник технического переводчика

normative_reference_dictionary.academic.ru

Параметры трансформатора: характеристика, способы их определения

Трансформатор преобразует подаваемое напряжение в большее или меньшее значение без изменения мощности. Статическое электромагнитное устройство состоит из двух и более обмоток, размещенных на одном магнитопроводе. Подобрать требуемый электромагнитный аппарат не представит затруднений с помощью параметров трансформатора, указываемых в техническом описании на любое изделие.

Мощность

Основным параметром трансформаторов является мощность, обозначаемая буквой S. Она определяет массогабаритные показатели электромагнитного аппарата. От значения мощности зависит тип используемого магнитопровода, количество/диаметр витков в обмотках. Измеряется мощность в единицах В∙А (вольт-ампер). На практике для удобства используются кратные вольт-амперам величины кВА (103∙ В∙А) и МВА (106∙ В∙А).

Электромагнитная

Представляет собой мощность в   выходной катушке, передаваемой с витков входной электромагнитным способом. Она определяется умножением действующего значения ЭДС на величину тока, протекающего в нагрузке электромагнитного преобразователя: Sэм = E2∙ I2.

Полезная

Это произведение действующего напряжения во вторичной обмотке на значение нагрузочного тока. Рассчитывается по формуле: S2 = U2∙I2.

Расчетная

Расчётная мощность – произведение величин I1 и U1   входной обмотки аппарата S1 = U1  I1. Этот параметр определяет габариты изделия: число витков и сечение проводов.

Габаритная (типовая)

Параметр S габ определяет реальное сечение сердечника. Так называют полусумму мощностей всех обмоток электромагнитного устройства: S габ = 0,5∙(S1+S2 +S3+ …).

Трансформатор

Основные технические характеристики и способы определения параметров

Основные технические характеристики указываются в техдокументации на изделие. Они определяются расчетным путем или посредством замеров на специальном стенде при определенных режимах работы аппарата.

Первичное напряжение номинального значения

Так называют U, которое требуется подать на входную катушку аппарата, чтобы в режиме холостого хода получить номинальное вторичное напряжение. Параметр U указывается в техпаспорте изделия.

Вторичное номинальное напряжение

Это значение U, которое устанавливается на выводах выходной обмотки при ненагруженном трансформаторе. На вход  прикладывается номинальная величина параметра. Значение параметра зависит от величины U и коэффициента трансформации Кт. При  активно-емкостной нагрузке (φ2< 0)  U может оказаться больше U.

Трансформатор

Номинальный первичный ток

Это ток I, протекающий во входной обмотке, при котором возможна продолжительная работа аппарата. Значение I указывается в техпаспорте на трансформатор.

Номинальный вторичный ток

Параметр также можно встретить в таблице паспортных данных трансформатора, он протекает по выходной катушке при продолжительной работе аппарата. Обозначается  I.

Коэффициент трансформации

Соотношением номинального входного и выходного напряжений определяется коэффициент трансформации: К = U/U.

Номинальный коэффициент трансформации определяет соответствие количества витков во вторичной  и первичной катушке.

Номинальный коэффициент мощности (cos φ)

Сos φ (косинус фи) определяется отношением активной мощности трансформатора P к полной S: cos φ = P/S. Это величина, показывающая рациональность расходования электроэнергии с учетом реактивных потерь преобразователя.

Коэффициент полезного действия

КПД электромагнитного устройства представляет отношение активной мощности Р2, отбираемой от аппарата, к подводимой P1: η = P2/P1. Величина КПД тем больше, чем выше cosφ2 и коэффициент загрузки β= I2/I.

КПД трансформатора

Характеристики, определяющие поведение электрической машины

Так называют совокупность параметров, определяющих поведение электрической машины при различных режимах работы. Таковыми являются: пусковой момент, режим короткого замыкания и холостого хода.

Напряжение при коротком замыкании

При измерениях значения закорачивают выводы, а на первичную катушку подается напряжение Uк.  Сила тока на ней не превышает номинала (Iк < I1ном), а Uк составляет 5–12% от номинальной величины.

Напряжение при холостом ходе

Это значение ненагруженного (I2=0) трансформатора при поданной номинальной величине U1 на вход аппарата. При разомкнутой  нагрузке вторичная катушка оказывается обмоткой высшего (ВН) напряжения от взаимоиндукциии, а первичная становится обмоткой низшего (НН) значения. Подобное происходит по причине самоиндукции на ней, направленной против приложенного напряжения.

Ток холостого хода

Он относится к параметрам первичной обмотки и измеряется при  номинальном значении Iс ненагруженной вторичной катушкой.

Его величина обычно не превышает 5–10% от номинала I.

Пусковой ток

Он протекает через первичную обмотку  аппарата после включения в питающую сеть. Пиковое значение в несколько десятков раз превышает I. Способами борьбы с переходными процессами в электрической машине считаются:

  • увеличение количества витков и эффективной площади сечения магнитопровода;
  • подключение к питающей сети в момент максимальной амплитуды импульса (φ = π/2).

Трансформаторы

Испытательное пробойное напряжение рабочей частоты

Этот параметр трансформатора характеризует электрическую прочность изделия – способность выдерживать повышенное напряжение. Величина испытательного напряжения зависит от класса используемой изоляции. Параметр измеряется подачей высокого U исп рабочей частоты относительно земли на закороченные выводы обмотки ВВ. Выводы ВН закорачиваются и вместе с магнитопроводом (баком с маслом, металлическими деталями) заземляются.

Внешняя характеристика

Рабочий режим силовой машины задается не только Uи Кт, но и активно-реактивной нагрузкой электроприемника, подключенного к выводам вторичной обмотки. Изменяющийся ток в  нагрузке (при электропитании U= const), соответственно, меняет и напряжение на выходе трансформатора. Эта зависимость отражается в коэффициенте нагрузки: Кн = I2/I.

Трансформатор зеленый

Потери в режиме холостого хода

Потери мощности ненагруженного электромагнитного устройства состоят из потерь в сердечнике из трансформаторного железа. ЭДС расходуется на нагрев магнитопровода, вихревые токи и гистерезис.

Повышает КПД аппарата применение электротехнической стали с высоким удельным сопротивлением и качественная изоляция пластин магнитопровода лаком, жаростойким покрытием. Помимо «потерь в железе», всегда присутствуют «потери в меди», обусловленные омическим сопротивлением витков электромагнитного устройства.

Потери в режиме короткого замыкания

Короткое замыкание трансформатора при эксплуатации создает экстремальный режим, способный вывести из строя аппарат. При этом вторичный ток а, соответственно, первичный увеличиваются в десятки раз по сравнению с Iн. Поэтому в электрической цепи аппарата предусматривают защиту от сверхтока КЗ, которая автоматически размыкает цепь электропитания.

otransformatore.ru

Основные определения и термины, применяемые в трансформаторах

Трансформатор — это статическое электромагнитное устройство, имеющее две или большее число индукционно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока, в том числе для преобразования электрической энергии переменного тока одного напряжения в электрическую энергию другого напряжения.
Схема работы однофазного трансформатора при холостом ходе
Рис.   1.   Схема   работы   однофазного трансформатора при холостом ходе

Работа трансформатора основана на явлении электромагнитной индукции, заключающемся в том, что при изменении во времени магнитного поля, пронизывающего проводящий контур, в последнем наводится (индуцируется) электродвижущая сила (эдс).
Если к концам одной из обмоток однофазного трансформатора (рис. 1), в данном случае АХ обмотки 1У подведено переменное напряжение U1, то по ней протекает ток /х холостого хода, его также называют намагничивающим, он создает магнитное поле, изменяющееся с той же частотой, что и напряжение. При этом вследствие высокой магнитной проницаемости стали большая часть магнитного поля, которая называется основным магнитным нолем ф трансформатора, замыкается через контур магнитной системы, другая часть магнитного поля, называемого полем рассеяния Фр  замыкается через воздух, она не связана магнитно с обмоткой 2 и поэтому в трансформировании напряжения (энергии) не участвует. Согласно закону электромагнитной индукции изменяющееся основное магнитное поле Ф, пронизывающее обе обмотки, наводит в них эдс E1 и Е2. Напряжение U2l измеренное вольтметром и подведенное напряжение Uu практически можно считать равными эдс Е2 и Е1 соответственно. Если к концам ах обмотки подсоединить какую-либо электрическую нагрузку, то в ее цепи возникает ток, который одновременно вызовет увеличение тока в обмотке 1.
Таким образом, в рассматриваемом электромагнитном устройстве— трансформаторе происходит трансформация электрической энергии, подведенной к обмотке /, в электромагнитную и далее в электрическую, используемую в цепи нагрузки, подключенной в обмотке 2.
Трансформатор, в магнитной системе 3 которого создается однофазное магнитное поле, называется однофазным, если же создается трехфазное поле, то — трехфазным.
Обмотка, к которой подводится энергия (напряжение) преобразуемого переменного тока, называются первичной;  обмотка трансформатора, от которой отводится энергия преобразованного переменного тока, называется вторичной.
Под обмоткой трансформатора подразумевают совокупность витков, образующих электрическую цепь, в которой суммируются электродвижущие силы, наведенные в витках, с целью получения заданного напряжения.
Обмотка трансформатора, к которой подводится электроэнергия преобразуемого или от которой отводится энергия преобразованного переменного тока, называется основной. Силовой трансформатор имеет не менее двух основных обмоток.
Основная обмотка трансформатора, имеющая наибольшее номинальное напряжение, называется обмоткой высшего напряжения (ВН), наименьшее — обмоткой низшего напряжения (НН), а промежуточное между ними — обмоткой среднего напряжения (СН).
Трансформатор с двумя гальванически не связанными обмотками (ВН и НН) называется двухобмоточным, с тремя (ВН, СН и НН) — трехобмоточным. Одна из этих обмоток является первичной, две другие — вторичными. Если у трансформатора первичной является обмотка НН, его называют повышающим, если ВН — понижающим.

Значения вторичной эдс Е2 и соответственно напряжения U2 зависят от числа витков вторичной обмотки. Увеличение числа витков вторичной обмотки приводит к увеличению вторичных эдс и напряжения и наоборот.

Другим расчетным показателем трансформатора является коэффициент трансформации ky равный отношению напряжения на зажимах обмотки высшего напряжения к напряжению на зажимах обмотки низшего напряжения в режиме холостого хода (ненагруженного) трансформатора.
Двухобмоточный трансформатор имеет один коэффициент трансформации, равный отношению высшего напряжения к низшему, трехобмоточный трансформатор — три коэффициента трансформации, равные отношению высшего напряжения к низшему, высшего напряжения к среднему и среднего к низшему.
Для двух обмоток силового трансформатора, расположенных на одном стержне магнитной системы, коэффициент трансформации принимается равным отношению чисел их витков. Поэтому если, например, первичная обмотка с числом витков W\ является обмоткой высшего напряжения, а вторичная с числом витков w2— низшего напряжения, то k=U\fU2=Wi/w2y откуда U\ = kU2, W\ = kw2.
Таким образом, зная коэффициент трансформации и напряжение вторичной обмотки трансформатора, легко определить напряжение первичной обмотки и наоборот. Это относится также к значениям токов и к числам витков.
Для улучшения электрической изоляции токопроводящих частей и условий охлаждения трансформатора обмотки вместе с магнитной системой погружают в бак с трансформаторным маслом. Такие трансформаторы называют маслонаполненным и или масляными.
Некоторые трансформаторы специального назначения вместо масла наполняют негорючей синтетической жидкостью — совтолом. Трансформаторы, у которых основной изолирующей средой служит воздух, газ или твердый диэлектрик, а охлаждающей средой — атмосферный воздух, называют сухими.
Каждый трансформатор характеризуется номинальными данными, основные указывают в прикрепляемой к нему табличке. К ним относятся: мощность, напряжение, ток, частота и др.

Номинальная мощность трансформатора — это мощность, на которую он рассчитан.
Номинальная мощность 5 трансформаторов выражается полной электрической мощностью в киловольт-амперах (кВ-А) или мегавольтамперах (MB-А).

Номинальное первичное напряжение — это напряжение, на которое рассчитана первичная обмотка трансформатора; номинальное вторичное напряжение— напряжение на зажимах вторичной обмотки, получающееся при холостом ходе трансформатора и номинальном напряжении на зажимах первичной обмотки. Номинальные токи определяются соответствующими номинальными значениями мощности и напряжения.
Высшее номинальное напряжение трансформатора — это наибольшее из номинальных напряжений обмоток трансформатора.

Низшее номинальное напряжение — наименьшее из номинальных напряжений обмоток трансформатора.

Среднее номинальное напряжение — номинальное напряжение, являющееся промежуточным между высшим и низшим номинальным напряжением обмоток трансформатора.
Режим, при котором одна из обмоток трансформатора замкнута накоротко, а вторая находится под напряжением, называется коротким замыканием (к. з.). Если короткое замыкание происходит в процессе эксплуатации трансформатора при номинальных напряжениях, в обмотках возникают токи короткого замыкания, в 5—20 раз (и более) превышающие номинальные. При этом резко повышается температура обмоток и в них возникают большие механические усилия. Такое замыкание является аварийным и для предотвращения повреждения трансформатора применяется специальная защита, которая должна отключить его в течение долей секунды.
Если в порядке опыта замкнуть накоротко одну из обмоток трансформатора (рис. 2), в данном случае обмотку НН с числом витков W29 а к другой с числом витков w\ подвести пониженное напряжение и постепенно его повышать, то при определенном значении напряжения С/кз, называемом напряжением короткого замыкания, в обмотках будут проходить токи, соответственно равные номинальным значениям первичной и вторичной обмоток.

Равенство напряжений короткого замыкания параллельно включенных трансформаторов — одно из условий их нормальной работы. Напряжение икз указывают в табличке каждого трансформатора. Оно определено стандартами и зависит от типа и мощности трансформатора: для силовых трансформаторов малой и средней мощности оно составляет 5—7%, для мощных трансформаторов — 6—17% и более.
Схема и поля рассеяния однофазного трансформатора в режиме короткого замыкания
Рис. 2. Схема и поля рассеяния однофазного трансформатора в режиме короткого замыкания: а — условного, б — реального

При опыте короткого замыкания в магнитной системе создается незначительное магнитное поле Фк, обусловленное малым намагничивающим током вследствие небольшого подведенного напряжения ик.3. Проходящие по первичной и вторичной обмоткам номинальные токи создают встречнонаправленные мдс, соответственно им поля рассеяния и Фp1 и Фр2, вынуждены замыкаться через воздух и металлические детали трансформатора (см. рис. 2, а). Поля рассеяния в реальном трансформаторе, в котором первичная и вторичная обмотки размещены на одном стержне магнитной системы, изображены на рис. 2 б.
Результирующее поле рассеяния Фр создает в обмотках индуктивное сопротивление, которое при аварийном коротком замыкании ограничивает ток в обмотках, предохраняя их от чрезмерного нагрева и разрушения. Чем больше иш, тем меньше опасность разрушения обмоток при аварийных коротких замыканиях. Однако напряжение короткого замыкания иш при расчете трансформатора ограничивают до определенного значения, в противном случае, поля рассеяния, создавая значительное индуктивное сопротивление, вызовут недопустимо большое реактивное падение напряжения в обмотках, в результате чего снизятся вторичное напряжение и соответственно мощность, получаемая потребителем. Напряжение короткого замыкания определяется для каждой пары обмоток: в двухобмоточном трансформаторе — для обмоток ВН — НН; в трехобмоточном трансформаторе — для обмоток ВН—НН; ВН — СН и СН — НН.

Потери трансформатора —  это активная мощность, расходуемая в магнитной системе, обмотках и других частях трансформатора при различных режимах работы.

Потери холостого хода Рхх — это потребляемая трансформатором активная мощность в режиме холостого хода при номинальном напряжении и номинальной частоте первичной обмотки.
При холостом ходе трансформатор не передает электрическую энергию, так как вторичная обмотка разомкнута. Потребляемая им активная мощность тратится на нагревание стали магнитной системы от перемагничивания и вихревыми токами, а также частично первичной обмотки. Эти суммарные потери называют потерями холостого хода трансформатора. Ввиду малого тока холостого хода потери в активном сопротивлении обмотки при этом незначительны (0,3—0,5% номинальной мощности трансформатора), поэтому ими пренебрегают и считают, что мощность расходуется только на потери в стали магнитной системы. Абсолютное значение потерь холостого хода трансформатора незначительно. Однако их стремятся максимально снизить, так как суммарные годовые потери холостого хода трансформатора сравнительно велики.

Потери короткого замыкания Рш — это потребляемая трансформатором активная мощность при опыте к. з., обусловленная потерями в активном сопротивлении первичной и вторичной обмоток и токоведущих частях трансформатора при прохождении номинального тока и добавочными потерями, вызванными полями рассеяния.

Напряжение Uкз, подводимое к трансформатору при опыте короткого замыкания, в зависимости от его конструкции и назначения в 5—20 раз меньше номинального, поэтому магнитное поле в магнитной системе незначительное, соответственно незначительны и потери в активной стали на перемагничивание. Ими пренебрегают, считая, что потребляемая мощность при коротком замыкании расходуется только на потери в активном сопротивлении обмоток и на добавочные потери, вызванные полями рассеяния. Поля рассеяния наводят в обмотках и других токоведущих частях трансформатора (отводы, вводы и др.) вихревые токи, а в стальных конструкциях (стенки бака, ярмовые балки, детали прессовки и др.) кроме вихревых токов создают гистерезисные потери (потери от перемагничивания). Добавочные потери от полей рассеяния вызывают перегревы отдельных частей трансформатора и снижают его коэффициент полезного действия (кпд). Поэтому при расчетах и конструировании трансформаторов поля рассеяния стараются уменьшить до оптимального значения, для этого первичную и вторичную обмотки размещают концентрически она одном стержне магнитной системы, максимально возможно уменьшая канал между ними (рис. 3). Чем ближе обмотки друг к другу, тем меньше поле рассеяния, а следовательно, добавочные потери от вихревых токов и перемагничивания.

 

Размещение обмоток ВН и НН на стержне магнитной системы
Рис. 3. Размещение обмоток ВН и НН на стержне магнитной системы

При опыте короткого замыкания токи и потери мощности такие же, как и при полной нагрузке трансформатора, поэтому их часто называют нагрузочными потерями. Потери холостого хода и короткого замыкания нормируются стандартом.
Суммарные потери трансформатора при номинальной нагрузке составляют потери холостого хода и короткого замыкания. Зная эти потери и мощность, выдаваемую трансформатором в сеть, можно определить его кпд в процентах. Трансформаторы имеют сравнительно высокий кпд (98,5—99,3%).

leg.co.ua

Номинальное напряжение — трансформатор — Большая Энциклопедия Нефти и Газа, статья, страница 1

Номинальное напряжение — трансформатор

Cтраница 1

Номинальные напряжения трансформаторов, принятые в СССР.  [1]

Номинальные напряжения трансформаторов устанавливаются для первичной и вторичных его обмоток при холостом ходе.  [3]

Номинальные напряжения трансформаторов устанавливаются для первичной и вторичных его обмоток при холостом ходе. Первичная обмотка трансформатора является приемником электрической энергии и поэтому для повысительных трансформаторов ее номинальное напряжение равно номинальному напряжению генераторов ( рис. 1 — 3), а для понизительных — номинальному напряжению сети.  [4]

Номинальное напряжение трансформатора влияет на выбор конструкции изоляции между витками, катушками и изоляции отдельных частей обмотки относительно других токоведущих и заземляемых частей трансформатора.  [5]

Номинальное напряжение трансформатора должно соответствовать напряжению сети, в которой он устанавливается. Наибольший возможный длительный ток установки должен быть по возможности ближе к номинальному току трансформатора для получения наименьшей погрешности. Класс точности трансформатора выбирается в соответствии с его назначением.  [6]

Номинальным напряжением трансформатора называется номинальное напряжение его первичной обмотки.  [7]

От значения номинального напряжения трансформатора зависит, во-первых, число ступеней трансформации, а во-вторых, изоляция обмоток.  [9]

При этом номинальным напряжением трансформатора считается напряжение первичной обмотки.  [11]

У шин подстанции написано номинальное напряжение трансформатора ( 400 — 230 в), у магистрали — номинальное напряжение сети 380 в. Номинальное напряжение сети равно номинальному напряжению электроприем никое.  [12]

Перенапряжениями вообще называются напряжения, значительн превышающие номинальное напряжение трансформатора и поэтом опасные для его изоляции. Обычно под этим словом подразумевают т пульсные перенапряжения, возникающие от атмосферных явленш наиболее сильно воздействующие на изоляцию трансформатора, также коммутационные перенапряжения.  [13]

Выбор защиты трансформаторов производится с учетом типа, мощности и номинальных напряжений трансформатора, назначения и условий размещения, параллельной работы с другими трансформаторами и источниками питания, характера нагрузок, технических показателей защиты, стоимости и расходов на эксплуатацию отключающей аппаратуры и защиты. Вместо выбора каждого типа защиты в отдельности часто могут выбираться комплектные устройства ( комплектные панели) защиты трансформатора.  [14]

Страницы:      1    2    3    4

www.ngpedia.ru

определение термина и виды междуфазных параметров сети и трансформаторов

Номинальное напряжениеС понятием номинального напряжения сталкивался каждый пользователь электрических приборов, кто разглядывал прикреплённую небольшую табличку с характеристиками. Значительные отклонения от установленной нормы приведут к поломке изделия. Существуют стандартные величины обозначенных потенциалов для различных типов сетей <1000 вольт и больше, источников и преобразователей переменного и постоянного тока.

Виды напряжений

Одна из энергетических характеристик электрического поля – напряжение, равное отношению работы по переносу заряда в джоулях к его величине в кулонах. Другое название – разность потенциалов: имея 2 точки со значениями 5 и 10 Кл, можно определить взаимодействие между ними: 10-5=5 Дж/Кл, что равно 5 В.

Напряжение в электроустановках измеряют в вольтах. Если его рабочая величина не превышает 1000, напряжение считается низким. При более высоких значениях пользуются единицей измерения кВ. Для определения разности потенциалов применяют вольтметр. Вся энергосистема сформирована из трёхфазных сетей, где выделяют 2 вида напряжений:

  • Виды напряженийлинейное – между двумя жилами кабеля с потенциалом;
  • фазное проявляется при измерении потенциала провода, находящегося под током и нулевого – нейтрального.

Когда присоединение потребителей к сети совершается по схеме Δ (треугольник), величины обоих видов напряжений равны между собой. Если подключение осуществляется с использованием Y (звезды), числовое значение линейного больше фазного в √3 раз (1,732). Маркировку измеренного в трёхфазной сети напряжения принято записывать в виде дроби: 380/660 В, 220/380 В, 127/220 В, где верхняя цифра – фазная, нижняя – линейная величина.

Производители электротехнического оборудования обязательно указывают на приборе его основные параметры: мощность в ваттах, силу тока в амперах и номинальное напряжение – базисное из стандартизованного ряда потенциалов, определяющих уровень изоляции аппаратов и сети. В таблице приведены значения основного показателя низковольтной энергосистемы.

Разновидность токаНапряжение номинальное Uном энергосетей и электроприёмниковU ном для генераторов и преобразователей
~ 1ф6, 12, 27, 40, 60, 110, 2206, 12, 28, 42, 62, 115, 230
То же, 3ф40, 60, 220, 380, 66042, 62, 230, 400, 690
CONST6, 12, 27, 48, 60, 110, 220, 4406, 12, 28, 48, 62, 115, 230, 460

Uном для линий и энергосетей такое же, как у электроприёмников. Поставщики напряжения – это генераторы электростанций, преобразователи – вторичные обмотки трансформаторов.

Номиналы потенциала бытовой сети

Превышение или снижение в энергосистеме установленного норматива приводит к неправильной работе потребителей, поломке приборов. Особенно важно поддерживать необходимый уровень Uном в производственных схемах – здесь последствия бывают более тяжёлыми: вплоть до остановки технологического процесса. Бытовые приборы по степени восприимчивости к изменению номинала от более стойких к самым чувствительным разделяют на следующие группы:

  1. Устройства с нагревательными элементамиУстройства с нагревательными элементами: калориферы, утюги и чайники. При избыточном напряжении лишняя мощность уходит в тепло, защищая прибор от поломки.
  2. Аппараты с электроприводом в виде асинхронного двигателя: вентиляторы, кондиционеры, холодильники. Кратковременный перепад приведёт к сбою в работе техники, но длительное нарушение энергообеспечения вызовет пробой обмоток мотора и необходимость замены двигателя.
  3. Электронные устройства: телевизоры, ноутбуки и компьютеры. Любое отклонение питающей сети от нормы способно вывести приборы из строя, поэтому в их конструкции предусматривается защита. При кратковременных нарушениях предохранитель спасает, но длительное перенапряжение ведёт к потере дорогостоящей вещи.
  4. Приборы осветительные: лампы люминесцентные, накаливания, светодиодные. Энергосберегающие модели более требовательны к постоянству параметров сети.

Лампы люминесцентные

Основные характеристики

Для защиты ответственных электрических цепей от неожиданностей применяют стабилизаторы напряжения. В зависимости от мощности, их используют в быту и на производстве. Номинальные значения потенциала для некоторых объектов приведены в таблице.

Наименование конструктаХарактер токовой нагрузкиUном в вольтах, если не отмечено другое
КардиограммаИмпульсная1,0―2,0 мВ
Батарейка: -мизинчиковая, щелочной элементCONST1,5
-тип Крона 9,0
Антенна для телевизораВысокочастотная1―100,0 мВ
Выпрямитель для ноутбука, автомобильный аккумуляторCONST12,0
Телефонная линия―″―60
Разряд электрического: -ската―″―250
-угря 650
Троллейная система трамвая, троллейбуса―″―660
Контактный рельс метрополитена―″―825
Энергосеть: -Российской Федерации~ переменная220/380
-Соединённых Штатов 110/190
-Японии 100/172
Электрифицированная железная дорога―″―25 кВ
То жеПостоянная3 кВ
Грозовое облако―″―≥10 гигавольт (1 млрд вольт)

Стандартный ряд номинальных величин сети ≥1000 В: 3,0; 6,0; 10,0; 20,0; 35,0… Значительное превышение норматива называют перенапряжением.

Обозначенная напряжённость трансформатора

Transformare – превращать, преобразовывать. Это электрическое устройство с двумя или большим числом обмоток на магнитопроводе, предназначенное для трансформации тока или напряжения без изменения частоты. Различают следующие определения потенциалов в преобразовательном устройстве, называемом трансформатором:

  • Напряжённость трансформатораноминальное первичное напряжение – на него рассчитана обмотка 1;
  • Uном вторичное – потенциал на зажимах обвивки 2, замеренный при холостом ходе преобразователя и стандартном значении на входящих клеммах;
  • высшее U ном трансформатора – наибольшее из приведённых напряжений обмоток;
  • низший номинальный потенциал, соответственно, меньший из показателей;
  • среднее Uном – промежуточное между двумя предыдущими значениями.

В процессе эксплуатации иногда случается режим короткого замыкания (КЗ), когда одна из обмоток трансформатора оказывается внутренне соединённой, а вторая остаётся под напряжением. Если событие происходит во время работы при номинальном напряжении, в обвивках возникают токи КЗ, в 5―10 крат выше стандартных. Явление сопровождается значительным увеличением температуры обмоток, в них действуют большие механические нагрузки – ситуация становится аварийной.

Для предотвращения подобных обстоятельств и применяют защиту, срабатывающую за доли секунды. Номинальные линейные напряжения (кВ) высоковольтных трансформаторов приведены в таблице.

Первая обмотка3,00; 3,156,00; 6,3010,00; 10,5020, 0; 21,035,0; 36,5110; 115158: 165220; 230330500
Вторая обвивка3,15; 3,36,30; 6,6010,50; 11,0021,0; 22,038,5115; 121158: 165230; 242330

В целях уменьшения потерь в ЛЭП вторичные обмотки имеют Uном на 5―10% выше, чем в соответствующих линиях. Исключение – сети малой протяжённости, для них величины номинального напряжения устанавливают одинаковыми на питающее и потребляющее оборудование.

220v.guru

Номинальное напряжение первичной обмотки. Уравнения электрического состояния первичной и вторичной обмоток трансформатора

Уравнения электрического состояния трансформатора записываются согласно второму закону Кирхгофа для схем замещения первичной и вторичной обмоток трансформатора (рис. 4.5):

где R 1 , Х 1 , R 2 , Х 2 – соответственно активные и реактивные сопротивления рассеяния первичной и вторичной обмоток трансформатора.

Номинальные данные трансформатора

К номинальным параметрам трансформатора относятся номинальные мощность S н, напряжения

и

и токи первичной и вторичной обмоток .

Номинальной мощностью трансформатора S н называется указанное в заводском паспорте значение полной мощности, на которую непрерывно может быть нагружен трансформатор в номинальных условиях места установки и охлаждающей среды при номинальных частоте и напряжении.

Номинальные напряжения обмоток

и

– это напряжения первичной и вторичной обмоток при холостом ходе трансформатора.

Коэффициент трансформации двухобмоточного трансформатора — это отношение номинальных напряжений обмоток высшего и низшего напряжений.


.

Номинальными токами трансформатора называются значения токов в обмотках, при которых допускается длительная нормальная работа трансформатора. Номинальный ток любой обмотки трансформатора определяют ее номинальной мощности и номинальному напряжению.


,

.

Коэффициент полезного действия трансформатора.

Потери мощности в трансформаторе

Полезная мощность трансформатора


,

где φ 2 – угол сдвига фаз между U 2 и I 2 , который зависит от характера нагрузки трансформатора.

Мощность, потребляемая трансформатором из сети


.


.

Потери мощности складываются


,

где

— магнитные потери в стальном сердечнике трансформатора затрачиваемые на перемагничивание сердечника (потери на гистерезис) и вихревые токи, мощность этих потерь зависит от частоты и амплитуды магнитной индукции в магнитопроводе и материала, из которого он изготовлен; при постоянном действующем значении напряжения первичной обмотки потери стали постоянны и не зависят от нагрузки, поэтому их называютпостоянными потерями ; для уменьшения потерь на перемагничивание сердечники трансформаторов изготавливают из электротехнической стали, которая имеет узкую петлю гистерезиса; для уменьшения потерь на вихревые токи сердечники трансформаторов набирают из тонких листов электротехнической стали изолированных друг от друга лаковой пленкой;


— тепловые потери в медных обмотках, которые зависят от токов и поэтому называются переменными потерями ; потери в меди пропорциональны квадрату коэффициента нагрузки

.

Коэффициент полезного действия трансформатора


.

Режимы работы трансформатора

Режим холостого хода . Под холостым ходом трансформатора понимают такой режим работы, при котором к зажимам первичной обмотки подводится напряжение, а вторичная обмотка разомкнута, ток I 2 =0 (рис. 4.6). На входе трансформатора устанавливают напряжение, равное номинальному напряжению первичной обмотки U 1 = U 1н и измеряют U 1 , I 1x , cosφ 1x , U 2х.

По данным этого опыта определяют коэффициент трансформации k; номинальный ток холостого хода I 1хн; номинальную мощность потерь холостого хода Р 10 , равную мощности потерь в стали сердечника Р сн при номинальном напряжении.

При холостом ходе I 2 =0 и

, поэтому


и U 2x =E 2 .

Следовательно,

.

В режиме холостого хода полезная мощность трансформатора P 2 =0, поэтому мощность P 1х, потребляемая в сети, полностью идёт на возмещение потерь

P 1x = ΔP с + ΔP м 1 = U 1 I 1x cosφ 1x ,

где ΔP с – мощность потерь в стали сердечника от гистерезиса и вихревых токов; ΔP м1 – мощность потерь в меди первичной обмотки; φ 1x – угол сдвига между напряжением и током первичной обмоткиU 1 и I 1x .

Потери в меди первичной обмотки

,

тогда потери в стали легко определить, как

ΔP с =P 1 x — ΔP м1 = U 1 I 1 x cosφ 1 x —

.

Так как ток холостого хода I 1x очень мал, то мощность

незначительна и ею можно пренебречь. Следовательно, в этом случае можно принять P 1x = ΔP с. Так как напряжение первичной обмотки равно номинальному, то P 1x = ΔР сн = Р 10 . По значениям I 1x и Р 10 судят о качестве стали сердечника и качестве его сборки.

Режим короткого замыкания . Различают внезапное (аварийное) короткое замыкание трансформатора, происходящее в эксплуатационных условиях и лабораторное короткое замыкание при его испытании. Внезапное короткое замыкание происходит при коротком замыкании вторичной обмотки (z н =0, U 2 =0), когда к первичной обмотке подведено номинальное напряжение U 1н. Это сопровождается резким броском тока до значения I кз =(20-40) I 1н.

При выполнении опыта лабораторного короткого замыкания вторичная обмотка трансформатора замыкается накоротко (рис. 4.7).

На входе трансформатора устанавливается такое напряжение U 1к, при котором токи первичной и вторичной обмоток становятся равными номинальным I 1 =I 1н и I 2 =I 2н. При U 1 = U 1к измеряют U 1к, I 1к, cosφ 1к.

Номинальные токи однофазного трансформатора рассчитывают исходя из формулы

где S н – номинальная мощность трансформатора по паспортным данным.

Напряжение U 1к называют напряжением короткого замыкания, его обычно выражают в процентах от U 1н и обозначают


По данным опыта определяют напряжение короткого замыкания U 1к, активную и реактивную составляющие напряжения короткого замыкания U ка и U кр, номинальную мощность потерь короткого замыкания Р кн (мощность потерь в меди обмоток при I 1 =I 1н и I 2 = I 2н).

При коротком замыкании полезная мощность трансформатора Р 2 = 0. Следовательно, мощность, потребляемая им из сети в данном режиме, полностью идёт на возмещение потерь

P 1 x = ΔP с

les74.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *