Подключить счетчик электроэнергии своими руками: Как подключить электросчетчик в квартире, доме, на даче

Содержание

Трехфазный счетчик: правила монтажа, схема подключения

Трехфазный счетчик — многофункциональное устройство, сокращающее расход электроэнергии и предназначенное для учёта электропотребления. Установка этого прибора позволяет равномерно распределять нагрузку на систему энергоснабжения. Даже небольшие электротехнические навыки с соблюдением техники безопасности, позволяют провести самостоятельный монтаж.

Приборы по способу подключения бывают прямого и трансформаторного типа.

Схема подключения выбирается из трех типов. Прямая и полукосвенная применяются в жилых и бытовых зданиях, а косвенная — на предприятиях в высоковольтных цепях. По конструкции трёхфазная система сложнее однофазной, а по размерам — габаритнее.

Общие правила монтажа

Монтаж не является сложной операцией, если знать, как правильно подключить прибор. Самостоятельное исполнение часто бывает качественнее, чем работа ненадежного мастера.

При приобретении важна не столько дата изготовления, сколько дата поверки устройства. Опломбирование должно быть проведено не ранее, чем год назад.

Перед работой с прибором, нужно получить разрешение и технические условия (ТУ) от организации по энергосбыту. ТУ являются основным документом, по которому будет проверяться устройство. Поэтому важно детально изучить требуемые технические характеристики каждого устройства и комплектующих. Это избавит от замечаний и лишних доработок.

Основные понятия:

  1. Электросчётчик — звено, пропускающее ток с напряжением, необходимым для питания техники в доме. Ориентируясь на количество используемой высокомощной техники, выбирается трехфазный или однофазный счетчик.
  2. Клеммы — места для подсоединения проводов. Перед началом установки стоит изучить их маркировку.

Монтаж возможен внутри каждой отдельной квартиры или на общей лестничной площадке, в частных домах — внутри и вне здания. На расположение влияет то, заменяется старая или подключается новая проводка.

Схема подключения электрического счетчика осуществляется через трансформаторы тока или без них. Для косвенного типа применяются трансформаторы тока и напряжения.

На всех этапах следует соблюдать правила электробезопасности. Важно знать, что не допускается подключение однофазного электроприбора в сеть на 380 вольт.

Последовательность операций подключения

Этапы установки:

  • отключение входного питания;
  • снятие пломб;
  • открытие клемм;
  • подсоединение проводов.

Перед монтажом следует убедиться, что сеть обесточена, воспользовавшись индикатором.

С момента опломбирования должно пройти не более 12 месяцев. Разрешено подключение 3-х фазного счетчика без видимых механических повреждений кожуха и стекла корпуса.

Возможна установка, если на корпусе трехфазного счетчика есть пломбы ОТК в виде стикера и пломбы госповерителя.

Установка прибора

Перед тем, как установить устройство, определяется место монтажа и тип крепежа. Локация измерителя в новом доме определяется на этапе проектирования здания.

Покупка прибора на дин-рейку — универсальное решение, так как к счетчику всегда можно докупить удобное крепление.

Установка возможна на din-рейку, как показано на фото:

Вместо нее можно устанавливать пластинку из металла, идущую в комплекте со счетчиком. При этом прибор монтируется на ровную поверхность с тремя винтами.

Для включения счетчика используются медные провода, которые зачищаются примерно на 2.5 см. Подключение проводов трехфазного счетчика проводится до упора в отверстия и закрепляется двумя винтами, начиная с верхнего.

Важно, чтобы изоляция не попала в зажим, так же, как и не допускается выступ оголенного провода из-под корпуса.

Перед тем, как подключить на клеммы трехфазного счетчика многожильные провода, на них устанавливают наконечники НШВИ. Для этого применяются специальные клещи. Опрессовывание наконечниками гарантирует надежность и безопасность контактов, предохраняет от возгорания в случае короткого замыкания.

Подсоединение проводов

Корректная работа обеспечивается точным соблюдением схемы подключения. Рассмотрим на примере счетчика Энергомера.

Входные клеммы 1, 3, 5, подсоединяются к входным фазам 1, 2, 3 соответственно. Выводные клеммы 2, 4, 6, подсоединяются к фазам выхода 1, 2, 3. Седьмая клемма — для нуля, восьмая — для выхода. Заземление подводится к шине заземления.

Запрещено заземление соединять с нулевой фазой. Рекомендации о том, как подключить трехфазный счетчик, указываются на корпусе и техническом паспорте.

После того, как проведено самостоятельное подключение, необходимо вызвать проверяющего от организации, поставляющей электроэнергию. Специалист оценит правильный ли монтаж и расположение трехфазного счетчика.

Прямое подсоединение

Подключение трехфазного счетчика прямого включения подходит для малых мощностей и силы тока, не превышающего 100 Ампер. Сечение проводов — от 16 до 25 мм².

Схема прямого подключения предусматривает то, что подводимые провода входят прямо на измеритель, а после этого — на автомат выключения.

На фото представлена схема непосредственного или прямого соединения:

Полукосвенный метод

Счетчик прямого включения ограничен по техническим характеристикам и функциям, поэтому иногда выбираются модели для установки с трансформаторами тока. Схема того, как подключается счетчик через трансформаторы тока, указывается на корпусе и в технической документации прибора.

Принцип основан на том, что токовые цепи подключаются через трансформаторы тока, цепи напряжения — сразу к сети 0,4 кВт. Любая схема включения рассматривается слева направо.

Этапы установки

Установка с трансформаторами обычно выбирается для предприятий или бытовых помещений, где используется мощное электрооборудование.

Установка счетчика с трансформаторами тока проводится по следующим этапам:

  1. Откручивание крепежных винтов до необходимого пространства для ввода проводов в зажим клеммы.
  2. Провод очищается от изоляционного слоя на высоту 25 миллиметров, без перекосов вставляется в отверстие на счётчике (не допускается попадание в зажим участка провода с изоляцией).
  3. Сперва закручивается верхний винт, затем нижний. Легким подергиванием провода вниз убеждаются в его надежной фиксации. Через 10 минут снова нужно проверить провод, так как медь имеет свойство растягиваться. При необходимости следует закрепить контур надежнее.
  4. Идентично подсоединяются остальные провода.
  5. Клеммы закрываются крышкой.

При общей нагрузке по току свыше 100 Ампер, актуально подключение трехфазного счетчика через трансформаторы тока.

Сборка через трансформаторы

Схема подключения через трансформаторы тока бывает косвенная и полукосвенная.

Подключение трансформаторов тока не применимо для моделей прямого включения. Как правило, схема подключения присутствует на самом приборе, а также в прилагаемой инструкции.

Трехфазный счетчик электроэнергии соединяется с трансформаторами в соответствии с маркировкой.

Л1 — питание от автомата (вход). Л2 — выход на потребителя. И1 — ввод, подключаемый на клеммы 1, 3, 5. И2 — выход, подключаемый на 2, 4, 6 клеммы.

Для соединений под болт, на провода можно использовать наконечники НКИ.

Пример подключения

Перед счетчиком и трансформаторами устанавливается автоматическое устройство, защищающее от коротких замыканий и блокирующее сеть при превышении максимальных нагрузок. Трехфазная сеть балансирует пофазное распределение нагрузки. Каждая фаза обеспечивается автовыключением.

Подведение начинается с левой стороны. На вводном автомате 3 фазы: A, B, C. Трансформаторы условно разделяют на соответствующие фазы. Цвета проводов выбираются в соответствии ГОСТу. В схематехнике маркируются для наглядности цветными стикерами.

Схема подразумевает подключение проводов к клеммам 3 фазного счетчика через трансформаторы с дальнейшим их выводом на потребителя.

Выходящий провод из А-вводного автомата подсоединяется к шине Л1 первого трансформатора. Провод с той же маркировкой отводится от И1 трансформатора к первой клемме. От второй клеммы провод подсоединяется к И2 первого трансформатора. Седьмая клемма в этом случае — для заземления. От болта напряжения трансформатора провод отводится на соответствующую клемму. На приведенных фото эти 3 клеммы в верхнем ряду.

Аналогичная схема подключения трансформаторов применима для каждого из них.

Схематичная инструкция всегда указывается на самом приборе.

Расположение клемм на приборах Энергомера несколько отличается:

Начиная слева, каждые три клеммы, следующие по порядку, составляют одну фазу. К 1, 4, 7 клеммам, контуры подсоединяются от И1 трансформатора. К 3, 6, 9 — от И2. 2, 5, 8 — подключение цепи напряжения. 10 или 11 (Энергомера предлагает 10 и 11 клемм) — нулевой проводник (может быть любой из двух).

Принцип звезды

Подобная схема подключения трехфазного счетчика через трансформаторы тока, дает возможность использовать меньше проводов. Особенность «звезды» — объединение выводов И2 всех трансформаторов в узел, выводимый на нулевой проводник.

Минус такой схемы — затрудненность проверки для служб.

Косвенный метод

Косвенная схема не подходит для бытовых помещений, так как предназначена только для высоковольтных соединений промышленного назначения. Такое подключение счетчика актуально для энергозатратных организаций, где сеть выше 1 кВ. Включение в схему трансформатора тока указывается на корпусе.

Бытовое применение

Трехфазный прибор в частном доме — оптимальное решение в том случае, когда применяется техника с высоким расходом электричества. Техника работает эффективнее при включении в такую сеть. Три фазы исключают перекос фаз, который возникает при подключении в одну сеть одновременно нескольких устройств, требующих высокой мощности.

Для удобства и безопасности, установка проводится в специальных коробах.

Щиты с такой системой учета весьма габаритны. Несмотря на незначительное отличие по напряжению с однофазными установками, трехфазник обеспечивает равномерное распределение по системе. Это и является главным преимуществом, что позволяет без опасения пользоваться мощными плитами, обогревателями, нагревателями, асинхронными двигателями, бензопилами.

Монтаж на улице

Установка системы на улице, возможно при организации эффективной теплоизоляции. При отрицательной температуре воздуха не обеспечивается корректный учет электричества. Обычно реальный расход преувеличивается.

Установка требует специальных огнеупорных, герметичных коробов. Индикатор должен быть виден через прозрачное стекло. Подключение счетчика электроэнергии проводится на расстоянии от поверхности земли 80-170 сантиметров.

Однофазная сеть

Одна фаза используется в частных домах, квартирах, бытовых помещениях. Большое количество мощных приборов дает высокую нагрузку на сеть. Оптимальнее менять сеть на 3 фазы, так как одна фаза может не выдержать высокое напряжение, что провоцирует частые сбои и более скорый износ бытовой техники. Если этого не происходит, то можно применять следующие решения:

  1. На некоторых приборах (электрическая плита, водонагреватель) сзади на корпусе предусмотрено несколько вариантов включения по предлагаемой схеме. Проводится параллельное подключение с установкой перемычки.
  2. Мощные аккумуляторы требуют виртуальной третьей фазы в виде конденсатора.

Трехфазный электрический счетчик на практике редко подключается к однофазной сети. Подключение похоже на прямое, с тем отличием, что вторая и третья фазы не активны. Такое исполнение может вызвать проблемы при проверке измерительного прибора, а для получения разрешения на установку, необходимо соблюдение дополнительных требований службы энергоснабжения.

При решении установить конструкцию в тремя фазами в однофазную сеть, нужно побеспокоиться об электробезопасности, так как в случае короткого замыкания ток будет выше. Обязательная проверка измерительного трехфазного оборудования проводится не реже одного раза в год.

Где купить

Максимально быстро приобрести приборы можно в ближайшем специализированном магазине. Оптимальным же, по соотношению цена-качество, остаётся вариант покупки в Интернет-магазине АлиЭкспресс. Обязательное длительное ожидание посылок из Китая осталось в прошлом, ведь сейчас множество товаров находятся на промежуточных складах в странах назначения: например, при заказе вы можете выбрать опцию «Доставка из Российской Федерации»:

Видео по теме

Схема подключения однофазного электросчетчика | ehto.ru

Вступление

Однофазный электросчетчик является самым используемым прибором учёта расхода (потребления) электроэнергии в жилых и общественных зданиях. Для квартир однофазные счетчики являются основными приборами учёта.

Зачем это нужно

Для начала отвечу на вопрос, зачем нужна схема подключения однофазного электросчетчика?

Чтобы ответить на этот вопрос, отвечу на другой. Можно ли самостоятельно или лучше так, разрешено ли самостоятельно менять электрические счетчики в квартире или доме?

Ответ я нашел в рекомендациях МосЭнерго.  «Самостоятельная замена счетчика возможна. Однако…», далее следует агитация о вызове специалиста компании для квалифицированной замены счетчика, о чём я писал в статье: Сгорел счетчик – что делать.

Но факт есть, заменить электросчетчик самостоятельно вам запретить никто не может. Однако, если вы решили заменить электросчетчик самостоятельно, вам нужно по закону РФ:

  • Заранее информировать обслуживающую организацию о времени планируемой замены электросчетчика. Это нужно для снятия пломб со счетчика и фиксации последних показаний;
  • После окончания установки, опять обратиться в обслуживающую организацию, уже с заявлением на опломбирование нового электросчетчика и составление акта ввода устройства учёта в эксплуатацию.

Что будет, если вы не сообщите о самостоятельной замене электрического счетчика? Вас ждет акт о потреблении электроэнергии без учета и штрафы.

Два типа счетчиков

На сегодня в жилом фонде РФ, используются два типа электрических счетчиков: современные электронные и устаревающие индукционные. Наблюдается явная тенденция, замены индукционных счетчиков на электронные, но я покажу схему подключения однофазного электросчетчика обоих типов.

Установка счетчика – общие замечания

Если квартира НЕ является коммунальной, то в квартире устанавливается один электросчетчик, который учитывает потребление электроэнергии во всей квартире.

Если квартира коммунальная, то в ней устанавливается общеквартирный счетчик (1) учета и контрольные счетчики учета для комнат (2).

Обозначение электросчетчика на схемах

На схемах однофазные счетчики обозначаются в виде квадрата с отсеченной частью и надписью Wh, возможно kWh.

Схема подключения однофазного электросчетчика индукционного

Во-первых, особенность индукционного счетчика, это наличие в конструкции токовой обмотки. Важно, чтобы фаза проходила через эту токовую обмотку.

Во-вторых, согласно ПУЭ (1.5.36) электрический счетчик должен быть защищен со стороны ввода (подключения) и со стороны потребителей (вывода) автоматами защиты или предохранителями, если последние предусмотрены. Хотя установка защитных аппаратов со стороны нагрузки в ПУЭ (гл. 1.5) явно не прописаны, есть ссылка на гл. 2.1, 3.4 и установка автоматов зашиты или предохранителей для групп электропроводки должна быть произведена.

Клеммы подключения счетчика, закрыты крышкой. Обычно клеммы подключения счетчика соответствуют маркировке на представленной схеме и фото, однако, большое количество производителей заставляют дать совет: читайте схему подключения счетчика на крышке закрывающей клеммы или в паспорте к счетчику.

Схема подключения однофазного электросчетчика электронного

Однофазные электронные счетчики учета, подключаются аналогично индукционным счетчикам:

  • Фаза приход;
  • Фаза к нагрузке;
  • Ноль приход;
  • Ноль к нагрузке.

 

Неправильное подключение электрических счетчиков

В начале статьи, я упомянул, что через токовую обмотку счетчика должна проходить фаза, а не ноль. Так вот, если сделать наоборот, то получим схему воровства электроэнергии, что незаконно.

Вывод

Если вы не знаете как определить фазу и отличить фазу от нуля, не занимайтесь самостоятельной заменой электросчетчика.

©Ehto.ru

Еще статьи

Похожие посты:

Как подключить однофазный счетчик электроэнергии

Автор Aluarius На чтение 5 мин. Просмотров 119 Опубликовано

Ушли в небытие времена, когда счетчики учета электроэнергии были одинаковыми. Сегодня это огромное разнообразие приборов, которые отличаются друг от друга внешними данными (размеры, дизайн и так далее). Но необходимо отметить, что как бы ни отличались они между собой, схема подключения электросчетчика осталась прежней. Никаких изменений она не претерпела, да и незачем, ведь простота и эффективность не требуют замены. Поэтому давайте рассмотрим в этой статье данную схему, которая будет отвечать на часто встречающийся вопрос, как подключить однофазный счетчик электроэнергии?

 

Сразу же оговоримся, что существует два основных способа подключения:

  • Прямой.
  • Трансформаторный.

Первый используется в быту, второй в промышленности. Название трансформаторное подключение говорит само за себя, то есть, в схеме присутствует трансформатор, который регулирует нагрузки тока в сети. Оно нормализует силу тока при перегрузках, тем самым сохраняет счетчик в рабочем состоянии. Понятно, что трансформаторное подключение связано с трехфазным счетчиком.

Хотя необходимо отметить, что трансформаторы устанавливаются и в больших домах. Но это встречается редко, так как ток в бытовых сетях протекает с нормальными параметрами, то есть, соответствует пределам самого электрического однофазного счетчика.

Однофазные счетчики учета электроэнергии

Перед тем как перейти к разбору вопроса, как подключить однофазный счетчик, необходимо рассмотреть его виды, которые сегодня предлагают производители. Основной параметр прибора контроля и учета – это сила тока, которую счетчик может через себя пропустить. Вот его номинальные пределы: 5-15 А, 5-40 А, 5-60 А и 5-80 А.

Для чего необходимы такие разные пределы? Все дело в том, что суммарная потребляемая мощность всех бытовых приборов дома и освещения может варьироваться в различных пределах. К примеру, данный показатель будет равен 10 А, то это не значит, что можно будет устанавливать счетчик номиналом 5-15 А, лучше установить прибор с большим показателем, так сказать, про запас, ведь всегда есть вероятность приобретения и установки дополнительной бытовой техники, что увеличит нагрузку.

 

Теперь, почему этот прибор называется однофазный счетчик? Все дело в том, что через него будет проходить электрическая сеть одной фазы. Конечно, без нуля здесь не обойтись, поэтому к электросчетчику будут подсоединяться два провода: фаза и ноль.

Счетчик однофазный механический

Правильное подключение

Для человека несведущего в электрике процесс подключения покажется очень простым. Конечно, необходимо для этого схема подключения однофазного счетчика электроэнергии. Где ее взять? Производитель об этом сам позаботился. В сопроводительных документах к прибору вы всегда найдете инструкцию, где данная схема показана на рисунке и описана словами.

Правда, иногда встречаются ситуации, когда аннотацию подключения не нашли. Что делать тогда? И здесь производитель приходит вам на помощь. Просто открутите крышку клеммной коробки, снимите ее и переверните обратной стороной к себе. Именно на обратной стороне схема подключения счетчика и расположена. Она нанесена на пластмассовую поверхность методом теснения.

Как было сказано выше, подключить однофазный счетчик электроэнергии своими руками несложно. Это вы поймете, обратив внимание на рисунок ниже.

Что из данного рисунка видно?

  • Во-первых, это четыре клеммы подключения.
  • Во-вторых, две первые клеммы предназначаются для фазы, две последние для нуля. Кстати, клеммы пронумерованы, так что ошибиться просто невозможно.
  • В-третьих, фазный контур (питающий) подключается к клемме номер один, выходной к клемме номер два. Далее провод идет на автомат. К клемме номер три подключается входной нулевой контур, к четвертой выходной.

То есть, все достаточно просто. Здесь главное не ошибиться. Вот такие правила и схема подключения однофазного электросчетчика.

Полезные советы

На самом деле необходимо отметить, что подключить счетчик учета электроэнергии своими руками – проблема небольшая. Но вот на что еще хотелось бы обратить ваше внимание.

  • Многое будет зависеть от правильно проведенного монтажного процесса. Если распределительный ящик уже установлен, то сам счетчик установить и закрепить внутри него будет просто. Обычно они крепятся на три самореза или на DIN-линейку, все зависит от конструкции прибора. Но в любом случае придется поработать перфоратором. Кстати, DIN-линейки продаются в магазинах, нужно только подрезать ее под определенный размер и закрепить двумя или тремя саморезами.
  • Существует оптимальная высота установки счетчиков – это 1,6-1,7 м. Хотя это не жесткое требование, можете устанавливать там, где хотите.
  • Перед проведением монтажных работ отключите общий автомат подачи электроэнергии. То есть, обесточьте сеть дома полностью.
  • Если используется для сборки схемы подключения медный многожильный кабель, то его концы обязательно надо пропаять или установить специальные наконечники обжимного типа. Это увеличит плотность контактов. Но лучше для этих целей использовать жесткий одножильный провод, к примеру, ПВ-1. Обратите внимание, что провод ПВ имеет одноцветную окраску, поэтому фазные и нулевые провода надо будет как-то обозначить. К примеру, разноцветной изолентой.
  • Если в распределительный щит устанавливаются защитные приборы¸ то необходимо оставить для них место.
  • Если распределительный щит устанавливается на улице, то необходимо на входном и выходном кабеле установить специальные резиновые манжеты, которые обеспечат герметичность ящика. Обычно манжеты дополнительно затягиваются резьбовым патроном.
  • В современных однофазных счетчиках клемма – это два зажимных винта. Чтобы подключение было проведено правильно, необходимо конец провода вставить в клемму, затянуть верхний винт, проверить надежность крепления подтягиванием провода вниз, затем затягивается нижний винт, после чего опять проводится подтяжка рукой вниз.
  • В этой схеме подключения электросчетчика последним соединяется кабель нагрузки, который отходит от автоматов внутрь помещений.
  • Как только сборка будет закончена, можно приглашать представителя энергоснабжающей организации. Обратите внимание, что счетчик ставится именно для них, и поэтому они и берут его на учет. Представитель должен проверить, правильно ли проведен монтаж, все ли нормы соблюдены. Если все соответствует правилам, то прибор ставится на учет, для чего он пломбируется.

Есть в этом вопросе один момент, который касается коммунальных квартир. Так вот электроснабжающая организация берет на контроль только один счетчик на всю квартиру. Внутренние приборы и их работу она не учитывает. Так что их показания на совести хозяев комнат.

схема подключения, монтаж в щитке.

Современные трехфазные счетчики, которые ранее применялись исключительно в производственной сфере, в последнее время нередко используются и в бытовых целях. Объясняется это тем, что владельцы частных домов все чаще предпочитают пользоваться трехфазными электрическими сетями, в которых допускается установка специального силового оборудования (двигателей АД, мощных насосов и тому подобное).

Схема включения счётчика

С общей схемой включения электросчётчика, который устанавливается в силовых линиях, можно ознакомиться на приведённом выше рисунке.

С другой стороны, подключение трехфазного счетчика к бытовым сетям энергоснабжения объясняется возросшими потребительскими мощностями, которые не могут обеспечить однофазные цепи.

Но прежде чем пользователь попытается воспользоваться преимуществами этого прибора, ему необходимо основательно разобраться с тем, как правильно подключить 3-х фазный счётчик в действующую электросеть.

Необходимость в трёхфазном учете

Согласно требованиям действующих нормативов, при возрастании величины потребляемой объектом мощности до значений 15-20 кВт и выше должна применяться трехфазная система питания. Объясняется это тем, что при указанных мощностях величина электрического тока в цепях может достигать 70-ти Ампер, что считается недопустимым для городских квартир.

Дополнительная информация. Для обеспечения нормального режима работы многоквартирной сети потребуется электрический кабель с сечением жил порядка 10 мм², монтаж которых практически невозможен в реальных условиях.

При данных показателях потребления действующими положениями ПУЭ предписывается использование системы энергоснабжения, рассчитанной на 380 Вольт. Учёт расходуемой энергии в этом случае обеспечивается подключением трехфазного электросчетчика непосредственно в питающую цепь.

Потребляемая при этом мощность распределяется между тремя фазными жилами, вследствие чего ток в каждой из них снижается примерно до 2,5 Ампер. Благодаря такому подходу, сечение жил подводящего кабеля, к которому подключается вся электросеть, можно будет уменьшить до значения порядка 2,5 мм².

Зависимость сечения проводников от протекающего по ним тока или от потребляемой нагрузкой мощности представлена в отдельной таблице (смотрите https://elquanta.ru/schetchiki/podklyuchenie-schetchika.html). Понятно, что при уменьшении этого параметра снижается и стоимость всей электропроводки, а также существенно упрощается ее монтаж.

Переход на современную и универсальную трехфазную схему питания предпочтителен и с точки зрения поддержания требуемого температурного баланса, обеспечивающего безопасные условия эксплуатации всей системы электроснабжения.

Естественно, что этот способ организации электропитания и учёта в частном доме потребует значительных по величине материальных издержек. Так что всем желающим воспользоваться преимуществами трехфазного подключения необходимо заранее определиться со своими финансовыми возможностями.

Виды подключения

В зависимости от способа включения трехфазного прибора различают следующие виды их подсоединения:

  • Так называемое «прямое» или непосредственное;
  • Полукосвенное;
  • Косвенное.

Первый из них используется в тех случаях, когда ток в каждой из фаз не превышает 100а. При данном подходе подводящие провода подсоединяются непосредственно к контактам прибора.

В этом случае счетчик прямого включения позволяет реализовать наиболее простое из всех возможных решений, не требующее значительных материальных издержек. В отличие от него два других варианта предполагают использование специальных преобразовательных устройств, позволяющих понизить величину тока в контролируемых цепях.

Уточняющая информация. Для того чтобы подключить трехфазный счетчик к действующей сети с током в каждой из линий более 100 Ампер потребуются трансформаторы тока (ТТ).

Рассмотрим различные схемы включения электросчётчика на примере конкретных образцов учётных приборов.

Прямое

Этот вид подключения применительно к приборам от фирмы «Энергомера», например, практически ничем не отличается от типовой однофазной схемы включения счётчика. Потребляемый нагрузкой ток проходит в этом случае непосредственно по обмотке прибора, включённого в разрыв питающей цепи.

Электрическая схема подключения трехфазных счетчиков напрямую выглядит следующим образом (смотрите рисунок, размещённый ниже).

Непосредственное включение

Важно! Устанавливаемый на объекте трехфазный счетчик может включаться напрямую лишь в том случае, когда рассеиваемая в нагрузке мощность не превышает 60-ти кВт.

При больших показателях этого параметра действующими нормативами предписывается использование полукосвенного или косвенного включений.

Полукосвенный и косвенный способы

При данном способе счетчик электроэнергии во все три фазы включается через специальный понижающий прибор, называемый трансформатором тока. Его применение позволяет организовать процедуру учета в цепях со значительными токами и рассеиваемыми мощностями (схема приводится ниже).

Схема включения через ТТ

На представленном выше рисунке Л1 и Л2 – обозначения входов и выходов каждой из трех фаз, а И1 и И2 – соответствующие им измерительные обмотки, которые включаются в разрыв питающих фазных цепей.

Существенным недостатком данного способа включения является обязательность учёта коэффициента трансформации, влияющего на результаты оценки потреблённой электроэнергии, а также на начисление суммы оплаты. Ещё одним неудобством трансформаторного включения является сложность снятия показаний, которыми правомочны заниматься лишь представители энергетических компаний.

Трехфазный прибор учёта косвенного и полукосвенного типа в условиях частных загородных хозяйств используется крайне редко. Основная область их применения – высоковольтные линии общепромышленного назначения, с величиной действующего напряжения 6(10) кВ.

Приборы индукционные

Порядок работы счетчиков электроэнергии этого класса основывается на вращении рабочего диска под воздействием сформированного измеряемым током переменного э/м поля.

На размещённом ниже рисунке можно ознакомиться со схематичным представлением простейшего образца типа «Энергомера» (трехфазное изделие работает по тому же принципу).

Внутренний механизм счетчика

На этой схеме 1 означает токовую катушку, через которую протекает нагрузочный ток, создающий в ней соответствующий по величине магнитный поток Фi. Появляющееся при этом поле пронизывает своими силовыми линиями алюминиевый диск и наводит в нем вихревые токи.

Эти токи формируют другое полевое образование, которое начинает взаимодействовать с полем Фu катушки напряжения (она обозначается как «2»). Взаимодействие двух этих структур вызывает появление импульсного вращающего момента, приводящего в движение алюминиевый диск.

Последний посредством червячной передачи приводит в движение механический счетный узел 3. Постоянный магнит 4 необходим для формирования тормозящего эффекта, обеспечивающего стабилизацию вращения диска.

Электронные устройства

Современный электронный учёт электроэнергии организуется по нескольку иному принципу и позволяет получить ряд преимуществ, основными из которых являются:

  • Высокая точность снятия показаний, существенно превышающая тот же показатель для индукционного прибора;
  • Возможность эксплуатации в многотарифном режиме;
  • Допустимость организации автоматического снятия показаний.

Трехфазный электронный счётчик работает по принципу подсчёта числа импульсов, вырабатываемых встроенным в него электронным устройством, частота следования которых зависит от величины протекающего тока (его внешний вид приведен ниже).

Внешний вид электронного прибора

Перед тем, как подключить трехфазный счётчик тем или иным способом, обязательно нужно ознакомиться с теми условиями, при которых, согласно действующим нормативам, допускается его монтаж.

Согласно основным положениям ПУЭ, современные электронные приборы трехфазного класса включают в сеть согласно схемам, которые пригодны и для индукционных приборов. На контактной панели электронного устройства входные и выходные контакты размещены точно таким же образом, как и на всех других типах трехфазных счетчиков.

Защитные и переходные устройства

Любой трехфазный счетчик электроэнергии, включаемый в высоковольтные сети через трансформаторы тока, должен быть защищен от перенапряжений, нередко возникающих в линиях энергоснабжения. С этой целью последовательно с ним устанавливаются специальные приборы, позволяющие ограничить напряжения, возникающие в линии в аварийной ситуации. Они встречаются под различными наименованиями, наиболее распространенным из которых является оин.

Это устройство по своему функциональному назначению напоминает защитный автомат. Но только срабатывает оно не от перегруза по току, а используется как ограничитель напряжения на участке питающей линии, в который включается трехфазный счетчик.

Ниже приводится схема, согласно которой осуществляется монтаж этого прибора в цепи защищаемого им оборудования.

Схема включения ОИН (УЗИП)

Перед тем, как установить трехфазный счетчик в питающую цепь, специалисты советуют воспользоваться ещё одним специальным приспособлением, подключённым к клеммнику самого счётчика.

Указное изделие, встречающееся под обозначением икк, имеет в своей конструкции ряд перемычек, позволяющих коммутировать подключение удобным для пользователя способом. Внешний вид этого приспособления и схема включения его в цепи питания приводятся на фото ниже.

Клеммник переходной

Из этого фото видно, что при применении ИКК монтаж и демонтаж прибора учёта любого типа существенно упрощается, что очень удобно при проведении их ремонта, например.

Дополнительная информация. При необходимости такая панель может использоваться для подключения внешних измерительных приборов.

Дополнительная установка ИКК осуществляется путём его параллельного подключения к уже имеющейся клеммной колодке.

В заключительной части обзора отметим, что рассмотренные ранее схемы включения счетчиков выбираются, в зависимости от условий их эксплуатации и характера действующей электрической сети. Для организации правильного их подсоединения важен учёт всех факторов, влияющих на работоспособность конкретного счётного устройства, определяемых не только его классом, но и особенностями механизма снятия показаний.

Видео

виды конструкций, простая схема монтажа своими руками

Приборы учёта электроэнергии установлены в каждой квартире и служат людям на протяжении многих лет. Со временем они ломаются и требуют быстрой замены. Эту работу можно выполнить самостоятельно или при помощи специалистов. Первый вариант считается наиболее приемлемым, так как позволяет снизить финансовые затраты. Для того чтобы выполнить эту процедуру, необходимо знать, как подключить однофазный электросчётчик.

Разновидности конструкций

Производители приборов учёта предлагают потребителям две основные разновидности счётчиков. Обе они позволяют владельцам квартир контролировать расход электроэнергии и максимально снижать денежные затраты.

Индукционные счётчики

Эта устройства считаются самыми известными и часто используемыми. Свою популярность они получили благодаря простоте монтажа, долговечности и точности выдаваемых показаний. Перед тем как подключить однофазный электросчётчик (индукционный) своими руками, необходимо подробно изучить принцип его действия, преимущества и недостатки. Вся эта информация поможет правильно выбрать модель прибора, которая идеально подойдёт для каждой конкретной квартиры.

Принцип действия индукционных устройств:

  1. Счётчик оснащён двумя катушками, одна из которых токовая, а другая — напряжения. В процессе их работы возникают магнитные потоки, проникающие через алюминиевый диск. Результатом становится появление электромеханической силы, которая выполняет вращение этого элемента конструкции.

  2. Этот процесс вызывает повороты дисковой оси, взаимодействующей со счётным механизмом (червячная передача).
  3. Получаемая информация передаётся на цифровые барабаны, которые позволяют снимать показания счётчика в любое время.
  4. При увеличении потребляемой мощности диск вращается быстрее, а при уменьшении — начинает действовать магнит торможения. Из-за этого происходит взаимодействие с вихревыми потоками, которые замедляют частоту вращения диска.

Индукционные счётчики пользовались большой популярностью в советское время, когда какие-либо альтернативные устройства не производились. В начале нового века такие конструкции стали постепенно заменять на более современные и качественные. Несмотря на это, большинство семей продолжают пользоваться механическими конструкциями, которые имеют несколько важных преимуществ:

  • высокая степень надёжности;
  • долговечность;
  • низкая стоимость;
  • возможность противостоять резким перепадам напряжения в сети.

Несмотря на достаточное количество положительных сторон, у индукционных приборов есть и несколько недостатков. Их обязательно нужно брать во внимание перед покупкой устройства и началом его монтажа. В противном случае можно столкнуться с различными проблемами, которые затруднят процесс эксплуатации и сделают его менее удобным.

Недостатки механических счётчиков:

  • низкая точность;
  • отсутствие защиты от воровства электроэнергии;
  • при низких нагрузках значительно увеличивается погрешность показаний;
  • большое потребление тока самим прибором;
  • большие габариты.

Электронные модели

Эти устройства отличаются надёжностью в работе и высокой точностью. Свою популярность они получили благодаря возможности работать в режиме многотарифности, который действует в некоторых государствах. Благодаря этому значительно снижаются потери и затраты на электричество.

Принцип действия электронных счётчиков прост и состоит из следующих этапов:

  1. На датчики тока поступает обыкновенный аналоговый сигнал.
  2. Там он преобразуется в цифровой код, который равен используемой мощности.
  3. После этого сигнал поступает в специальный микроконтроллер.
  4. В нём он расшифровывается, и результат выдаётся на дисплей.

Помимо стандартной функции, электронные приборы учёта могут выполнять несколько дополнительных. В них встроен специальный чип, который позволяет сохранять данные о расходе электричества за длительный промежуток времени. Кроме этого, аппарат оснащён электронными часами и оптическим портом, используемым для программирования прибора.

У электронных устройств значительно больше преимуществ, чем у механических. Среди них выделяются такие:

  • возможность вести многотарифный учёт электроэнергии;
  • удобство считывания информации;
  • способность долго хранить информацию о количестве потраченного электричества;
  • высокая точность;
  • возможность контроля за мощностью потребляемой энергии;
  • небольшие размеры;
  • способность фиксировать все попытки воровства электричества;
  • дистанционное получение данных.

Даже у такого качественного прибора есть несколько недостатков. Их намного меньше, чем преимуществ, но пренебрегать ими не рекомендуется. Среди них выделяются:

  • высокая стоимость устройства;
  • чувствительность к резким перепадам напряжения;
  • сложность проведения ремонтных и профилактических работ.

Процесс монтажа

Для того чтобы подключить однофазный счётчик электроэнергии и автоматы, необходимо правильно выполнить процесс установки. При этом важно не только соблюдать рекомендации производителей, но и прислушиваться к советам опытных электриков. Только в этом случае можно добиться нужного результата и завершить работу за минимальное количество времени.

Выбор материалов и инструментов

Перед тем как правильно подключить электросчётчик и автоматы, нужно подготовить все материалы и инструменты, которые понадобятся в работе.

Профессионалы рекомендуют выполнить эту работу заранее, чтобы потом не заниматься длительными поисками того или иного предмета.

Для монтажа понадобятся:

  1. Новый однофазный электросчётчик. При его покупке следует обращать внимание на наличие пломбы и штампа прохождения технического контроля. Кроме этого, необходимо выбирать модели, которые смогут выдержать нагрузку в электросети.

  2. DIN-рейка. Она используется для монтажа только тех приборов, которые имеют специальный тип крепления. Купить её можно практически во всех специализированных магазинах, занимающихся продажей электрооборудования и комплектующих.
  3. Защитный бокс. Если мастер планирует устанавливать счётчик в помещении, то достаточно будет купить стандартное изделие. В случае монтажа прибора на улице необходимо выбирать конструкции, сделанные из влагостойких материалов, способных выдерживать перепады температур. В любой модели защитного бокса должны быть предусмотрены отверстия для входящих и выходящих проводов.
  4. Автоматические выключатели или устройства защитного отключения. Профессионалы рекомендуют использовать их, чтобы предотвратить получение травм различной степени тяжести. Нужное их количество определяется путём расчётов, выполняемых при проектировании всей системы электроснабжения.
  5. Специальные шины. Они могут крепиться на DIN-рейку и выполнять функцию распределения, а также коммутации. В современных электрощитах эти элементы заранее включены в конструкцию.
  6. Моножильный монтажный кабель. В большинстве случаев используется медный провод ПВ-1.
  7. Крепёжные элементы. Чаще всего используются пластиковые стяжки, дюбеля и саморезы.
  8. Изолента. Она будет применяться не только по прямому назначению, но и для маркировки проводов (фазных, нулевых).
  9. Перфоратор с буром (диаметр должен быть равен размерам используемых дюбелей).
  10. Плоскогубцы и кусачки.
  11. Строительный нож.
  12. Приспособление для снятия изоляции.
  13. Набор отвёрток разного размера.
  14. Линейка, рулетка.
  15. Строительный уровень.
  16. Паяльник с набором всех необходимых принадлежностей.
  17. Тестер (индикаторная отвёртка), используемый для определения наличия напряжения в сети.
  18. Составленная схема подключения электросчётчика. Эту работу можно выполнить своими руками или при помощи высококвалифицированного специалиста. Первый вариант более дешёвый, но требует наличия определённых знаний и навыков проведения подобных мероприятий.

Порядок действий

Для того чтобы без каких-либо проблем выполнить подключение однофазного электросчётчика, необходимо соблюдать меры предосторожности и точно следовать составленной схеме. Это поможет быстро и качественно установить прибор, а также избежать получения каких-либо травм.

Последовательность монтажа:

  1. Помещение обесточивается и при помощи индикаторной отвёртки проверяется отсутствие напряжения.

  2. Выполняется разметка участка стены под бокс для счётчика. Рекомендуется выбирать место так, чтобы удобно было снимать показания с прибора.
  3. Берётся перфоратор, и им бурятся отверстия в местах крепления защитного бокса к стене.
  4. В них вставляются дюбеля, и монтируется конструкция. При этом важно использовать строительный уровень, который поможет выровнять изделие в горизонтальной плоскости.
  5. На следующем этапе устанавливается однофазный электросчётчик, а также дополнительное оборудование (шины, автоматические выключатели).
  6. DIN-рейки подрезаются до нужного размера и устанавливаются в выбранном месте.
  7. После этого прокладывается питающий провод и кабель нагрузки. Если счётчик монтируется на улице, то применяются специальные резиновые сальники, которые уберегут устройство от попадания влаги.
  8. С краёв проводов снимается изоляционный слой. Сделать эту работу можно при помощи специального инструмента или обыкновенного острого ножа.
  9. В защитном боксе оставляется запас кабеля, необходимый для проведения ремонтных работ или повторной установки. Специалисты советуют использовать провода, которые будут в 2 раза длиннее необходимых. Кроме этого, рекомендуется избегать перегибов и резких поворотов, которые могут привести к повреждению изоляционного слоя.
  10. Затем к автомату подсоединяется вводный кабель. При этом проверяется, какой из проводов является фазой, нулём и заземлением. В большинстве случаев они имеют изоляцию определённого цвета.
  11. Включается электричество и с помощью индикаторной отвёртки проверяется наличие напряжения. Кроме этого, можно проверить показатели между всеми проводами, которые должны быть примерно равны стандартному (220 В).
  12. Помещение снова отключается от электроснабжения и выполняется подключение кабеля к автомату. Для этого к правому верхнему контакту присоединяется нулевой, а к левому — фазный. Заземление заводится в специальную клемму, которая заранее была установлена в щитке.

  13. Контакты надёжно затягиваются отвёрткой и оставляются на четверть часа.
  14. По истечении указанного промежутка времени выполняется повторная затяжка. Это необходимо делать для того, чтобы исключить вероятность ослабления контакта, которое может произойти из-за сжатия проводов.
  15. Ноль и фаза, идущие от выхода автомата, присоединяются к однофазному счётчику.
  16. Изготавливаются небольшие перемычки, которые используются для коммутации оборудования. Для этого берётся провод нужного размера и при помощи плоскогубцев ему придаётся нужная форма. Затем концы зачищаются и крепятся в клемме.
  17. Аналогично делаются остальные перемычки. При этом каждая из них маркируется разноцветной изолентой.
  18. В самом конце к автоматам подключается кабель нагрузок.
  19. Все места крепления проводов тщательно проверяются.
  20. Включается напряжение, прибор проверяется на работоспособность.

Установленный однофазный электросчётчик обязательно нужно опломбировать. Для этого делается соответствующая заявка в электроснабжающую организацию и составляется акт. Затем назначается время визита их представителя и выдаётся разрешение на использование нового прибора.

Подключение однофазного электросчётчика — это довольно трудное мероприятие, требующее от мастера больших затрат времени и денежных средств. При правильном монтаже и соблюдении всех рекомендаций профессионалов можно ускорить процесс установки и избежать каких-либо проблем.

схемы установки для однофазного и трехфазного счетчиков

Электросчетчик – прибор, который производит учет потребления электроэнергии. Иногда возникает необходимость поменять или установить новый счетчик. Несмотря на огромное разнообразие при выборе, схема подключения электросчетчика остается неизменной. Прямым способом подключить электросчетчик можно в гараже, на даче, квартире. Подключение через трансформатор тока осуществляется, как правило, на производственных предприятиях и другими крупными потребителями электроэнергии.

Выбор измерительного электрооборудования

Сначала определимся, какого типа устройство нам нужно.

Электросчетчики делятся на два типа: индукционные и электронные. Индукционный счетчик – прибор электромеханический. Учет ведется по количеству оборотов диска прибора.

В электронном счетчике механический диск отсутствует. Электроэнергия учитывается путем обработки сигналов, поступающих с датчиков. Класс точности у электронных счетчиков выше, чем у индукционных.
К тому же и цена на них ниже, чем на индукционные счетчики.

Параметры выбора счетчика:

  • Количество фаз в сети. В сети может быть и одна фаза и три. Поэтому счетчики выпускают или однофазные, или трехфазные.
  • Класс точности. Это величина погрешности, которую может допустить прибор при измерениях. Существует несколько классов точности, начиная с 0,2 процентов и заканчивая 2,5 процентов погрешности. Различаются они друг от друга на 0,5 процента. Класс точности прибора, установленного в жилье, должен соответствовать классу 2,0.
  • Способ подключения. Электросчетчики в сеть включаются двумя способами. Первый – прямое включение. Применяется, если ток менее 100 ампер. Второй способ используется при токах свыше 100 ампер. В этом случае в схеме подключения присутствует трансформатор тока.
  • Напряжение сети. Нас пока интересует напряжение в 220 в.
  • Тарифы на оплату электроэнергии. Существует три вида счетчиков, подсчитывающих электроэнергию в соответствии с тарифами:
  1. Однотарифные счетчики. Они пока применяются чаще всего.
  2. Двухтарифные счетчики. В таких счетчиках предусмотрен учет по дневному и ночному тарифу. Дневной тариф действует с 7 часов утра и до 23 вечера. Ночной с 23 часов до 7 часов утра. Стоимость ночного тарифа почти в два раза ниже.
  3. Многотарифные счетчики. Применяются редко.

Как подключить однофазный электросчетчик

Перед покупкой электросчетчика, нужно ознакомиться с тем, как организовано электроснабжение в доме, где расположена ваша квартира. Если вы ставите счетчик на даче, то с электроснабжением дачного хозяйства. Электросчетчик должен соответствовать параметрам той электрической сети, в которую он будет включен.

Допустимые параметры сети указаны на маркировке электросчетчика. Кроме этого, счетчик должен пройти государственную проверку и иметь соответствующую отметку. Он должен быть опломбирован. Убедившись, что параметры его соответствуют сети вашего дома, проверка пройдена, пломба стоит. можно счетчик покупать.

Перед тем, как начать устанавливать электросчетчик, нужно подготовить для него место.

Чаще всего такие приборы устанавливают в подъездах в распределительных щитках. Для установки счетчика в щитке уже подготовлено место. То есть его можно без проблем закрепить. Если прибор устанавливается в квартире, то его монтируют возле входной двери или в помещении, в котором учет потребления электричества будет вестись отдельно.

Итак, устанавливаем крепежные элементы для монтажа прибора. Затем нужно определить рабочую и нулевую фазы общей домовой сети. Для этого берем электроиндикаторную отвертку. Напряжение пока отключать не будем. Прикасаемся к оголенному концу провода общей сети. Если индикатор отвертки загорается, то это рабочая фаза. Отметим ее. Вторую фазу можно и не проверять, и не помечать. Она нулевая.

В распределительном щитке рабочую фазу определить еще проще. Она окрашена в определенный цвет, чаще всего, в красный. Но на всякий случай проверим и на щитке. Все может быть. Вдруг кто перекоммутировал провода по своему. Закрепляем прибор на предназначенном ему месте в квартире или на общем щитке.

Отключаем электроэнергию и приступаем к процессу установки согласно схеме установки однофазного счетчика. На корпусе прибора в нижней его части расположены 4 клеммы. Две слева предназначены для рабочих фаз, квартирной и общей домовой. Две правые клеммы предназначены для нулевых жил. Вставляем оголенные концы рабочих жил, квартирной и общей, в клеммы. Понятно, что одна жила идет в одну клемму.

Концы проводов в клеммах закрепляются винтом. Закручиваем винты клемм. Затем подключаем ноль. Вставляем ноль, идущий от квартиры в одну клемму, общий ноль – в другую. Прижимаем их винтами. Собственно, все — процесс правильного подключения электросчетчика однофазного окончен.

Включаем, проверяем. Работает — можно пользоваться. Нет — проверяем схему подключения, соединения.
Важно: После завершения работ необходимо пригласить представителя организации, которая поставляет электроэнергию.
Он должен принять электросчетчик по акту и опломбировать его своей пломбой. Акт составляется в двух экземплярах и подписывается обеими сторонами.

Схема подключения трехфазного счетчика

В принципе, подключение трехфазного электросчетчика ничем особенным не отличается от подключения однофазного (более подробно эта схема рассмотрена в отдельной статье). Надо только следить, чтобы общая нагрузка по току не превышала 100 ампер. Если она выше, тогда в схему нужно включать трансформатор. Трехфазный счетчик отличается от однофазного и количеством клемм. На колодке их установлено восемь.

На трехфазном счетчике устанавливается и специальный входной автомат, который управляет фазами. Прибор должен быть обязательно заземлен. Две клеммы, они расположены на колодке справа, предназначены для подключения нулевых жил. На одну клемму заводится общедомовой нулевой провод, на другую квартирный.

В квартире ноль общий для всех устройств, потребляющих электроэнергию. Остальные клеммы используются для подключения рабочих фаз, общедомовых и квартирных устройств. Общедомовая электросеть подключается к квартире через входной автомат.

В целом, ничего сложного в подключении электросчетчика нет. Нужно только следить, чтобы параметры счетчика совпали с параметрами сети, в которую вы собираетесь его включить. Перед подключением нужно разобраться со схемой разводки домовой сети, со схемой подключения самого счетчика, как к электросети дома, так и к квартирным потребителям электроэнергии.

Видео о том, как правильно подключить электросчетчик

D-I-Y (Плохой путь): Как взломать ваш электросчетчик

( ВНИМАНИЕ !!!! Использование методов «взлома» электросчетчиков, изложенных в данном документе, является НАКАЗАНИЕМ в соответствии с действующим законодательством. )

Взлом электросчетчика — явление не новое, по крайней мере, в нашей жизни мы слышали об этом однажды. Есть много способов взломать или подделать наш счетчик, чтобы сократить счет за электричество. Но большинство, если не все формы взлома электросчетчика считаются незаконными. Таким образом, подделка нашего электросчетчика карается в соответствии с RA 7832 (Закон о борьбе с хищениями электроэнергии 7832 от 1994 г.), который предусматривает как штраф, так и тюремное заключение сроком до 20 лет.

Различные способы кражи электроэнергии варьируются от фактического взлома электросчетчика до использования устройств, которые с помощью электроники или электричества замедляют или даже останавливают счетчик. Следующие методы «взлома» являются наиболее известными, но запрещены законодательством Филиппин.

ИСПОЛЬЗОВАНИЕ МАГНИТА
Электросчетчик представляет собой электромеханическое индукционное устройство. Он использует электричество ( потребляет около 2 Вт для своей работы ), движущиеся части (, как алюминиевый циферблат ) и электромагнитный (индукционный) двигатель.Электросчетчик использует вихревой ток для регулирования вращения шкалы в соответствии с фактическим потреблением электроэнергии.

Следовательно, в счетчике используется электромагнетизм (индукция), также возможно вмешаться в его движение с помощью магнитов. Магниты значительных размеров следует размещать непосредственно по бокам счетчика. Вот видеоролик о том, как использовать магнит для взлома электросчетчика.

ОТВЕРСТИЕ И ИГЛА
Этот метод включает прямое вмешательство путем просверливания отверстия или отверстий в любом месте пластикового корпуса измерителя.Затем в крошечное отверстие вставляется игла, которая останавливает или замедляет вращающийся алюминиевый циферблат. Такой способ взлома легко обнаруживают считыватели счетчиков энергокомпании.

СОЛЬ И САХАР
Соль может улучшить проводимость воды, а сахар — нет. См. demo об этом. Но свойства соли и сахара не имеют ничего общего с взломом электросчетчика. Соль и сахар помещаются или пропускаются через щель электросчетчика, чтобы отвлечь вращающийся циферблат.Хуже всего, муравьи будут болтаться внутри счетчика из-за жажды сахара. 🙂

РАЗРЫВ ПЕЧАТИ
Если наложения магнита и заливки соли и сахара на ваш электросчетчик недостаточно, возможно взлом, разрезав или удалив пломбу, которая блокирует счетчик от несанкционированного доступа. Это приведет к следующему способу — использование перемычки.

ПЕРЕХОД К VECO
Использование перемычки для пропуска электросчетчика — это устаревший метод взлома, но он самый простой.Для этого отсоединяют линию после счетчика и вместо этого подключают ее напрямую к линии обслуживания VECO (Visayan Electric Company). Этот метод подделки легко обнаруживается властями.

ПОВОРОТ СЧЕТЧИКА НА ПОВЕРХНОСТЬ, ВНИЗ
Если из вышеперечисленного недостаточно, переверните счетчик вверх дном, чтобы остановить его. Но это очень очевидно и будет недолгим, потому что считыватель счетчиков компании вызовет техобслуживание, чтобы исправить это.

ПЕРЕКЛЮЧЕНИЕ СЧЕТЧИКА
Счетчик можно остановить или даже повернуть вспять, чтобы снизить фактическое показание потребления. Это можно сделать с помощью так называемых РЕВЕРСИВНЫХ ТРАНСФОРМАТОРОВ ТОКА, которые продаются в форме энергосберегающих устройств. Кто-то рассказал мне о лампочке, которая почти не влияет на электросчетчик. Где-то внутри этой лампочки может быть трансформатор реверсирования тока.

НАГРУЗКА ПОСТОЯННОГО ТОКА
Самый сложный способ, который я не мог расшифровать, — это использование выпрямленной нагрузки постоянного тока для предотвращения образования вихревых токов в измерителе.Это замедлит или остановит счетчик. Однако я не видел демонстрации того, как это сделать.

У меня была дискуссия о подделке электросчетчика во время моего радиошоу — « Pangutana » в прошлое воскресенье (11 декабря) через DyAB1512, и вот аудиоклип:

Опять же, использование вышеупомянутых методов взлома электросчетчика наказуемо по законам Филиппин. Есть способы уменьшить ваш счет за электричество, не рискуя попасть в тюрьму и нанести ущерб своей репутации.У VECO есть наконечников , а также для нас, потребителей.

Нравится:

Нравится Загрузка …

Связанные

Насколько опасны интеллектуальные счетчики?

Интеллектуальный счетчик посылает импульсы от до 60000 микроватт на квадратный метр радиочастотного (РЧ) излучения (что в 60 раз превышает предел безопасности США) каждые 30-45 секунд, в зависимости от того, как работает конкретная энергетическая компания. это настроено.Они также управляют переменным током, вызывая высокотоксичный «электрический смог» (также известный как «грязное электричество») в каждой электрической цепи, к которой подключается интеллектуальный счетчик.

Интеллектуальные счетчики опасны, поскольку они подвергают жителей дома или офиса воздействию высокотоксичных количеств радиочастотного излучения и грязного электричества. И существуют буквально сотни независимых экспертных оценок научных исследований , связывающих эти «неионизирующие» формы излучения с такими вещами, как нарушения сна, шум в ушах, рак, тяжелый диабет, смерть в кроватке, повреждение ДНК (особенно у младенцев и плодов) и мужчин. бесплодие.

Некоторые энергетические компании в США имеют программы отказа от использования интеллектуальных счетчиков. Если вы будете платить дополнительную плату каждый месяц, они заменят ваш интеллектуальный счетчик аналоговым счетчиком, который не излучает радиочастотное излучение. Плата обычно не очень высокая. Это, безусловно, лучший и безопасный вариант, если вы получаете электроэнергию от одной из энергетических компаний, которая будет это делать. Некоторые люди покупают собственный аналоговый счетчик и просят кого-нибудь заменить их интеллектуальный счетчик. Я покажу, где можно взять аналоговый измеритель здесь.

Если нет, вы можете сделать несколько вещей, которые устранят оба типа радиочастотного излучения, создаваемого вашим интеллектуальным счетчиком. Я расскажу об этом позже.

Smart Meter Guard

Smart Meter Guard — это крышка, которую можно надеть на интеллектуальный счетчик, сделанную из экрана из проводящей металлической сетки, которая блокирует от 90% до 95% радиочастотного излучения, которое обычно испускается интеллектуальным счетчиком. Он очень эффективен, не очень дорог и очень прост в установке.

В видео ниже я демонстрирую вам один из них. Сначала я измеряю излучение, выходящее из интеллектуального счетчика, чтобы вы могли видеть, сколько они излучают. Затем я устанавливаю Smart Meter Guard на счетчик и снова провожу тест, чтобы вы могли увидеть уменьшенное количество выделяемого вещества. Видео короткое, но очень информативное. Это однозначно стоит посмотреть. Видеть значит верить. Очень рекомендую его посмотреть.

Счетчики и фильтры грязной электроэнергии

Микроимпульсный измеритель Грэма-Стетцера — это измеритель, который измеряет грязное электричество в каждой цепи в вашем доме.Очень просто использовать. Фильтры подключаются к цепям, которые превышают безопасный диапазон, и в большинстве ситуаций они снижают «шум» или «смог» на линии обратно до безопасного диапазона.

В видео ниже я провожу быстрый тест на одной из схем в моем доме, а затем показываю вам, как установить на эту схему фильтр. Затем я беру еще показания, чтобы вы могли увидеть уменьшение. Опять же видео короткое, но очень информативное. Это однозначно стоит посмотреть. Я очень рекомендую это.

Если вы хотите приобрести Smart Meter Guard или какой-либо из измерителей, которые я использую в двух вышеупомянутых видео, я перечисляю ссылки на лучшие места, где их можно получить, на странице Рекомендуемые средства защиты этого веб-сайта.

Интеллектуальный измеритель радиационной опасности

Чаще всего об опасности интеллектуального счетчика думают, что он испускает радиочастотное излучение мощностью до 60 000 микроватт на квадратный метр каждые 30–45 секунд. Когда умный счетчик находится на внешней стороне стены спальни, некоторые люди замечают подергивание ног и расстройство ума, мешающее спать каждый раз, когда происходят эти взрывы. Вот как некоторые люди поняли, что проблема возникла в их умном счетчике.

Хотя радиочастотное излучение является наиболее мощной формой электромагнитного излучения, поскольку оно «неионизирующее» и обычно не нагревает наши тела, некоторые люди (в основном представители правительства или технологической отрасли) утверждают, что оно не может нанести вред живым организмам. Однако, как я упоминал ранее, существует слишком много независимых рецензируемых научных исследований, которые говорят об обратном, чтобы их игнорировать.

Например, радиочастотное излучение находится в микроволновом диапазоне электромагнитного спектра, который колеблется от прибл.От 8 или 1 ГГц до 300 ГГц. Интеллектуальные счетчики используют нижнюю часть этого диапазона ниже 2,4 ГГц, потому что они пытаются передать информацию об использовании электроэнергии на большие расстояния (обратно в энергокомпанию или ближайшую вышку сотовой связи).

Барри Трауэр — уважаемый британский физик, специализирующийся в области микроволнового излучения. Его карьера началась, когда он был в армии, где он узнал, как его можно использовать в качестве оружия, и изучил его влияние на человеческий организм. В видео ниже он рассказывает о своей карьере и обо всех вредных последствиях, которые он видел от этого типа излучения.Это примерно 20-минутное видео, но если вам интересна эта тема, его стоит посмотреть.

Вот интересное научное исследование. Это не касается излучения непосредственно от интеллектуального счетчика, но это проверка аналогичных частот микроволнового излучения от сотового телефона, вызывающего опухоли головного мозга. Исследование показывает потенциальное увеличение опухолей головного мозга в лобной доле мозга, где сотовый телефон выступает против. Вот исследование: Исследование риска опухолей головного мозга радиочастотным излучением

Подобным образом это излучение показано в этом исследовании «Рак молочной железы и радиочастотное излучение» для женщин, которые держали свои мобильные телефоны в бюстгальтерах, у которых из-за радиочастотного излучения развился рак груди, в том самом месте, где они всегда хранили свои телефоны.

В этом брифинге для Европейского парламента обсуждается ряд различных исследований радиочастотного излучения, показывающих негативное воздействие на здоровье: Брифинг Европейского парламента.

Вот интересная статья. Это не исследование, а статья в Википедии о микроволновом оружии, используемом вооруженными силами США для подавления массовых беспорядков, которое называется «Система активного отказа». Он разгоняет толпу, нагревая их кожу. Это отличный пример силы вреда, которую имеют эти микроволновые частоты. Военные США — Система активного отрицания.

И я мог бы продолжать и перечислять еще много исследований и статей, в которых говорится об исследованиях. Специальных исследований радиочастотного излучения интеллектуального счетчика нет, но излучение точно такое же, как и от других беспроводных или WiFi-устройств.

Вот исследование, которое показывает, как это излучение вызывает повреждение ДНК, окислительное повреждение митохондриальной ДНК. А вот тот, который связывает это излучение с мужским бесплодием. Излучение мобильного телефона вызывает мужское бесплодие. И это исследование показывает, что люди, живущие ближе к вышкам сотовой связи, которые излучают такое же излучение, имеют более высокий уровень негативных последствий для здоровья. Расстояние от вышек сотовой связи: риск для здоровья.

Я снова могу продолжать и продолжать. Чтобы узнать больше о научных исследованиях, снова посетите страницу научных исследований этого веб-сайта. Все эти исследования применимы и к грязному электричеству, поскольку это тот же вид излучения.

Smart Meter Опасность загрязнения электричеством

Когда интеллектуальный счетчик подключен к дому, он воздействует на каждую электрическую цепь в нем, потому что он подключен ко всем. А поскольку интеллектуальный счетчик изменяет нормальный переменный ток, он создает электрический смог или грязное электричество, излучаемое через стены от электропроводки каждой цепи в доме.

В большинстве домов, которые я видел, грязное электричество, вызванное интеллектуальным счетчиком, можно исправить, добавив фильтр (как я показываю в одном из видео выше) в каждую цепь. Однако, чтобы убедиться, вы захотите протестировать каждую цепь до и после с помощью измерителя Graham-Stetzer Microsurge Meter .

В приведенном ниже видео доктор Лаура Прессли, доктор философии, (которая имеет докторскую степень по физической химии и имеет четыре патента США в области технологии полупроводников) рассказывает как о радиочастотном излучении, так и о грязном электричестве, вызываемом интеллектуальными счетчиками.Я разместил ее видео здесь, чтобы вы могли здесь описать, насколько опасно и вызывает рак Dirty Electricity. Это информативное видео. Пожалуйста, найдите минутку и посмотрите это.

Интеллектуальные счетчики заменяют аналоговые в США

Давно прошли те времена, когда ваша собака лаяла на счетчик счетчиков, когда она ежемесячно обходила ваш район. Теперь остались только вы и ваша собака. Тишина и покой, пока не почувствуешь запах дыма. Не просто дым.Острый и тошнотворный аромат горящих проводов. А потом вы слышите сирены. Они становятся все громче и громче, и внезапно большая красная пожарная машина оказывается прямо у вашей двери.

Умный счетчик в новом доме мастера вашего соседа загорелся, и теперь их модный гараж загорелся оранжевым огнем. По всей стране дома и предприятия охвачены новой волной технологий, обещающей более низкие счета за электричество и обеспечение более устойчивых форм энергии. Их называют «умными счетчиками», но в высокотехнологичных устройствах нет ничего интеллектуального.Фактически, современные технологии связаны с пожарами, серьезными проблемами со здоровьем и делают наши дома и электросети исключительно уязвимыми для кибертерроризма.

За последние пару лет энергетические компании заменили аналоговые счетчики на высокотехнологичные интеллектуальные счетчики. Умные счетчики контролируют потребление энергии и сообщают эту информацию энергетической компании с помощью беспроводной технологии. Умные счетчики излучают радиацию, как сотовые телефоны и другие высокотехнологичные устройства.

Однако вы никогда не сможете выключить интеллектуальный счетчик.Они излучают высокий уровень радиации в ваш дом и тело 24/7. По мнению некоторых исследователей, умные счетчики подвергают людей воздействию радиации, эквивалентной 160 сотовым телефонам. Теперь ваше внимание? Хорошо. Останься со мной. Умные счетчики испускают все это излучение, когда отправляют информацию обратно в энергетическую компанию.

Оказывается, передача информации, также известная как цикл, происходит тысячи раз в день. Это тысячи вспышек радиации, проникающих в ваш дом, комнату вашей пятилетней дочери и ваше тело.

Эффекты излучения интеллектуального счетчика

Вся эта радиация в настоящее время вызывает серьезные проблемы со здоровьем людей по всей стране и во всем мире. За последние пару лет энергетические компании установили более 70 миллионов интеллектуальных счетчиков по всей территории Соединенных Штатов. И люди ощущают последствия. Умные счетчики связаны с раком, доктор Дэвид Карпентер, выпускник Гарвардской медицинской школы и эксперт по общественному здравоохранению, возглавляет борьбу с интеллектуальными счетчиками.

«Им нужно задать вопрос:« Каковы доказательства того, что интеллектуальные счетчики безопасны? »И не оказывают вредного воздействия на здоровье.И ответ на это заключается в том, что таких доказательств нет, и на самом деле никто не проводил исследований здоровья людей в отношении людей, живущих в домах с умными счетчиками.

У нас есть доказательства из целого ряда других источников, что радиочастотное воздействие, которое убедительно и последовательно демонстрирует, что воздействие радиочастотного излучения на повышенных уровнях в течение длительного периода времени увеличивает риск рака, увеличивает повреждение нервной системы, вызывает чувствительность , оказывает неблагоприятное воздействие на репродуктивную функцию и ряд других эффектов на различные системы органов.Таким образом, нет никаких причин, никаких оправданий тому, что интеллектуальные счетчики не оказывают вредного воздействия на здоровье », — сказал д-р Дэвид Карпентер.

Итак, позвольте мне внести ясность. Устройство, призванное облегчить нашу жизнь, на самом деле причиняет нам большой вред? Как это может быть. Насколько снова опасны умные счетчики? Оказывается, потребители электроэнергии по всей стране протестуют против программы умных счетчиков. Есть судебные процессы, общественные дебаты, слушания и возмущение.

Стремясь набрать обороты, люди делятся в Интернете своими историями об изменениях в своем здоровье после того, как в их доме был установлен умный счетчик.Обеспокоенные соседи сообщают о внезапном усилении головокружения, боли в ушах, проблемах с памятью, учащенном сердцебиении, беспокойстве и нарушениях сна.

«За последние два года появилось все больше медицинских и научных доказательств серьезных биологических опасностей для человека в результате воздействия так называемых« умных »счетчиков», — сказала д-р Иия Сандра Перлингьери, Global Research California.

Электрогиперчувствительность к радиочастотному излучению

«То, что сейчас называется электрогиперчувствительностью и признается в Швеции как задокументированное изнурительное заболевание, на самом деле можно назвать отравлением, поскольку мгновенные радиочастотные импульсы этих измерителей повреждают людей и все другие живые организмы», — сказал доктор .Perlingieri.

Умные счетчики излучают тот же тип излучения, что и сотовый телефон, только больше. Итак, если сотовые телефоны могут быть канцерогенными, что это значит для умных счетчиков? Необязательно быть гением, чтобы провести корреляцию.

«Нагревание тканей — это основной механизм взаимодействия радиочастотной энергии с телом человека. На частотах, используемых мобильными телефонами, большая часть энергии поглощается кожей и другими поверхностными тканями, что приводит к незначительному повышению температуры в мозгу или любых других органах тела », — Всемирная организация здравоохранения.

Напомним, уровень радиации, излучаемой смарт-счетчиками, равен примерно 160 сотовым телефонам. Итак, если один-единственный сотовый телефон способен изменить структуру нашей ткани, просто подумайте, на что способен умный счетчик. Фух. Трудно представить, что такое устройство установлено более чем в 70 миллионах домов по всей стране.

Интеллектуальная защита счетчика предназначена для предотвращения попадания излучения в ваш дом и окружающую среду. Не нужно жертвовать своим здоровьем ради большого бизнеса.Во многих городах и штатах вы можете полностью отказаться от программы интеллектуального счетчика.

Некоторые энергетические компании взимают плату за замену вашего счетчика на старую модель. Оно того стоит. Фидо может больше лаять на сильного человека из вашего окна. Я приму это радиационное облучение в любой день недели, а вы?

Информацию о измерителе, который вы можете приобрести для измерения радиации в вашем доме, см. В нашей статье под названием «Обзор высокочастотного анализатора HF-35C».

Что такое электричество? — learn.sparkfun.com

Добавлено в избранное Любимый 63

Начало работы

Электричество окружает нас повсюду, питая такие технологии, как наши сотовые телефоны, компьютеры, фонари, паяльники и кондиционеры. В современном мире от этого трудно спастись. Даже когда вы пытаетесь избежать электричества, оно по-прежнему действует во всей природе, от молнии во время грозы до синапсов внутри нашего тела.Но что такое — это электричество ? Это очень сложный вопрос, и по мере того, как вы копаете глубже и задаете больше вопросов, на самом деле нет окончательного ответа, только абстрактные представления о том, как электричество взаимодействует с нашим окружением.

Электричество — это естественное явление, которое встречается в природе и принимает множество различных форм. В этом уроке мы сосредоточимся на современной электроэнергии: на том, что питает наши электронные гаджеты. Наша цель — понять, как электричество течет от источника питания по проводам, зажигает светодиоды, вращающиеся двигатели и питает наши устройства связи.

Электричество кратко определяется как поток электрического заряда , , но за этим простым утверждением стоит так много всего. Откуда берутся обвинения? Как мы их перемещаем? Куда они переезжают? Как электрический заряд вызывает механическое движение или заставляет вещи загораться? Так много вопросов! Чтобы начать объяснять, что такое электричество, нам нужно приблизиться, за пределы материи и молекул, к атомам, которые составляют все, с чем мы взаимодействуем в жизни.

Это руководство основано на некоторых базовых представлениях о физике, силе, энергии, атомах и [поля] (http: // en.wikipedia.org/wiki/Field_(physics)) в частности. Мы остановимся на основах каждой из этих физических концепций, но, возможно, также будет полезно обратиться к другим источникам.

Going Atomic

Чтобы понять основы электричества, нам нужно начать с изучения атомов, одного из основных строительных блоков жизни и материи. Атомы существуют в более чем сотне различных форм в виде химических элементов, таких как водород, углерод, кислород и медь. Атомы многих типов могут объединяться, чтобы образовать молекулы, из которых состоит материя, которую мы можем физически увидеть и потрогать.

Атомы — это крошечных , максимальная длина которых составляет около 300 пикометров (это 3×10 -10 или 0,0000000003 метра). Медный пенни (если бы он действительно был сделан из 100% меди) имел бы 3,2х10 22 атома (32000000000000000000000000 атомов) внутри него.

Даже атом недостаточно мал, чтобы объяснить работу электричества. Нам нужно погрузиться еще на один уровень и посмотреть на строительные блоки атомов: протоны, нейтроны и электроны.

Строительные блоки атомов

Атом состоит из трех различных частиц: электронов, протонов и нейтронов. У каждого атома есть центральное ядро, в котором протоны и нейтроны плотно упакованы вместе. Ядро окружает группа вращающихся электронов.

Очень простая модель атома. Он не масштабируется, но помогает понять, как устроен атом. Ядро ядра протонов и нейтронов окружено вращающимися электронами.

В каждом атоме должен быть хотя бы один протон. Число протонов в атоме важно, потому что оно определяет, какой химический элемент представляет собой атом. Например, атом с одним протоном — это водород, атом с 29 протонами — это медь, а атом с 94 протонами — это плутоний. Это количество протонов называется атомным номером атома .

Ядро-партнер протона, нейтроны, служат важной цели; они удерживают протоны в ядре и определяют изотоп атома.Они не критичны для нашего понимания электричества, поэтому давайте не будем о них беспокоиться в этом уроке.

Электроны критически важны для работы электричества (обратите внимание на общую тему в их названиях?) В наиболее стабильном, сбалансированном состоянии атом будет иметь такое же количество электронов, что и протоны. Как и в модели атома Бора ниже, ядро ​​с 29 протонами (что делает его атомом меди) окружено равным числом электронов.

По мере развития нашего понимания атомов развивались и наши методы их моделирования.Модель Бора — очень полезная модель атома при изучении электричества.

Не все электроны атома навсегда связаны с атомом. Электроны на внешней орбите атома называются валентными электронами. При наличии достаточной внешней силы валентный электрон может покинуть орбиту атома и стать свободным. Свободные электроны позволяют нам перемещать заряд, в этом и заключается вся суть электричества. Кстати о зарядке …

Текущие расходы

Как мы упоминали в начале этого урока, электричество определяется как поток электрического заряда. Заряд — это свойство материи, такое же как масса, объем или плотность. Это измеримо. Точно так же, как вы можете количественно определить, сколько у чего-то массы, вы можете измерить его заряд. Ключевой концепцией заряда является то, что он может быть двух типов: положительный (+) или отрицательный (-) .

Чтобы переместить заряд, нам нужно носителей заряда , и именно здесь наши знания об атомных частицах — в частности, об электронах и протонах — пригодятся. Электроны всегда несут отрицательный заряд, а протоны — положительно.Нейтроны (верные своему названию) нейтральны, у них нет заряда. И электроны, и протоны несут одинаковые заряда , только другого типа.

Модель атома лития (3 протона) с обозначенными зарядами.

Заряд электронов и протонов важен, потому что он дает нам возможность воздействовать на них силой. Электростатическая сила!

Электростатическая сила

Электростатическая сила (также называемая законом Кулона) — это сила, действующая между зарядами.В нем говорится, что заряды одного типа отталкиваются друг от друга, а заряды противоположных типов притягиваются друг к другу. Противоположности привлекают, а лайки отталкивают .

Сумма силы, действующей на два заряда, зависит от того, как далеко они находятся друг от друга. Чем ближе подходят два заряда, тем больше становится сила (сдвигающая или отталкивающая).

Благодаря электростатической силе электроны отталкивают другие электроны и притягиваются к протонам.Эта сила является частью «клея», удерживающего атомы вместе, но это также инструмент, который нам нужен, чтобы заставить электроны (и заряды) течь!

Поток начислений

Теперь у нас есть все инструменты, чтобы заставить заряды течь. Электронов в атомах могут действовать как наши носители заряда , потому что каждый электрон несет отрицательный заряд. Если мы можем освободить электрон от атома и заставить его двигаться, мы сможем создать электричество.

Рассмотрим атомную модель атома меди, одного из предпочтительных источников элементов для потока заряда.В сбалансированном состоянии медь имеет 29 протонов в ядре и такое же количество электронов, вращающихся вокруг нее. Электроны вращаются на разных расстояниях от ядра атома. Электроны, расположенные ближе к ядру, испытывают гораздо более сильное притяжение к центру, чем электроны на далеких орбитах. Крайние электроны атома называются валентными электронами , для их освобождения от атома требуется наименьшее количество силы.

Это диаграмма атома меди: 29 протонов в ядре, окруженные полосами вращающихся электронов.Электроны, расположенные ближе к ядру, трудно удалить, в то время как валентный электрон (внешнее кольцо) требует относительно небольшой энергии для выброса из атома.

Используя достаточную электростатическую силу, действующую на валентный электрон — либо толкая его другим отрицательным зарядом, либо притягивая его положительным зарядом — мы можем выбросить электрон с орбиты вокруг атома, создав свободный электрон.

Теперь рассмотрим медную проволоку: вещество, заполненное бесчисленными атомами меди. Поскольку наш свободный электрон плавает в пространстве между атомами, его тянут и толкают окружающие заряды в этом пространстве.В этом хаосе свободный электрон в конце концов находит новый атом, за который он цепляется; при этом отрицательный заряд этого электрона выбрасывает другой валентный электрон из атома. Теперь новый электрон дрейфует в свободном пространстве, пытаясь сделать то же самое. Этот цепной эффект может продолжаться и продолжаться, создавая поток электронов, называемый электрическим током .

Очень упрощенная модель зарядов, протекающих через атомы для создания тока.

Электропроводность

Некоторые элементарные типы атомов лучше других выделяют свои электроны.Чтобы получить наилучший поток электронов, мы хотим использовать атомы, которые не очень крепко держатся за свои валентные электроны. Электропроводность элемента измеряет, насколько сильно электрон связан с атомом.

Элементы с высокой проводимостью, которые имеют очень подвижные электроны, называются проводниками . Это типы материалов, которые мы хотим использовать для изготовления проводов и других компонентов, которые способствуют электронному потоку. Металлы, такие как медь, серебро и золото, обычно являются лучшим выбором в качестве хороших проводников.

Элементы с низкой проводимостью называются изоляторами . Изоляторы служат очень важной цели: они предотвращают поток электронов. Популярные изоляторы включают стекло, резину, пластик и воздух.

Статическое или текущее электричество

Прежде чем мы продолжим, давайте обсудим две формы, которые может принимать электричество: статическое или текущее. В работе с электроникой гораздо чаще встречается текущее электричество, но также важно понимать статическое электричество.

Статическое электричество

Статическое электричество возникает, когда на объектах, разделенных изолятором, накапливаются противоположные заряды. Статическое (как в «состоянии покоя») электричество существует до тех пор, пока две группы противоположных зарядов не найдут путь между собой, чтобы сбалансировать систему.

Когда заряды все же находят способ уравновешивания, возникает статический разряд . Притяжение зарядов становится настолько большим, что они могут проходить даже через лучшие изоляторы (воздух, стекло, пластик, резину и т. Д.).). Статические разряды могут быть вредными в зависимости от того, через какую среду проходят заряды и на какие поверхности переносятся заряды. Выравнивание зарядов через воздушный зазор может привести к видимому сотрясению, когда движущиеся электроны сталкиваются с электронами в воздухе, которые возбуждаются и выделяют энергию в виде света.

Запальные устройства с искровым разрядником используются для создания управляемого статического разряда. Противоположные заряды накапливаются на каждом из проводников, пока их притяжение не станет настолько сильным, что заряды могут течь по воздуху.

Одним из наиболее ярких примеров статического разряда является молния . Когда облачная система накапливает достаточно заряда относительно другой группы облаков или земли, заряды будут пытаться уравновеситься. Когда облако разряжается, огромное количество положительных (а иногда и отрицательных) зарядов проходит по воздуху от земли к облаку, вызывая видимый эффект, с которым мы все знакомы.

Статическое электричество также существует, когда мы трут воздушные шары о голову, чтобы волосы встали дыбом, или когда мы шаркаем по полу в пушистых тапочках и шокируем семейную кошку (конечно, случайно).В каждом случае трение от трения материалов разных типов переносит электроны. Объект, теряющий электроны, становится положительно заряженным, а объект, получающий электроны, становится отрицательно заряженным. Два объекта притягиваются друг к другу, пока не найдут способ уравновесить их.

Работая с электроникой, мы обычно не сталкиваемся со статическим электричеством. Когда мы это делаем, мы обычно пытаемся защитить наши чувствительные электронные компоненты от статического разряда.Профилактические меры против статического электричества включают ношение браслетов ESD (электростатический разряд) или добавление специальных компонентов в схемы для защиты от очень высоких скачков заряда.

Текущее электричество

Текущее электричество — это форма электричества, которая делает возможными все наши электронные устройства. Эта форма электричества существует, когда зарядов могут постоянно течь . В отличие от статического электричества, когда заряды собираются и остаются в покое, текущее электричество является динамическим, заряды всегда находятся в движении.Мы сосредоточимся на этой форме электричества на протяжении всего урока.

Цепи

Для протекания электрического тока требуется цепь: замкнутая, бесконечная петля из проводящего материала. Схема может быть такой же простой, как проводящий провод, соединенный встык, но полезные схемы обычно содержат смесь проводов и других компонентов, которые контролируют поток электричества. Единственное правило, когда дело доходит до изготовления цепей: в них не должно быть изоляционных промежутков .

Если у вас есть провод, полный атомов меди, и вы хотите вызвать поток электронов через него, все свободных электронов должны где-то течь в том же общем направлении. Медь — отличный проводник, идеальный для протекания зарядов. Если цепь из медного провода разорвана, заряды не могут проходить через воздух, что также предотвратит перемещение любого из зарядов к середине.

С другой стороны, если бы провод был соединен встык, у всех электронов был бы соседний атом, и все они могли бы течь в одном и том же общем направлении.


Теперь мы понимаем , как может течь электронов, но как мы вообще можем заставить их течь? Затем, когда электроны текут, как они производят энергию, необходимую для освещения лампочек или вращающихся двигателей? Для этого нам нужно понимать электрические поля.

Электрические поля

Мы знаем, как электроны проходят через материю, чтобы создать электричество. Это все, что касается электричества. Ну почти все.Теперь нам нужен источник, чтобы вызвать поток электронов. Чаще всего источником электронного потока является электрическое поле.

Что такое поле?

Поле — это инструмент, который мы используем для моделирования физических взаимодействий, которые не включают никаких наблюдаемых контактов . Поля нельзя увидеть, поскольку они не имеют физического внешнего вида, но эффект, который они оказывают, очень реален.

Мы все подсознательно знакомы с одной областью, в частности: гравитационным полем Земли, эффектом притяжения массивного тела другими телами.Гравитационное поле Земли можно смоделировать с помощью набора векторов, направленных в центр планеты; независимо от того, где вы находитесь на поверхности, вы почувствуете силу, толкающую вас к ней.

Сила или напряженность полей неодинакова во всех точках поля. Чем дальше вы находитесь от источника поля, тем меньшее влияние поле оказывает. Величина гравитационного поля Земли уменьшается по мере удаления от центра планеты.

Когда мы продолжим изучать электрические поля, вспомним, в частности, как работает гравитационное поле Земли, оба поля имеют много общего.Гравитационные поля действуют на объекты массы, а электрические поля действуют на объекты заряда.

Электрополя

Электрические поля (е-поля) — важный инструмент в понимании того, как электричество возникает и продолжает течь. Электрические поля описывают тянущую или толкающую силу в пространстве между зарядами . По сравнению с гравитационным полем Земли, электрические поля имеют одно существенное отличие: в то время как поле Земли обычно привлекает только другие объекты массы (поскольку все , поэтому значительно менее массивны), электрические поля отталкивают заряды так же часто, как и притягивают их.

Направление электрических полей всегда определяется как направление , положительный тестовый заряд переместился бы на , если бы он был сброшен в поле. Испытательный заряд должен быть бесконечно малым, чтобы его заряд не влиял на поле.

Мы можем начать с построения электрических полей для одиночных положительных и отрицательных зарядов. Если вы уроните положительный тестовый заряд рядом с отрицательным зарядом, тестовый заряд будет притягиваться к отрицательному заряду . Итак, для одиночного отрицательного заряда мы рисуем стрелки электрического поля , направленные внутрь во всех направлениях.Тот же самый тестовый заряд, падающий рядом с другим положительным зарядом , приведет к отталкиванию наружу, что означает, что мы рисуем стрелок, выходящих из положительного заряда.

Электрические поля одиночных зарядов. Отрицательный заряд имеет внутреннее электрическое поле, потому что он притягивает положительные заряды. Положительный заряд имеет внешнее электрическое поле, отталкиваясь, как заряды.

Группы электрических зарядов могут быть объединены для создания более полных электрических полей.

Равномерное электронное поле вверху направлено от положительных зарядов к отрицательным. Представьте себе крошечный положительный тестовый заряд, упавший в электронное поле; он должен следовать в направлении стрелок. Как мы видели, электричество обычно включает в себя поток электронов — отрицательных зарядов — которые текут против электрических полей.

Электрические поля дают нам толкающую силу, необходимую для индукции электрического тока. Электрическое поле в цепи похоже на электронный насос: большой источник отрицательных зарядов, который может толкать электроны, которые будут течь по цепи к положительному сгустку зарядов.

Электрический потенциал (энергия)

Когда мы используем электричество для питания наших цепей, устройств и устройств, мы действительно преобразуем энергию. Электронные схемы должны иметь возможность накапливать энергию и передавать ее другим формам, таким как тепло, свет или движение. Накопленная энергия цепи называется электрической потенциальной энергией.

Энергия? Потенциальная энергия?

Чтобы понять потенциальную энергию, нам нужно понять энергию в целом. Энергия определяется как способность объекта выполнять работы над другим объектом, что означает перемещение этого объекта на некоторое расстояние.Энергия присутствует в различных формах , некоторые из которых мы можем видеть (например, механическая), а другие — нет (например, химическая или электрическая). Независимо от того, в какой форме она находится, энергия существует в одном из двух состояний : кинетическом или потенциальном.

Объект имеет кинетической энергии , когда он движется. Количество кинетической энергии объекта зависит от его массы и скорости. Потенциальная энергия , с другой стороны, представляет собой накопленную энергию , когда объект находится в состоянии покоя. Он описывает, сколько работы может сделать объект, если он будет приведен в движение.Это энергия, которую мы обычно можем контролировать. Когда объект приводится в движение, его потенциальная энергия превращается в кинетическую.

Давайте вернемся к использованию гравитации в качестве примера. Шар для боулинга, неподвижно сидящий на вершине башни Халифа, имеет много потенциальной (накопленной) энергии. После падения мяч, притягиваемый гравитационным полем, ускоряется по направлению к земле. Когда мяч ускоряется, потенциальная энергия преобразуется в кинетическую (энергию движения). В конце концов вся энергия мяча превращается из потенциальной в кинетическую, а затем передается всему, в что он попадает.Когда мяч находится на земле, у него очень низкая потенциальная энергия.

Электрический потенциал энергии

Подобно тому, как масса в гравитационном поле имеет потенциальную энергию гравитации, заряды в электрическом поле имеют электрическую потенциальную энергию . Электрическая потенциальная энергия заряда описывает, сколько у него накопленной энергии, когда она приводится в движение электростатической силой, эта энергия может стать кинетической, и заряд может выполнять работу.

Подобно шару для боулинга, сидящему на вершине башни, положительный заряд в непосредственной близости от другого положительного заряда имеет высокую потенциальную энергию; оставленный свободным для движения, заряд будет отталкиваться от аналогичного заряда.Положительный тестовый заряд, помещенный рядом с отрицательным зарядом, будет иметь низкую потенциальную энергию, как и шар для боулинга на земле.

Чтобы привить чему-либо потенциальную энергию, мы должны выполнить работу , перемещая это на расстояние. В случае шара для боулинга работа заключается в том, чтобы поднять его на 163 этажа против поля силы тяжести. Точно так же необходимо проделать работу, чтобы подтолкнуть положительный заряд к стрелкам электрического поля (либо к другому положительному заряду, либо от отрицательного заряда).Чем дальше идет заряд, тем больше работы вам предстоит сделать. Точно так же, если вы попытаетесь отвести отрицательный заряд от положительного заряда — против электрического поля — вам придется работать.

Для любого заряда, находящегося в электрическом поле, его электрическая потенциальная энергия зависит от типа (положительный или отрицательный), количества заряда и его положения в поле. Электрическая потенциальная энергия измеряется в джоулях ( Дж ).

Электрический потенциал

Электрический потенциал основан на электрическом потенциале energy , чтобы помочь определить, сколько энергии хранится в электрических полях .Это еще одна концепция, которая помогает нам моделировать поведение электрических полей. Электрический потенциал равен , а не , как электрическая потенциальная энергия!

В любой точке электрического поля электрический потенциал равен величине электрической потенциальной энергии, деленной на количество заряда в этой точке. Он убирает количество заряда из уравнения и оставляет нам представление о том, сколько потенциальной энергии могут обеспечить определенные области электрического поля. Электрический потенциал выражается в джоулях на кулон ( Дж / К ), который мы определяем как вольт (В).

В любом электрическом поле есть две точки электрического потенциала, которые представляют для нас значительный интерес. Есть точка с высоким потенциалом, где положительный заряд будет иметь максимально возможную потенциальную энергию, и есть точка с низким потенциалом, где заряд будет иметь минимально возможную потенциальную энергию.

Один из наиболее распространенных терминов, которые мы обсуждаем при оценке электричества, — это напряжение . Напряжение — это разность потенциалов между двумя точками электрического поля.Напряжение дает нам представление о том, сколько толкающей силы имеет электрическое поле.


Имея в своем арсенале потенциальную и потенциальную энергию, у нас есть все ингредиенты, необходимые для производства электричества. Давай сделаем это!

Электричество в действии!

Изучив физику элементарных частиц, теорию поля и потенциальную энергию, мы теперь знаем достаточно, чтобы заставить электричество течь. Сделаем схему!

Сначала рассмотрим ингредиенты, необходимые для производства электричества:

  • Электричество определяется как поток заряда .Обычно наши заряды переносятся свободно текущими электронами.
  • отрицательно заряженных электронов слабо удерживаются атомами проводящих материалов. Небольшим толчком мы можем освободить электроны от атомов и заставить их течь в общем однородном направлении.
  • Замкнутая цепь из проводящего материала обеспечивает путь для непрерывного потока электронов.
  • Заряды приводятся в движение электрическим полем . Нам нужен источник электрического потенциала (напряжения), который толкает электроны из точки с низкой потенциальной энергией в точку с более высокой потенциальной энергией.

Короткое замыкание

Батареи — распространенные источники энергии, преобразующие химическую энергию в электрическую. У них есть две клеммы, которые подключаются к остальной цепи. На одном выводе имеется избыток отрицательных зарядов, а на другом все положительные заряды сливаются. Это разность электрических потенциалов, ожидающая начала действия!

Если мы подключим наш провод, полный проводящих атомов меди, к батарее, это электрическое поле будет влиять на отрицательно заряженные свободные электроны в атомах меди.Электроны в меди, одновременно подталкиваемые отрицательной клеммой и притягиваемой положительной клеммой, будут перемещаться от атома к атому, создавая поток заряда, который мы называем электричеством.

После секунды протекания тока электроны фактически переместились на очень — доли сантиметра. Однако энергия, производимая текущим потоком, составляет огромных , особенно потому, что в этой цепи нет ничего, что могло бы замедлить поток или потреблять энергию.Подключить чистый проводник напрямую к источнику энергии — плохая идея . Энергия очень быстро перемещается по системе и превращается в тепле в проволоке, которое может быстро превратиться в плавящуюся проволоку или пожар.

Освещение лампочки

Вместо того, чтобы тратить всю эту энергию, не говоря уже о разрушении батареи и провода, давайте построим схему, которая сделает что-нибудь полезное! Обычно электрическая цепь переводит электрическую энергию в другую форму — свет, тепло, движение и т. Д.Если мы подключим лампочку к батарее с помощью проводов между ними, мы получим простую функциональную схему.

Схема: батарея (слева) подключается к лампочке (справа), цепь замыкается, когда замыкается выключатель (вверху). Когда цепь замкнута, электроны могут течь, проталкиваясь от отрицательной клеммы батареи через лампочку к положительной клемме.

В то время как электроны движутся со скоростью улитки, электрическое поле почти мгновенно влияет на всю цепь (мы говорим о скорости света быстро).Электроны по всей цепи, будь то с самым низким потенциалом, с самым высоким потенциалом или непосредственно рядом с лампочкой, находятся под влиянием электрического поля. Когда переключатель замыкается и электроны подвергаются воздействию электрического поля, все электроны в цепи начинают течь, по-видимому, в одно и то же время. Ближайшие к лампочке заряды сделают один шаг по цепи и начнут преобразовывать энергию из электрической в ​​световую (или тепловую).

Ресурсы и дальнейшее развитие

В этом уроке мы раскрыли лишь крохотную часть пресловутого айсберга.Остается еще масса нераскрытых концепций. Отсюда мы рекомендуем вам перейти сразу к нашему руководству по напряжению, току, сопротивлению и закону Ома. Теперь, когда вы знаете все об электрических полях (напряжении) и текущих электронах (токе), вы на правильном пути к пониманию закона, регулирующего их взаимодействие.

Для получения дополнительной информации и визуализаций, объясняющих электричество, посетите этот сайт.

Вот еще несколько концептуальных руководств для начинающих, которые мы рекомендуем прочитать:

Или, может быть, вы хотите узнать что-нибудь практическое? В этом случае ознакомьтесь с некоторыми из этих руководств по навыкам базового уровня:

Электричество | Электрические токи и цепи | Как производится и транспортируется электроэнергия

Все состоит из атомов.В каждой из них есть по три частицы : протоны, нейтроны и электроны. Электроны вращаются вокруг центра атома . У них отрицательный заряд . Протоны, находящиеся в центре атомов, имеют положительный заряд .

Обычно в атоме столько же протонов, сколько электронов. Он стабильный или сбалансированный . Углерод , например, имеет шесть протонов и шесть электронов.

Ученые могут заставить электроны перемещаться от одного атома к другому.Атом, который теряет электроны, заряжен положительно, атом, который получает больше электронов, заряжен отрицательно.

Электричество создается, когда электроны перемещаются между атомами. Положительные атомы ищут свободные отрицательные электроны, и притягивают их , так что они могут быть сбалансированы .

Проводники и изоляторы

Электричество проходит через одни объекты лучше, чем через другие.Проводники — это материалы, через которые электроны могут перемещаться более свободно. Медь , алюминий, сталь и другие металлы являются хорошими проводниками. Как и жидкостей, вроде соленой воды.

Изоляторы — это материалы, в которых электроны не могут двигаться. Они остаются на месте . Стекло, резина, пластик или сухое дерево — хорошие изоляторы. Они важны для вашей безопасности , потому что без них вы не смогли бы прикоснуться к горячей кастрюле или вилке телевизора.

Электрический ток

Когда электроны движутся по проводнику, создается электрический ток . Ток, который всегда течет в одном направлении, называется постоянным током (DC). Например, аккумулятор производит постоянный ток. Ток, который течет назад и вперед , называется переменным током (AC).

Электрические схемы

Электроны не могут свободно прыгать по воздуху к положительно заряженному атому.Им нужен контур , чтобы двигаться. Когда источник энергии , такой как батарея, подключен к лампочке , электроны могут перемещаться от батареи к лампочке и обратно. Мы называем это электрической схемой .

Иногда в электрическом устройстве есть много цепей, которые заставляют его работать. Телевизор или компьютер могут состоять из миллионов частей, которые соединены друг с другом различными способами.

Вы можете остановить прохождение тока , вставив в цепь переключатель .Вы можете разомкнуть цепь и остановить движение электронов.

Кусок металла или проволока также может использоваться для выработки тепла. Когда электрический ток проходит через такой металл , он может быть замедлен сопротивлением . Это вызывает трение и нагревает проволоку. Поэтому можно поджарить хлеб в тостере или высушить волосы теплым воздухом из фена.

В некоторых случаях провода могут стать слишком горячими, если через них проходит слишком много электронов.Специальные выключатели , называемые предохранителями , защищают проводку во многих зданиях.

Виды электроэнергии

Статическое электричество
  • происходит, когда происходит накопление электронов
  • он остается на одном месте, а затем перескакивает на объект
  • не требуется замкнутый контур для подачи
  • — это вид электричества, который вы ощущаете, когда натираете пуловером какой-либо предмет или когда тащите ног по ковру.
  • молния представляет собой форму статического электричества

Текущая электроэнергия
  • происходит, когда электроны свободно перемещаются между объектами
  • ему нужен проводник — нечто, в чем он может течь, например, провод.
  • текущая электроэнергия требует замкнутой цепи
  • это во многих электрических приборах , в наших домах — тостеры, телевизоры, компьютеры.
  • батарея — это форма электрического тока

Как работают аккумуляторы

Аккумулятор содержит жидких или пасты , которые помогают ему производить электрических зарядов . Плоский конец батареи имеет отрицательный заряд , а конец с выступом имеет положительный заряд.

Когда вы соединяете провод между обоими концами, течет ток . Когда ток проходит через лампочку , электрическая энергия преобразуется в свет.

Химические вещества в батарее поддерживают концов заряженными и батарею в рабочем состоянии. Со временем химическое вещество становится все слабее и слабее, и батарея не может производить больше энергии.

Как производится электричество

Генераторы используются для преобразования механической энергии в электрическую. Магнит вращает внутри катушки из проволоки . Когда магнит движется, в проводе возникает электрический ток.

На большинстве электростанций используются турбины для вращения генератора. Вода нагревается до пара , который толкает лопаток турбины. Для нагрева воды можно использовать газ, нефть или уголь. Некоторые страны строят электростанции на реках, где движущаяся вода толкает лопасти турбины .

Как измеряется электричество

Электричество — это , измеренное в ваттах, названо в честь Джеймса Ватта, который изобрел паровой двигатель .Для получения , равного на одну лошадиную силу, потребуется около 750 Вт.

Киловатт-час — это энергия 1000 ватт, которые работают в течение одного часа. Если, например, вы используете 100-ваттную лампочку в течение 10 часов, вы израсходовали 1 киловатт электроэнергии.

Как транспортируется электроэнергия

Электроэнергия, произведенная генератором, проходит по кабелям к трансформатору , который изменяет напряжение электричества. Линии электропередач передают электроэнергию высокого напряжения на очень большие расстояния.Когда он достигает вашего родного города, другой трансформатор понижает напряжение, а более мелкие линии электропередач доставляют его в дома, офисы и фабрики.

Электробезопасность

Важно понимать, почему и как можно защитить себя от поражения электрическим током .

Удар электрическим током происходит , когда через ваше тело проходит электрический ток .Это может привести к сердечной недостаточности и может повредить другие части вашего тела. Он также может обжечь кожу и другие ткани тела .

Очень слабый электрический объект, такой как батарея, не может причинить вам никакого вреда, но внутри дома у вас есть устройств и машины, которые используют 220 вольт.

Большинство машин в вашем доме имеют функций безопасности для вашей защиты. Что-то идет не так, специальный провод выводит электричество на землю, где ничего не может случиться.

Также существует опасность поражения электрическим током за пределами вашего дома. Деревья, которые касаются линий электропередачи , могут быть опасными. У молнии более чем достаточно электричества, чтобы убить человека. Если вы попали в грозу, держитесь подальше от открытых полей и возвышенностей. Одно из самых безопасных мест — это ваша машина, потому что молния ударит только по внешнему металлу машины.

Загружаемый текст и рабочие листы в формате PDF

Связанные темы

слов

  • прибор = электрическая машина, которую вы обычно используете в доме, например плита или стиральная машина
  • привлекать = притягивать к объекту
  • вперед и назад = идти в одном направлении, а затем в другом
  • сбалансированный = то же, что и стабильный
  • лезвие = плоская часть объекта, которая отталкивается от воды
  • наращивание = увеличение
  • выступ = небольшая площадь, которая выше остальных
  • углерод = химический материал, содержащийся в угле или бензине.Он в чистом виде в бриллиантах
  • заряд = электричество, которое подводится к объекту, например, к батарее, чтобы дать ему энергию
  • цепь = полный круг, по которому проходит электрический ток
  • катушка = провод, который огибает объект по кругу и излучает свет или тепло, когда электричество проходит через
  • подключиться = присоединиться
  • преобразовать = изменить
  • медь = мягкий красно-коричневый металл, который легко пропускает электричество и тепло
  • шнур = кабель
  • ток = поток электричества через кусок металла
  • ток = поток электричества через кусок металла
  • уменьшить = уменьшить
  • устройство = станок или инструмент, который делает что-то особенное
  • распределительные линии = провода или кабели, по которым передается электричество
  • перетаскивание = тяга
  • равно = то же, что
  • поток = переместить
  • трение = когда вы трете что-то о что-то другое, оно нагревается
  • предохранитель = короткий кусок провода внутри машины, который отключает электричество при слишком большой мощности
  • сердечная недостаточность = когда ваше сердце перестает биться
  • высокое напряжение = высокая электрическая сила
  • на месте = где они
  • увеличить = стать больше
  • травма = если вы поранились
  • оставить = остаться, остаться
  • лампочка = стеклянный объект внутри лампы.Дает свет
  • молния = мощная вспышка света в небе во время грозы
  • жидкость = жидкость, водянистый объект
  • измерено = единица чего-то
  • происходит = происходит
  • кастрюля = круглый металлический контейнер, который вы используете для готовки
  • частица = очень маленькая часть атома
  • пройти через = пройти через
  • паста = липкий материал, похожий на клей
  • вилка = для подключения электрического объекта к электросети дома
  • линия электропередачи = большой провод, по которому электричество проходит над или под землей
  • сопротивление = материал, препятствующий прохождению через него электричества
  • повернуть = обойти
  • безопасность = безопасность, защита
  • элемент безопасности = элементы в машинах или электрических объектах, которые защищают вас от травм
  • ученый = человек, имеющий научную подготовку
  • розетка = место в стене, где вы можете подключить электрический объект к основному источнику электроэнергии
  • источник = место, где вы что-то получаете от
  • spin = что-то быстро развернуть
  • пар = белый газ, который выделяется при нагревании воды
  • паровой двигатель = двигатель или мотор, работающий на пару
  • сталь = прочный металл, который можно формовать
  • переключатель = объект, который запускает или останавливает поток электричества при нажатии на него
  • ткань = материал, из которого формируются клетки животных или растений
  • преобразование = изменение
  • трансформатор = машина, которая переключает электричество с одного напряжения на другое
  • турбина = двигатель, который вращает специальное колесо вокруг
  • напряжение = электрическая сила, измеряемая в вольтах
  • провод = очень тонкий кусок металла, через который может проходить электричество
  • электропроводка = сеть проводов в доме или доме

31 способ экономии энергии в вашем доме

Небольшие ежедневные изменения в энергопотреблении внести несложно.Они не дорогие, но могут реально сэкономить энергию. Вот 31 совет — по одному на каждый день месяца, а также несколько бонусных предложений — о способах экономии энергии дома в повседневной жизни с минимальными усилиями. Некоторые из этих идей очевидны, некоторые — нет, но все они представляют собой простые способы экономии энергии, которые полезны для окружающей среды и потенциально могут помочь в оплате вашего ежемесячного счета за электроэнергию.

Выберите раздел ниже, чтобы узнать о способах экономии энергии в вашем доме

  1. Вспомните, как вы используете бытовую технику
  2. Получите помощь матери-природы для экономии энергии дома
  3. Адаптируйте свои ежедневные энергетические привычки
  4. Измените настройки устройства и бытовой техники для экономии энергии дома
  5. Рассмотрите возможность использования энергосберегающей альтернативы
  6. Делайте небольшие вложения для достижения долгосрочных результатов
  7. Перейти на энергоэффективные приборы и электронику
  8. Предотвратите протечки в вашем доме
  9. Уход за домом и бытовой техникой для экономии энергии
  10. Не тратьте энергию, когда вы вдали от дома

Распечатайте этот плакат, чтобы сохранить мотивацию и начать экономить энергию сегодня же!

Ключом к ежедневной экономии энергии дома является постоянная осведомленность и мотивация.Распечатайте этот плакат и повесьте его там, где вы и ваша семья его увидите. Если у вас есть маленькие дети, они могут раскрасить это как интересный способ привлечь их и вдохновить их внести свой вклад.

Простые стратегии экономии энергии в вашем доме

Самый простой способ сэкономить энергию дома — это внести небольшие изменения в привычки и выполнять некоторые базовые регулярные работы. Вот полный список стратегий энергосбережения, которые можно использовать в повседневной жизни — летом, зимой и круглый год.

Переосмыслите, как вы используете бытовую технику

В большинстве домов бытовая техника является основным двигателем использования энергии.Эти простые настройки — отличный способ сэкономить энергию:

Совет по энергосбережению 1: Мойте только полную загрузку посуды и одежду.


Ваша стиральная и посудомоечная машины предназначены для наиболее эффективной работы при полной загрузке. Более того, если вы запускаете их только когда они заполнены, вы запускаете их реже, что действительно сокращает потребление энергии.

Совет по энергосбережению 2: Стирайте одежду в холодной воде.


Стиральные машины и средства для стирки предназначены для эффективной работы с холодной водой.Если вы моетесь горячей водой только тогда, когда вам нужно дезинфицировать, вы можете сэкономить 60 долларов или больше в год.

Совет по энергосбережению 3: Следите за чистотой своих приборов.


Каждый прибор работает более эффективно, если фильтры очищены от пыли, а уплотнения дверцы — без мусора.

Совет по энергосбережению 4: Во время готовки держите дверцу духовки закрытой.


Температура в духовке может опускаться на 25 градусов и более каждый раз, когда вы открываете дверцу духовки.

Совет по энергосбережению 5: Не стойте перед открытой дверцей холодильника.


Чем дольше открыта дверца холодильника, тем труднее прибору поддерживать прохладную температуру. Решите, что вы хотите, заранее, чтобы свести к минимуму время, в течение которого дверца холодильника или морозильной камеры открыта.

БОНУСНЫЙ СОВЕТ: Автоматизируйте свои устройства с помощью умных помощников.


Умные помощники позволяют управлять вашей техникой даже вдали от дома. С помощью программ умного помощника вы можете управлять своими приборами и дистанционно выключать их, чтобы сэкономить время и энергию.

Вернуться к началу

Получите помощь матери-природы для экономии энергии в домашних условиях

Иногда лучший способ сэкономить электроэнергию — это просто не использовать ее. Вот несколько советов по экономии энергии, которые позволят природе идти своим чередом:

Совет по энергосбережению 6: Сушка на воздухе.


Нет ничего лучше запаха простыней, полотенец и одежды, высушенных на свежем воздухе. Подумайте о том, чтобы сушить одежду на воздухе на старомодной веревке для белья или даже повесить ее в доме.Как вариант, используйте энергоэффективную сушилку.

Совет по энергосбережению 7: Сушите посуду на воздухе вместо использования цикла сушки в посудомоечной машине.


Выберите для своей посудомоечной машины функцию воздушной сушки. После цикла ополаскивания откройте ее, и ваша посуда высохнет без использования ни одного киловатта. Вы также сэкономите электроэнергию, если на вашей кухне будет прохладнее.

Совет по энергосбережению 8: Откройте шторы, повернув их лицом к солнцу.


Даже самые эффективные окна пропускают энергию.Солнечный свет, падающий весь день, действительно может согреть ваш интерьер. На ночь закройте шторы и жалюзи, чтобы создать еще один слой утеплителя. Днем позволяйте свету светить в холодную погоду и блокируйте его, когда жарко.

БОНУСНЫЙ СОВЕТ: Добавьте больше естественного света с помощью зеркал и ярких стен.


Максимально используйте естественный свет с помощью ярких декоративных элементов, стратегически расположенных зеркал и размещения рабочих мест возле окон, чтобы вам не приходилось держать свет включенным весь день.

Вернуться к началу

Адаптируйте свои ежедневные энергетические привычки

Изменение ваших привычек сильно повлияет на ваше энергопотребление. Когда вы думаете о способах экономии энергии дома, большое значение имеет размышление о мелочах.

Совет по энергосбережению 9: Выключите лампы накаливания.


Традиционные лампочки тратят 95% энергии, которую они используют, выделяя тепло, и только 5% расходуется на свет. Отключите их или используйте экономно.Оставлять их на долгое время очень расточительно.

Совет по энергосбережению 10: Принимайте более короткие и прохладные души.


Сократите потребление энергии водонагревателем, приняв более короткие и прохладные души. Учтите, что для обычного душа требуется 2,5 галлона горячей воды в минуту. Сокращение ежедневного приема душа на четыре минуты сэкономит 3650 галлонов в год.

Совет по энергосбережению 11: Выключайте электронику и приборы, когда они не используются.


Не выключайте компьютер во время простоя, чтобы расходовать электроэнергию и сокращать срок службы машины.То же самое и с телевизорами, принтерами и другой электроникой. Если вы видите, что индикатор горит, значит, вы сжигаете энергию без необходимости.

БОНУСНЫЙ СОВЕТ: Отключайте зарядные устройства аккумуляторов, когда они не используются.


Многие устройства, включая зарядные устройства, непрерывно потребляют электроэнергию, даже когда они не используются. Сократите потребление энергии так называемым вампиром и сэкономьте кучу денег.

Вернуться к началу

Отрегулируйте настройки устройства и бытовой техники для экономии энергии дома

Если вы готовы проявить немного гибкости с термостатом и знать, когда и как вы расходуете энергию, вы можете легко сократить количество отходов.

Совет по энергосбережению 12: Отрегулируйте термостат в соответствии с временем дня.


Снижайте потребление энергии дома, регулируя термостат днем ​​и ночью, а также когда вы в отъезде или на работе.

Совет по энергосбережению 13: Понизьте термостат на водонагревателе до 120 F.


Вода для отопления является третьим по величине потреблением энергии в большинстве домов. Понижение температуры термостата на несколько градусов снижает потребление без снижения комфорта.

Совет по энергосбережению 14: Переведите компьютер в спящий режим или режим гибернации.

Вы потребляете гораздо меньше энергии, чем оставив компьютер включенным с экранной заставкой.

Совет по энергосбережению 15: Не используйте в посудомоечной машине функцию ополаскивания и выдержки.


В этом режиме используется на 3–7 галлонов воды больше, чем при обычной стирке.

БОНУСНЫЙ СОВЕТ: Медленно повышайте температуру в помещении, чтобы ваш счет был ниже.


Если у вас есть тепловой насос, при быстром повышении его температуры активируется нагревательная полоса, которая потребляет больше энергии.

Вернуться к началу

Рассмотрите возможность использования энергосберегающей альтернативы

Выполняйте работу по дому, не подключая что-либо к электросети. Представьте себе метлу, а не пылесос. А если вы все-таки пользуетесь каким-либо бытовым прибором, выбор подходящего размера для устройства меньшего размера поможет. Ручной мини-пылесос потребляет меньше энергии, чем полноразмерный вертикальный пылесос.

Совет по энергосбережению 16: Используйте микроволновую печь или тостер вместо обычной.


Вы будете удивлены, как много вы можете готовить с помощью этих энергосберегающих приборов, помимо разогрева остатков пищи.

Совет по энергосбережению 17: Используйте посудомоечную машину вместо мытья вручную.


Электрическая посудомоечная машина не просто экономит силы; это экономит энергию, используя на 5000 галлонов горячей воды меньше в год по сравнению с ручной стиркой.

БОНУСНЫЙ СОВЕТ: Используйте электрический чайник для кипячения воды вместо микроволновой печи.


Он фокусирует энергию на эффективном нагреве, более быстром кипячении воды с меньшим количеством электроэнергии.

Вернуться к началу

Делайте небольшие вложения для достижения долгосрочных результатов

Вот несколько вещей, которые вы можете купить, чтобы повысить энергоэффективность ваших текущих приборов.Они не стоят больших денег и не требуют квалифицированной установки, что позволяет легко экономить энергию дома.

Совет по энергосбережению 18: Подключите бытовую электронику к удлинителям.


Отключайте удлинители, когда оборудование не используется. Вы предотвратите потребление энергии этими устройствами в простое с помощью одного удобного переключателя.

Совет по энергосбережению 19: Установите насадки для душа с низким расходом.


Душевые лейки, обеспечивающие хороший напор воды с меньшим расходом галлонов в минуту (менее 2.5 галлонов в минуту лучше всего) сократит потребление воды и энергии.

Совет по энергосбережению 20: Добавьте аэраторы в смесители.


Выберите аэраторы со скоростью потока не более 1,0 галлона в минуту для максимальной экономии.

БОНУСНЫЙ СОВЕТ: Добавьте изолирующее одеяло к более старым водонагревателям.


Они могут снизить потери тепла в режиме ожидания на 25–45% и сэкономить около 4–9% затрат на нагрев воды.

Вернуться к началу

Перейти на энергоэффективную технику и электронику

Современные приборы намного эффективнее, чем они были даже 10 лет назад.Будь то ваша кухня, прачечная или офис, опции ENERGY STAR® позволяют легко сравнить и найти то, что будет работать лучше всего и потреблять меньше электроэнергии.

Совет по энергосбережению 21: Используйте CFL и светодиодные лампы, соответствующие требованиям ENERGY STAR.


Светодиоды и КЛЛ потребляют меньше энергии, чем традиционные лампы накаливания, и служат дольше.

Совет по энергосбережению 22: Замените старые бытовые приборы энергосберегающими моделями.


От кондиционеров до кофеварок — вы найдете множество способов сэкономить энергию и деньги, купив новые продукты ENERGY STAR®.

Совет по энергосбережению 23: Используйте энергоэффективные развлечения и электронику для домашнего офиса.


Компьютеры, телевизоры, игровые системы и принтеры также предъявляют высокие требования к энергопотреблению в домашних условиях. Они также имеют рейтинг ENERGY STAR®, чтобы помочь вам сделать правильный выбор.

Вернуться к началу

Предотвратите протечки в вашем доме

Недостаточно покупать энергоэффективные товары и бережно ими пользоваться. Вы все равно можете тратить энергию впустую, если ваш дом плохо изолирован.Вот общие проблемы в большинстве домов:

Совет по энергосбережению 24: Изолируйте каналы отопления.


Около 20-30% теплого или прохладного воздуха в вашем доме теряется из-за негерметичных воздуховодов.

Совет по энергосбережению 25: Закройте утечки воздуха.


Герметизация утечек воздуха вокруг дверей, окон и щелей, через которые поступают газ, вода и электричество, может сэкономить от 5% до 30% используемой энергии, согласно Energy.gov.

Совет по энергосбережению 26: Изолируйте трубы с горячей водой.


Поддержание горячей воды при перемещении по трубам путем добавления изоляции может повысить ее температуру в точке использования на 2–4 градуса по Фаренгейту. Вы можете выключить нагреватель горячей воды, не жертвуя комфортом.

Вернуться к началу

Уход за домом и бытовой техникой для экономии энергии

Чистая техника и чистый дом позволят всему работать с оптимальной энергоэффективностью. Чем меньше пыли в воздухе, тем лучше для здоровья, а меньше мусора в ваших системах означает, что они работают бесперебойно и потребляют меньше электроэнергии.

Совет по энергосбережению 27: Очистите воздуховоды.


В обычном доме вы можете сэкономить 25-40% энергии, потребляемой вашими системами отопления, вентиляции и кондиционирования воздуха, регулярно очищая воздуховоды.

Совет по энергосбережению 28: Очистите / замените фильтры в печи.


EnergyStar.gov рекомендует заменять воздушные фильтры каждые три месяца. Грязный фильтр замедляет воздушный поток и усложняет работу системы.

Совет по энергосбережению 29: Регулярно очищайте фильтр от ворса осушителя, чтобы сушильная машина работала эффективно.


Очистить фильтр недостаточно. Используйте длинную насадку пылесоса для очистки вентиляционной трубки.

Вернуться к началу

Не тратьте энергию, когда вы находитесь вдали от дома

Когда вы не живете в своем доме в течение длительного времени, вы действительно можете сэкономить электроэнергию, настроив свои системы и отключив все, кроме критически важных устройств. Ознакомьтесь с этими советами по энергосбережению, когда вы находитесь вдали от дома:

Совет по энергосбережению 30: Выключите водонагреватель, если вы планируете уйти из дома на несколько дней.


Большинство моделей быстро нагревают воду по возвращении домой.

Совет по энергосбережению 31: Установите таймер для водонагревателя.


Чтобы выключить водонагреватель, не нужно ехать за город. Таймеры могут выключить его после утреннего душа и снова включить перед тем, как вы вернетесь домой, сэкономив на работе весь день.

БОНУСНЫЙ СОВЕТ: Выключайте бытовую технику из любого места с помощью умных розеток.

Интеллектуальные розетки

позволяют удаленно управлять приборами, освещением и системами отопления, вентиляции и кондиционирования воздуха в вашем доме, отключая их, когда вы выходите, и снова включаете, когда вы возвращаетесь.

В начало

Если вам интересно, почему так важно экономить энергию дома, причин для этого много. Во-первых, снижение энергопотребления лучше для окружающей среды. Вы сохраните воздух в чистоте и сэкономите ресурсы. Энергосбережение также экономично — экономия энергии экономит деньги.

Обучение ваших детей способам экономии энергии в домашних условиях делает их ответственными в раннем возрасте и формирует у них привычки к ответственности на всю жизнь. Несколько простых изменений могут сделать мир более счастливым и здоровым для будущих поколений.

SONOFF MINIR2 — Двусторонний умный переключатель DIY для дистанционного и ручного управления освещением

Детали

Обзор

SONOFF MINIR2 Описание:

MINIR2, как усиленный двусторонний интеллектуальный переключатель MINI DIY, был переработан, чтобы поднять безопасность и производительность до оптимального уровня. В старой версии MINI есть внешняя антенна с сильным электричеством, но антенна MINIR2 полностью скрыта внутри, что гарантирует вам спокойствие при использовании ее для управления своими устройствами.Кроме того, интерфейсы S1 и S2 окрашены в серый цвет, который отличается от других интерфейсов ввода и вывода, чтобы еще раз напомнить вам не подключать сильный ток к обоим интерфейсам. Испытания на импульсные перенапряжения 2 кВ соответствуют стандарту испытаний на импульсные перенапряжения 1 кВ, который требуется для сертификации CE, и прошли сертификацию ANATEL, поэтому MINIR2 обеспечивает достаточную безопасность для безопасного использования. Маленький и компактный интеллектуальный выключатель используется для различных типов распределительных коробок, даже для самых маленьких распределительных коробок стандарта ЕС.Удобно автоматизировать свою бытовую технику в приложении eWeLink с помощью смартфона или голосовой команды. Поддержка 3 режимов запуска: импульсный (работает с кнопочными переключателями), краевой режим (работает с переключателями SPDT) и следующий режим (работает с переключателями с отметками «ON» и «OFF» и датчиками с выходом с сухим контактом). Он поддерживает режим DIY (разработанный для разработчиков), который позволяет пользователям интегрировать MINIR2 во всемирную стороннюю систему управления умным домом с открытым исходным кодом для управления локальной сетью без облачных сервисов, таких как Home Assistant, openHAB, ioBroker.и т. д. Документ протокола и код инструмента DIY Mode (обновление) можно найти по адресу http://developers.sonoff.tech/sonoff-diy-mode-api-protocol.html

.

Спецификация SONOFF MINIR2:

  • Вход: 100-240 В переменного тока, 50/60 Гц, 10 А макс .;
  • Выход: 100-240 В переменного тока, 50/60 Гц, 10 А макс .;
  • Wi-Fi: IEEE 802.11 b / g / n 2,4 ГГц;
  • Материал: ПК V0;
  • Размеры: 42,6X42,6X20 мм;

Центр загрузки:

Для получения технической поддержки перейдите на форум умного дома Itead

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *