Тепловой насос как отопительная система дома
Тепловой насос (ТН) – это устройство, которое осуществляет перенос, трансформацию и преобразование тепловой энергии. По принципу работы он схож с известными всем приборами и оборудованием, такими как холодильник или кондиционер. В основе функционирования любого ТН лежит обратный цикл Карно, названного в честь известнейшего французского физика и математика Сиди Карно.
Принцип работы теплового насоса
Изучим более подробно физику процессов работы данного оборудования. Тепловой насос состоит из четырех основных элементов:
- Компрессор
- Теплообменник (конденсатор)
- Теплообменник (испаритель)
- Соединительная арматура и элементы автоматики.
Компрессор необходим для сжатия и перемещения хладагента по системе. При сжимании фреона его температура и давление резко повышается (развивается давление до 40 бар, температура до 140 С), и в форме газа с высокой степенью сжатия
Далее хладагент в жидком состоянии
Фактически получается, что тепловая машина сама не производит выработку тепла, а является устройством по перемещению, модифицированию и видоизменению энергии от окружающей среды в помещение. Однако для этого процесса необходима электроэнергия, основным потребителем которой выступает компрессорный агрегат. Соотношение полученной тепловой мощности к затраченной электрической называется коэффициентом преобразования (СОР). Он меняется в зависимости от типа ТН, его производителя, прочих факторов и варьируется в пределах от 2 до 6.
В настоящее время в качестве хладагента используются озонобезопасные фреоны различного типа (R410A, R407C), которые наносят минимальный ущерб окружающей среде.
В современных тепловых машинах используются компрессоры спирального типа, которые не требуют обслуживания, в них практически отсутствует трение, и они могут безостановочно проработать 30-40 лет. Это обеспечивает долгий срок службы всего агрегата. Так, например, у немецкой фирмы Stiebel Eltron есть ТН, проработавшие без капитального ремонта с начала 70-х годов прошлого века.
ООО «Нова Грос» — Официальный дистрибьютор продукции Stiebel Eltron
Связаться с нами Связаться с намиТипы тепловых насосов
В зависимости от сред используемых для отбора и перераспределения энергии, а так же конструктивных особенностей и способах применения, различают четыре основных типа ТН:
Тепловой насос «воздух — воздух»
В качестве низкопотенциального источника энергии, данный тип оборудования использует уличный воздух. Внешне он не отличается от обычной сплит — системы кондиционирования, однако имеет ряд функциональных особенностей, позволяющих ему работать при низких температурах (до -30 С) и «изымать» энергию из окружающей среды. Обогрев дома осуществляется непосредственно теплым воздухом, нагреваемом в конденсаторе теплонасоса.
- Невысокая стоимость
- Малое время монтажных работ и сравнительная простота установки
- Отсутствие возможности утечки теплоносителя
Недостатки:
- Значительное снижение СОР при низких температурах (до 1,2)
- Устойчивая работоспособность до -20 С
- Необходимость установки внутреннего блока в каждую комнату или организацию системы воздуховодов для подачи нагретого воздуха во все помещения.
- Невозможность получения горячей воды (ГВС)
На практике, такие системы применяются для сезонного жилья и не могут выступать в качестве основного источника обогрева.
Тепловой насос «воздух — вода»
По своему принципу действия схожи с предыдущим типом, однако они нагревают не напрямую воздух внутри помещения, а теплоноситель, который в свою очередь используется для отопления дома и приготовления ГВС.
Достоинства ТН «Воздух – вода»:
- не требует организация «внешнего контура» (бурения)
- надежность и долговечность
- высокие показатели эффективности (СОР) в осенний и весенний периоды
Недостатки ТН:
- Значительное снижение СОР при низких температурах (до 1,2)
- Необходимость оттаивания внешнего блока (реверсивный режим)
- Невозможность эксплуатации при температуре ниже -25 С — -30 С
Такие насосы в нашем климате все же не могут выступать единственным источником отопления. Поэтому они зачастую устанавливаются (по бивалентной схеме) в связке с дополнительным отопительным оборудованием (электрический, пеллетный, твердотопливный, дизельный котел, камин с водяной рубашкой). Также они подходят для реконструкции и автоматизации старых котельных, использующие традиционные виды топлива. Это позволяет большую часть года эксплуатировать систему в автоматическом режиме (нет необходимости загружать твердое топливо или заправлять дизельное топливо), используя только мощность ТН.
Тепловой насос «рассол – вода»
Один из самых распространенных на территории Республики Беларусь. Используя статистику нашей организации 90% установленных теплонасосов, являются геотермальными. В данном случае в качестве «внешнего контура» используется недра земли. За счет этого, данные ТН обладают самым главным преимуществом перед остальным типами теплонасосов – стабильный показатель эффективности работы (СОР) вне зависимости от времени года.
По устоявшейся терминологии, внешний контур называется геотермальным.
Существуют две основные разновидности геотермального контура:
- Горизонтальный
- Вертикальный
Остановимся на каждом из них подробнее.
Горизонтальный контур
Горизонтальный контур представляет собой систему полиэтиленовых труб, уложенных под верхним слоем грунта на глубине около 1,5 – 2 м, ниже уровня промерзания. Температура в этой зоне остается положительной (от +3 до +15 С) в течение всего календарного года, достигает максимума в октябре, а минимума в мае. Площадь, занимаемая коллектором зависит площади строения, степени его утепления, размеров остекления. Так, например, для двухэтажного жилого дома площадью 200 м2, имеющего неплохое утепление, отвечающее современным нормам, под геотермальное поле придется выделить порядка четырех соток земли (400 м2). Безусловно для более точной оценки диаметра используемым труб и занимаемой площади, необходим подробный теплотехнический расчет.
Вот как выглядит монтаж горизонтального коллектора на одном из наших объектов в г. Дзержинск (Республика Беларусь):
Достоинства горизонтального коллектора:
- Более низкая стоимость по сравнению с геотермальными скважинами
- Возможность проведения работ по его устройству совместно с прокладкой других коммуникаций (водопровод, канализация)
Недостатки горизонтального коллектора:
- Большая занимаемая площадь (не ней запрещается возводить капитальные строения, асфальтировать, укладывать тротуарную плитку, необходимо обеспечить естественный доступ света и осадков)
- Отсутствие возможности обустройства при готовом ландшафтном дизайне участка
- Меньшая стабильность по сравнению с вертикальным коллектором.
Обустройство такого типа коллектора обычно осуществляется двумя способами. В первом случае на всей площади укладки снимается верхний слой грунта, толщиной 1,5-2м, выполняется раскладка труб теплообменника с заданным шагом (от 0,6 до 1,5м) и производиться обратная засыпка. Для выполнения таких работ подходит мощная техника, такая как фронтальный погрузчик, бульдозер, экскаваторы с большим вылетом стрелы и объемом ковша.
Во втором случае укладка петель грунтового контура производиться поэтапно в подготовленные траншеи, шириной от 0,6м до 1 м. Для этого подходят небольшие экскаваторы и экскаваторы — погрузчики.
Вертикальный контур
Вертикальный коллектор представляет собой скважины глубиной от 50 до 200 м и более, в которые опущены специальные устройства – геотермальные зонды. Температура в этой зоне в течение многих лет и десятилетий остается постоянной и растет с увеличением глубины. Повышение происходит в среднем на 2-5 С на каждые 100 м. Величина это характеризующая называется температурным градиентом.
Процесс монтажа вертикального коллектора на нашем объекте в п. Крыжовка, под Минском:
Изучая карты распределения температур на различных глубинах на территории РБ и города Минска в частности, можно заметить, что температура меняется от области к области, и может существенно отличаться в зависимости от местоположения. Так, например, на глубине 100 м в районе г. Светлогорск она может достигать +13 С, а в некоторых районах Витебской области на той же самой глубине не превышает +8,5 С.
Безусловно при расчете глубины бурения и проектирования размера, диаметра и прочих характеристик геотермальных зондов, необходимо учитывать этот фактор. Помимо этого, необходимо учитывать геологический состав проходимых пород. Только опираясь на эти данные можно правильно запроектировать геотермальный контур.
Как показывает практика и статистика нашей организации 99% проблем при эксплуатации ТН связано с функционированием внешнего контура, при чем эта проблема проявляется не сразу после ввода в эксплуатацию оборудования. И этому есть объяснение, так при неправильном расчете геоконтура (например, на территории Витебской области, где как мы помним геотермальный градиент является одним из самых низких в Республике), его первоначальная работа не вызывает нареканий, однако с течением времени толща земли «выхолаживается», нарушается термодинамический баланс и начинаются неприятности, при чем проблема может возникнуть только на второй — третий отопительный сезон. Менее проблемно выглядит переразмеренный контур, но заказчик вынужден оплачивать не нужные метры бурения из-за некомпетентности подрядчика, что неумолимо ведет к удорожанию всего проекта.
Особенно критичным к изучению недр земли нужно относиться при строительстве больших коммерческих объектов, где количество скважин исчисляется десятками, и сэкономленные (либо растраченные) средства на их устройство, могут быть очень значительными.
Тепловой насос «вода — вода»
Одной из разновидностей геотермального источника тепла могут быть подземные воды. Они имеют постоянную температуру (от +7 С и выше), и в значительном количестве залегают на различных глубинах на территории РБ. По технологии, подземные воды поднимаются центробежным насосом из скважины и поступают на станцию тепломассообмена, где передают энергию антифризу нижнего контура теплового насоса. Эффективность работы данной системы зависит от уровня залегания грунтовых вод (в зависимости от глубины подъема, требуется определенная мощность помпы), расстояния от заборной скважины до станции обмена. Эта технология имеет один из самых высоких показателей COP, однако имеет ряд особенностей, ограничивающих ее применение.
Среди них:
- Отсутствие подземных вод, либо низкий уровень их залегания;
- Отсутствие постоянного дебета скважины, понижение статического и динамического уровней;
- Необходимость учитывать солевой состав и загрязненность (при не надлежащем качестве воды, происходит засорение теплообменника, снижаются показатели производительности)
- Необходимость устройства дренажного колодца для сброса значительных объемов отработавшей воды (от 2200 л/ч и более)
Как показывает практика, установка таких систем целесообразна, если в непосредственной близости имеется водоем или река. Отработавшую воду, также можно использовать в хозяйственных и промышленных целях, например, для полива, или организации искусственных водоемов.
Что качается качества заборной воды то, например, немецкий производитель альтернативных отопительных систем Stiebel Eltron рекомендует следующие параметры: общая доля железа и магния не более 0,5 мг/л, содержание хлоридов менее 300 мг/л, отсутствие осаждаемых веществ. При превышении этих параметров необходимо установка дополнительной системы очистки — станции подготовки и обессоливания, что повышает материалоемкость проекта.
ООО «Нова Грос» — Авторизованная монтажная организация Stiebel Eltron
Связаться с нами Связаться с намиБуровые работы для теплового насоса.
Исходя из опыта монтажа и эксплуатации геотермальных агрегатов, мы рекомендуем бурить скважины не менее 100м. Практика показывает, что лучшие показатели эффективности и стабильности тепловой машины, будет наблюдаться, например, для двух скважин по 150 м, чем для трех по 100м. Безусловно, для обустройства таких шахт требуется специальная техника и роторный метод производства бурения. Малогабаритные шнековые установки не способны обеспечить нужной длины скважин.
Так как, геотермальный контур является важнейшей составляющей, и правильность его обустройства является залогом успешного функционирования всей системы, то подрядчик, осуществляющих бурение должен соответствовать ряду критериев:
- обязательно иметь опыт производства подобного вида услуг;
- иметь специальный инструмент для погружения зондов;
- давать гарантию погружения зонда на проектную глубину и гарантировать его целостность и герметичность в процессе производства работ;
- после погружения проводить мероприятия по тампонированию скважины для увеличения ее теплообмена и производительности, зачеканить ствол шахты до обратной засыпки.
В целом, при правильном проектировании и квалифицированном монтаже, геотермальные зонды очень надежны, и способны Вам прослужить до 100 лет.
Процесс опускания геотермального зонда в пробуренную скважину:
Геотермальный зонд на станине, перед проведением проверки на герметичность («опрессовки» давлением):
Выводы
Исходя из нашего опыта в устройстве систем альтернативной энергетики, мы можем выделить основные факты, которые являются основополагающими при выборе нашими Заказчиками тепловых насосов:
- полная безопасность и экологичность (отсутствую процессы горения и движущие части)
- возможность «сегодня» заказать систему и через три недели наслаждаться ее использованием без каких-либо согласований с контролирующими и разрешительными органами.
- Полная автономность и минимальное техническое обслуживание (нет необходимости состоять в газовом кооперативе, зависеть от него; не надо подбрасывать дрова или проводить ежемесячную чистку воздуховодов, организовывать подъезд топливозаправщика и прочее)
- Стоимость участка для строительства индивидуального дома без подведенного газа значительно ниже и срок сдачи жилья не зависит от газовых служб
- Возможность удаленного управления через интернет
- Передовое и инновационное оборудование стильного исполнения, которое не стыдно показать друзьям и знакомым, что безусловно подчеркивает статус домовладельца.
Если в данной статье мы не затронули какие-то вопросы и вы хотите задать их лично – вы можете приехать к нам в офис по адресу: г. Минск, ул. Одоевского, 117, компания ООО «Нова Грос» и проконсультироваться у наших инженеров.
Так же, у нас есть возможность организовать бесплатное посещение уже реализованных функционирующих объектов.
Контактные телефон для связи: 044 765 29 58; 017 399 70 51
e-mail: [email protected]
Все больше и больше интернет пользователей интересуются альтернативами способами отопления: тепловыми насосами.
Для большинства это абсолютно новая и неизвестная технология, поэтому и возникают вопросы типа: «Что такое тепловой насос?», «Как выглядит тепловой насос?», «Как работает тепловой насос?» и пр.
Здесь мы постараемся просто и доступно дать ответы на все эти и еще много других вопросов, связанных с тепловыми насосами.
Что такое Тепловой Насос?
Тепловой насос — устройство (другими словами «тепловой котел»), которое отбирает рассеянное тепло из окружающей среды (грунт, вода или воздух) и переносит его в отопительный контур вашего дома.
Тепловой насос Грунт-Вода
Благодаря солнечным лучам, которые непрерывно поступают в атмосферу и на поверхность земли происходит постоянная отдача тепла. Именно таким образом поверхность земли круглый год получает тепловую энергию.
Воздух частично поглощает тепло от энергии солнечных лучей. Остатки солнечной тепловой энергии почти полностью поглощается землей.
Кроме того, геотермальное тепло из недр земли постоянно обеспечивает температуру грунта +8°С (начиная с глубины 1,5-2 метра и ниже). Даже холодной зимой температура на глубине водоемов остается в диапазоне +4-6°С.
Именно это низкопотенциальное тепло грунта, воды и воздуха переносит тепловой насос из окружающей среды в отопительный контур частного дома, предварительно повысив температурный уровень теплоносителя до необходимых +35-80°С.
ВИДЕО: Как работает тепловой насос Грунт-Вода?
Что делает Тепловой Насос?
Тепловые насосы — тепловые машины, которые предназначены для производства тепла с использованием обратного термодинамического цикла. Тепловые насосы переносят тепловую энергию от источника с низкой температурой в систему отопления с более высокой температурой. В процессе работы теплового насоса происходят затраты энергии, не превышающие объем произведенной энергии.
Прямой цикл Карно
В основе работы теплового насоса лежит обратный термодинамический цикл (обратный цикл Карно), состоящий из двух изотерм и двух адиабат, но в отличии от прямого термодинамического цикла (прямого цикла Карно) процесс протекает в обратном направлении: против часовой стрелки.
В обратном цикле Карно окружающая среда выступает в роли холодного источника тепла. При работе теплового насоса тепло внешней среды благодаря совершению работы передается потребителю, но с уже более высокой температурой.
Передать тепло от холодного тела (грунт, вода, воздух) возможно только при затрате работы (в случае с тепловым насосом — затраты электрической энергии на работу компрессора, циркуляционных насосов и пр.) или другого компенсационного процесса.
Еще тепловой насос можно назвать «холодильником наоборот», так как тепловой насос это та же холодильная машина, только в отличии холодильника тепловой насос забирает тепло снаружи и переносит его в помещение, то есть обогревает помещение (холодильник же охлаждает путем отбора тепла из холодильной камеры и выбрасывает его через конденсатор наружу).
Как работает Тепловой Насос?
Теперь поговори о том как работает тепловой насос. Для того, что понять принцип работы теплового насоса нам нужно разобраться в нескольких вещах.
1. Тепловой насос способен извлекать тепло даже при отрицательной температуре.
Большинство будущих домовладельцев не могут понять принцип работы теплового насоса Воздух-Вода (в принципе любого воздушного теплового насоса), так как не понимают каким образом может извлекаться тепло из воздуха при отрицательной температуре зимой. Вернемся к основам термодинамики и вспомни определение теплоты.
Теплота — форма движения материи, представляющая собой беспорядочное движение образующих тело частиц (атомов, молекул, электронов и др.).
Даже при температуре 0˚С (ноль градусов по Цельсию), когда замерзает вода, в воздухе все еще есть теплота. Ее значительно меньше чем, например при температуре +36˚С, но тем не менее и при нулевой и при отрицательной температуре происходит движение атомов, а значит и происходит выделение теплоты.
Движение молекул и атомов полностью прекращается при температуре -273˚С (минус двести семьдесят три градуса по Цельсию), что соответствует абсолютному нулю температуры (ноль градусов по шкале Кельвина). То есть и зимой при минусовой температуре в воздухе есть низкопотенциальное тепло, которое можно извлекать и переносить в дом.
2. Рабочая жидкость в тепловых насосах — хладагент (фреон).
Хладагент R-410А, используемый в тепловых насосах
Что такое холодильный агент? Хладагент — рабочее вещество в тепловом насосе, которое отбирает теплоту от охлаждаемого объекта при испарении и передает тепло рабочей среде (например, воде или воздуху) при конденсации.
Особенность хладагентов в том, что они способны закипать и при отрицательных и при относительно низких температурах. Кроме того хладагенты могут переходить из жидкого состояния в газообразное и наоборот. Именно во время перехода из жидкого состояния в газообразное (испарения) происходит поглощение теплоты, а во время перехода из газообразного в жидкое (конденсации) происходит передача теплоты (отделение тепла).
3. Работа теплового насоса возможна благодаря его четырем ключевым компонентам.
Для того, чтобы понять принцип работы теплового насоса его устройство можно разделить на 4 основные элементы:
- Компрессор, который сжимает хладагент для повышения его давления и температуры.
- Расширительный клапан — терморегулирующий вентиль, который резко понижает давление хладагента.
- Испаритель — теплообменник, в котором хладагент с низкой температурой поглощает тепло от окружающей среды.
- Конденсатор — теплообменник, в котором уже горячий хладагент после сжатия передает тепло в рабочую среду отопительного контура.
Именно эти четыре компонента позволяют холодильным машинам производить холод, а тепловым насосам — тепло. Для того, чтобы разобраться как работает каждый компонент теплового насоса и для чего он нужен предлагаем просмотреть видео о принципе работы грунтового теплового насоса.
ВИДЕО: Принцип работы теплового насоса Грунт-Вода
Принцип работы теплового насоса
Теперь попытаемся подробно описать каждый этап работы теплового насоса. Как уже говорилось ранее — в основе работы тепловых насосов лежит термодинамический цикл. Это значит, что работа теплового насоса состоит из нескольких этапов цикла, которые повторяются снова и снова в определенной последовательности.
Рабочий цикл теплового насоса можно разделить на четыре следующие этапы:
1. Поглощение тепла из окружающей среды (кипение хладагента).
В испаритель (теплообменник) поступает хладагент, который находиться в жидком состоянии и имеет низкое давление. Как мы уже знаем при низкой температуре хладагент способен закипать и испаряться. Процесс испарения необходим для того, чтобы вещество поглотило тепло.
Согласно второму закону термодинамики тепло передается от тела с высокой температурой к телу с более низкой температурой. Именно на этом этапе работы теплового насоса хладагент с низкой температурой проходя по теплообменнику отбирает тепло от теплоносителя (рассола), который ранее поднялся из скважин, где отобрал низкопотенциальное тепло грунта (в случаи с грунтовыми тепловым насосами Грунт-Вода).
Дело в том, что температура грунта под землей в любое время года составляет +7-8°С. При использовании геотермального теплового насоса типа Грунт-Вода устанавливаются вертикальные зонды, по которым циркулирует рассол (теплоноситель). Задача теплоносителя — нагреться до максимально возмножной температуры во время циркуляции по глубинным зондам.
Когда теплоноситель отобрал тепло из грунта, он поступает в теплообменник теплового насоса (испаритель) где «встречается» с хладагентом, который имеет более низкую температуру. И согласно второму закону термодинамики происходит теплообмен: тепло от более нагретого рассола передается менее нагретому хладагенту.
Здесь очень важный момент: поглощение тепла возможно во время испарения вещества и наоборот, отдача теплоты происходит при конденсации. Во время нагрева хладагента от теплоносителя он меняет свое фазовое состояние: хладагент переходит из жидкого состояния в газообразное (происходит процесс закипания хладагента, он испаряется).
Пройдя через испаритель хладагент находиться в газообразной фазе. Это уже не жидкость, но газ, который отобрал тепло у теплоносителя (рассола).
2. Сжатие хладагента компрессором.
На следующем этапе хладагент в газообразном состоянии попадает в компрессор. Здесь компрессор сжимает фреон, который за счет резкого увеличения давления нагревается до определенной температуры.
Аналогичным образом работает и компрессор обычного бытового холодильника. Единственное существенное отличие компрессора холодильника от компрессора теплового насоса — значительно меньшая производительность.
ВИДЕО: Как работает холодильник с компрессором
3. Передача тепла в систему отопления (конденсация).
После сжатия в компрессоре хладагент, который имеет высокую температуру поступает в конденсатор. В данном случае конденсатор — это тоже теплообменник, в котором во время конденсации происходит отдача теплоты от хладагента к рабочей среде отопительного контура (например воде в системе теплых полов, или радиаторов отопления).
В конденсаторе хладагент из газовой фазы снова переходит в жидкую. Этот процесс сопровождается выделением тепла, которое используется для системы отопления в доме и горячего водоснабжения (ГВС).
4. Понижение давления хладагента (расширение).
Теперь жидкий хладагент нужно подготовить к повторению рабочего цикла. Для этого хладагент проходит через узкое отверстие термо-регулирующего вентиля (расширительного клапана). После «продавливания» через узкое отверстие дросселя хладагент расширяется, вследствие чего падает его температура и давление.
Этот процесс сравним с распылением аэрозоля из балончика. После распыления балончик на короткое время становиться холоднее. То есть произошло резкое падение давления аэрозоля вследствие продавливания наружу, температура соответственно тоже падает.
Теперь хладагент снова находиться под таким давлением, при котором он способен закипеть и испаряться, что необходимо нам для поглощения тепла от теплоносителя.
Задача ТРВ (термо-регулирующий вентиль) — снизить давление фреона путем расширения его на выходе из узкого отверстия. Теперь фреон снова готов закипать и поглощать тепло.
Цикл снова повторяется до тех пор, пока система отопления и ГВС не получит от теплового насоса необходимый объем тепла.
Сжигание классического топлива (газ, дрова, торф) является одним из древних способов получения тепла. Однако истощение традиционных источников энергии побудили человека искать более сложные, но не менее эффективные альтернативные варианты. Одним из ни стало изобретение теплового насоса, работа которого основана на школьных законах физики.
Содержание статьи:
Работа теплового насоса
Очень сложный на первый взгляд принцип работы тепловых насосов базируется на нескольких простых законах термодинамики и свойствах жидкостей и газов:
- Когда газ переходит в жидкое состояние (конденсация), выделяется тепло
- Когда жидкость переходит в газ (испарение), поглощается тепло
Большинство жидкостей могут закипать при достаточно высоких температурах, близких к 100 градусам. Но встречаются вещества и с достаточно низкими температурами кипения. У фреона она около 3-4 градусов. Превращаясь в газ, он легко сжимается и внутри емкости начинает расти температура.
Теоретически фреон можно сжимать до получения любых желаемых температур, но на практике ограничиваются 80-90 градусами, необходимыми для полноценной работы классической системы отопления.
Каждый сталкивается с тепловым насосом не один раз в день, когда проходит мимо холодильника. Однако в нем он работает в обратном направлении, забирая тепло продуктов и рассеивая в атмосферу.
Видео о технологии работы
Схема теплового насоса
Работоспособность большинства тепловых насосов базируется на тепле грунта, в котором на протяжении года температура практически не колеблется (в пределах 7-10 градусов). Тепло перемещается между тремя контурами:
- Контур отопления
- Тепловой насос
- Рассольный (он же земляной) контур
Классический принцип работы тепловых насосов в отопительной системе состоит из следующих элементов:
- Теплообменник, отдающий внутреннему контуру тепло, забираемое у земли
- Сжимающее устройство
- Второе теплообменное устройство, передающее отопительной системе энергию, получаемую во внутреннем контуре
- Механизм, понижающий давление в системе (дросселе)
- Рассольный контур
- Земляной зонд
- Отопительный контур
Труба, которая выполняет роль первичного контура, помещается в колодец или закапывается непосредственно в землю. По ней перемещается незамерзающий жидкий теплоноситель, температура которого повышается до аналогичной характеристики земли (около +8 градусов) и поступает во второй контур.
Вторичный контур забирает тепло у жидкости. Циркулирующий внутри фреон начинает закипать и преобразовываться в газ, который направляется в компрессор. Поршень сжимает его до 24-28 атм, благодаря чему происходит увеличение температуры до +70-80 градусов.
На данном рабочем этапе происходит концентрирование энергии в один небольшой сгусток. Благодаря этому увеличивается температура.
Разогретый газ поступает в третий контур, который представлен системами горячего водоснабжения или даже отопления дома. При передаче тепла возможны потери до 10-15 градусов, но они оказываются не существенны.
Когда фреон остывает, происходит уменьшение давления, и он вновь превращается в жидкое состояние. При температуре 2-3 градуса он поступает обратно во второй контур. Цикл повторяется снова и снова.
Основные виды
Устроен принцип работы тепловых насосов так, чтоб они легко эксплуатировались без перебоев в широком диапазоне температур – от -30 до +40 градусов. Наибольшую популярность получили следующие два вида моделей:
- Абсорбционного типа
- Компрессионного типа
Абсорбционного типа модели имеют достаточно сложное устройство. Они передают полученную тепловую энергию непосредственно при помощи источника. Их эксплуатация значительно снижает материальные затраты на расходующиеся электричество и топливо. Компрессионного типа модели для переноса тепла потребляют энергию (механическую и электрическую).
В зависимости от применяемого теплового источника насосы подразделяются на следующие виды:
- Перерабатывающие вторичное тепло – самые дорогостоящие модели, получившие популярность для обогрева объектов в промышленности, в которых вторичное тепло, вырабатываемое другими источниками, расходуется в никуда
- Воздушные – забирающие тепло из окружающего воздуха
- Геотермальные – выбирают тепло из воды или земли
По видам входного/выходного теплоносителя все модели можно классифицировать следующим образом – грунт, вода, воздух и их различные сочетания.
Геотермальные тепловые насосы
Популярными являются геотермальные модели насосов, которые подразделяются на два вида: замкнутого или открытого типа.
Простое устройство открытых систем позволяет нагревать проходящую внутри воду, которая в последствии вновь поступает в землю. Идеально она работает при наличии неограниченного объема чистого жидкого теплоносителя, который после потребления не наносят вред среде.
Замкнутые системы геотермальных тепловых насосов делят на следующие разновидности:
- Водный – коллектор располагается в водоеме на непромерзаемой глубине
- С вертикальным расположением – коллектор помещается в скважину на глубину до 200 м и применим в местностях с неровным ландшафтом
- С горизонтальным расположением – коллектор помещается в землю на глубину 0.5-1 м, очень важно обеспечить на ограниченной площади большой контур
Насос типа воздух-вода
Одним из наиболее универсальных вариантов является модель «воздух-вода». В теплые периоды года она весьма эффективна, но зимой производительность может существенно падать.
Преимуществом системы является простой монтаж. Подходящее оборудование может монтироваться в любом удобном месте, например, на крыше. Тепло, которые в виде газа или дыма удаляется из помещения, может использоваться повторно.
Тип вода-вода
Тепловой насос «вода-вода» один из самых эффективных. Но его использование может быть ограничено наличием поблизости водоема или недостаточной глубиной, на которой в зимний период не наблюдается существенного падения температуры.
Низко потенциальная энергия может выбираться из следующих источников:
- Грунтовые вода
- Водоемы открытого типа
- Сточные промышленные воды
Наиболее прост принцип работы тепловых насосов у моделей, отбирающих тепло в водоеме. Если принято решение использовать подземные воды, может потребоваться бурение колодца.
Тип грунт-вода
Тепло из грунта можно получать на протяжении всего года, так как на глубинах от 1 м температура практически не меняется. В качестве носителя тепла используют «рассол» — незамерзающую жидкость, которая циркулирует по пластиковым трубам.
Один из недостатков системы «грунт-вода» — необходимость большой площади для достижения желаемой эффективности. Нивелировать его стараются укладкой труб кольцами.
Коллектор можно располагать в вертикальном положении, но потребуется скважина глубиной до 150 м. На дне монтируются зонты, отбирающие тепло грунта.
Плюсы и минусы отопительных систем с тепловым насосом
Тепловые насосы нашли широкое применение в системах отопления частной жилой площади или промышленных площадей. Они постепенно вытесняют более классические источники энергии благодаря надежности и экономичности.
Среди многочисленных преимуществ, которые предоставляет эксплуатация теплового насоса, выделяют:
- Экономия материальных средств на техническом обслуживании систем и теплоносителе
- Насосы работают полностью в автономном режиме
- В окружающую среду не выделяются вредные продукты горения и прочие токсичные вещества
- Пожаробезопасность монтируемого оборудования
- Возможность легко реверсировать работу системы
Несмотря на массу преимуществ, необходимо принять во внимание и отрицательные стороны эксплуатации теплового насоса:
- Большие первоначальные вложения на обустройства отопительной системы – от 3 до 10 тысяч долларов
- В холодные периоды, когда температура отпускается ниже -15 градусов, необходимо подумать об альтернативных вариантах отопления
- Отопление, основанное на работе теплового насоса, наиболее эффективно только в системах низкотемпературным теплоносителем
Еще одно схематичное видео:
Подводим итоги
Узнав и освоив принцип работы теплового насоса, можно подумать и принять решение о целесообразности его установки и использования. Первоначальные затраты, которые могут показаться очень масштабными, в скором времени окупятся и начнут приносить своеобразную прибыль в виде экономии на классическом топливе.
Принцип действия теплового насоса | Viessmann
Принцип работы теплового насоса очень напоминает по своей сути работу холодильника. В то время как холодильник отводит тепловую энергию и направляет ее наружу, то есть из внутренней части холодильника, тепловой насос делает наоборот: он забирает тепловую энергию от окружающей среды за пределами помещения и преобразует ее в полезную для отопления. Тепловой насос может забирать тепловую энергию как из воздуха внутри помещения или снаружи, так и из грунтовых вод и почвы. И поскольку температура полученного тепла, как правило, не достаточна для того, чтобы отапливать здание или обеспечивать его горячей водой, в дело вступает термодинамический процесс.
Процесс охлаждения в подробностях
В независимости от того, какой тип теплового насоса используется для отопления, в функционал теплового насоса также входит процесс охлаждения, который происходит в четыре этапа.
1. Испарение
Для того, чтобы начать процесс испарения жидкости, необходима энергия. Этот процесс можно наблюдать на примере с водой. Если емкость с водой нагревается до 100 градусов Цельсия (тепловая энергия подается) вода начинает испаряться. При дальнейшем подаче тепловой энергии температура воды не повышается. Вместо этого вода полностью преобразуется в пар.
2. Сжатие газа
При сжатии газа, например воздуха (давление увеличивается), также повышается температура. Вы можете наблюдать это например, если вы придержите отверстие в велосипедном воздушном насосе и начнете процесс «накачки» воздуха, вы почувствуете тепло.
3. Конденсация
Согласно закону сохранения энергии при конденсации водяного пара, высвобождается тепловая энергия, которая ранее использовалась для испарения.
4. Расширение
При резком снижении давления в жидкости, находящейся под давлением, температура снижается в несколько раз. Это можно наблюдать на примере баллона с сжиженным газом для кемпинговой горелки. Открытие клапана может привести к образованию льда на клапане баллона с жидким газом даже летом. (Здесь давление снижается с 30 бар до 1 бар.)
Постоянное повторение процесса
Эти процессы происходят внутри теплового насоса в замкнутом контуре. Для транспортировки тепла используется жидкость (хладагент), которая испаряется при очень низких температурах. Чтобы испарить эту жидкость, используется тепловая энергия из земли или наружного воздуха. Для этого достаточно даже температуры в минус 20 градусов по Цельсию. Холодные пары хладагента затем очень сильно сжимаются компрессором. При этом их температура возрастает до 100 градусов Цельсия. Эти пары хладагента конденсируются и отдают тепло в систему отопления. Затем давление жидкого хладагента на расширительном клапане сильно снижается. При этом температура жидкости снижается до исходного уровня. Процесс может начинаться заново.
Процесс на примере воздушно-водяного теплового насоса
Проще всего объяснить этот процесс на примере воздушно-водяного теплового насоса: тепловой насос «воздух-вода» может состоять из одной или двух составляющих. В обоих случаях встроенный вентилятор активно направляет окружающий воздух в теплообменник. Через теплообменник проходит хладагент, который переходит из одного состояния в другое при очень низких температурах. Внутри теплообменника хладагент нагревается воздухом из окружающей среды и постепенно переходит в газообразное состояние. Для повышения температуры, возникающих при этом паров, используется компрессор. Он сжимает пары хладагента и увеличивает как давление, так и их температуру до требуемого значения.
Другой теплообменник (конденсатор) затем передает тепло от нагретых паров хладагента на отопление (теплые полы, радиаторы, буферная емкость или водонагреватель). Хладагент, находящийся под давлением отдает тепло, его температура падает и он снова переходит в жидкое состояние. Перед тем, как поступить обратно в контур, хладагент сначала расширяется в расширительном клапане. После того, как он достигнет своего исходного состояния, процесс процесс в холодильном контуре может начинаться с самого начала.
Что такое тепловой насос
Тепловой насос представляет собой парокомпрессионную установку, которая переносит тепло от холодных, низкопотенциальных источников тепла к горячим, высокопотенциальным. Тепло передается за счет конденсации и испарения хладагента, в качестве которого чаще всего используется фреон, циркулирующий по замкнутому контуру. Электроэнергия, от которой работает тепловой насос, тратится только на эту принудительную циркуляцию.
Принцип работы теплового насоса основан на так называемом цикле Карно, который прекрасно знаком вам по работе холодильных установок. На самом деле, бытовой холодильник, стоящий на вашей кухне, также является тепловым насосом. Когда вы помещаете в него продукты, пусть даже холодные, но температура которых все-таки выше, чем температура в камере холодильника, по закону сохранения энергии выделяемое ими тепло никуда не девается. Поскольку температура внутри повышаться не должна, тепло выводится наружу через решетку радиатора, нагревая воздух в кухне. Чем больше продуктов вы поместите одновременно в холодильник, тем больше будет теплоотдача.
Простейшим вариантом теплового насоса станет открытый холодильник, помещенный на улице, радиатор которого находится в комнате. Но пусть холодильник исполняет свои прямые обязанности, ведь уже существуют специальные устройства — тепловые насосы, имеющие кпд гораздо выше. Принцип их действия достаточно прост.
Как работает тепловой насос
Любой теплонасос состоит из испарителя, конденсатора, расширителя, понижающего давление, и компрессора, который давление повышает. Все эти устройства соединены в один замкнутый контур трубопроводом. По трубам циркулирует хладагент, инертный газ с очень низкой температурой кипения, поэтому в одной части контура, холодной, он представляет собой жидкость, а во второй, теплой, он переходит в газообразное состояние. Точка кипения, как известно из физики, может меняться в зависимости от давления, вот зачем нужны в этой системе расширитель и компрессор.
Предположим, что снаружи теплоноситель циркулирует по трубам, уложенным в земле, поскольку он имеет низкую температуру, то проходя по ним, он нагревается, даже когда внешняя температура составляет всего около 4-5оС. Поступая в испаритель, который выполняет функцию теплообменника, теплоноситель отдает полученное тепло во внутренний контур системы, который заполнен хладагентом. Даже этого тепла достаточно, чтобы хладагент перешел из жидкого в газообразное состояние.
Двигаясь дальше, газ перемещается в компрессор, где под действием высокого давления сжимается, а его температура при этом повышается. Став горячим, газ поступает в конденсатор, который также является теплообменником. В нем происходит передача тепла от горячего газа к теплоносителю обратного трубопровода, входящего в отопительную систему дома. Отдав тепло, газ охлаждается и снова переходит в жидкое состояние, в то время, как нагретый теплоноситель поступает в систему горячего водоснабжения и отопления. Проходя через редукционный клапан расширителя, сжиженный газ снова попадает в испаритель – цикл замыкается.
В холодное время года тепловые насосы работают на обогрев дома, а в жару – на его охлаждение. В этом случае принцип работы тот же, только летом тепло в теплоноситель поступает из внутренних помещений, а не снаружи.
Конструктивные особенности тепловых насосов
В настоящее время используются тепловые насосы, имеющие разные конструкции. Так, насос с открытым циклом применяют, когда дом расположен рядом с водоемом. В этом случае теплоноситель, вода, поступает в открытый контур, проходит весь цикл и, охлаждаясь, вновь сливается в водоем.
Геотермальные насосы закрытого типа прокачивают теплоноситель – воздух или воду, по трубам, заложенным глубоко в землю и проложенным по дну водоема. Закрытый цикл в экологическом плане считается более безопасным. К закрытому типу относятся насосы с вертикальным и горизонтальным теплообменником, которые используются, когда поблизости нет водоемов. Вертикальные тепловые насосы применяются, когда площадь земельного участка, на котором расположен дом, невелика. Иногда вертикальные насосы устанавливают в пробуренных поблизости скважинах.
В комплекс работ по установке теплового насоса входит проведение внутренних электромонтажных работ, прокладка внешнего трубопровода и внутренних воздуховодов.
Преимущества использования тепловых насосов
Экономическая выгода от использования тепловых насосов очевидна – их эксплуатация достаточно дешево обходится, поскольку электроэнергии тратится чуть больше, чем при работе холодильника. Цена оборудования также невысока, так же, как и стоимость монтажа и установки. Использование теплового насоса, позволяет избавиться от забот о приобретении и хранении топливных ресурсов, установке и эксплуатации отопительного оборудования, у вас в доме освобождаются дополнительные помещения, в которых раньше располагалась котельная.
Принцип работы теплового насоса
Постоянный рост цен на энергетические ресурсы заставляет владельцев загородных домов задумываться об использовании альтернативных систем. Сегодня уже очевидно каждому, что таким традиционным видам топлива для отопления, как природный газ, солярка, мазут, уголь, дрова, торфобрикеты или пеллеты нужно искать замену среди альтернативных источников. Одним из таких достаточно эффективных способов получения тепла является тепловой насос, принцип работы которого основан на отборе тепла от естественных низкопотенциальных источников возобновляемой энергии окружающей среды: грунт, термальные и артезианские грунтовые воды, водоёмы, наружный воздух.
Принцип работы теплового насоса
Живое общение
5 минут общения даст больше эффекта чем изучение всего сайта
Бесплатная консультация: +7 (495) 229-85-86
Схема тепловых насосов
В общем, система отопления с использованием такого альтернативного агрегата в своём составе имеет:
- зонд, представляющий собой, по сути, систему трубопроводов, которая находится в грунте или другой среде и служит для сбора и передачи тепла;
- собственно сам насос, состоящий из четырёх основных конструктивных элементов: испаритель, компрессор, конденсатор и дроссельный вентиль, объединённых трубопроводами в замкнутую систему;
- контур отопления.
На первый взгляд может показаться, что схема тепловых насосов довольно сложная, а принцип работы теплового насоса доступен для понимания только специалисту. Однако на самом деле всё гораздо проще. Чтобы понять принцип теплового насоса достаточно посмотреть на обычный холодильник, который забирает тепло от продуктов, лежащих внутри, и отводит его через решётку на задней стенке. Только схема тепловых насосов работает с точностью до наоборот – получает тепло из внешнего источника и передаёт его внутрь.
Работа теплового насоса
Итак, замкнутая система с циркулирующим хладагентом, например, фреоном, температура кипения которого всего порядка 4°С. Как осуществляется работа теплового насоса?
1. Холодный фреон начинает нагреваться в результате получаемого тепла от первичного контура в виде зонда, который в зависимости от используемого источника низкопотенциального тепла помещён в грунт, воду или находится на улице. Если говорить о грунте, то, как правило, его температура в течение года колеблется в пределах 8°С. Естественно, что при растущей температуре фреон начинает закипать и переходит в газообразное состояние.
2. На втором этапе фреон всасывается компрессором, где происходит его резкое сжатие с выделением большого количества тепла – температура фреона может достигать 90°С.
3. Далее перегретый газ подаётся в конденсатор. Этой температуры вполне достаточно для организации отопления и горячего водоснабжения загородного дома тепловым насосом. В конденсаторе температура хладагента падает, при этом выделяемое тепло передаётся системе отопления. Фреон конденсируется, превращаясь газожидкостную смесь.
4. В этом состоянии смесь поступает на дроссельный вентиль – специальный клапан, где происходит резкое снижение давления и температуры фреона, которая достигает 0°С, после чего превращённый в жидкость хладагент снова поступает с испаритель для получения тепла от возобновляемого природного источника – цикл замыкается.
Управление работой теплового насоса осуществляется терморегулятором. При достижении в помещении заранее заданной температуры он прекращает подачу электроэнергии на компрессор, останавливая работу системы, а при понижении температуры, включает его.
На сегодняшний день наибольшее распространение получили геотермальные агрегаты, принцип работы которых основан на получения тепла от грунта. Они наиболее эффективны, надёжны, долговечны и обеспечивают стабильные характеристики независимо от погодных условий и времени года.
Применение теплового насоса для отопления дома
Сегодня тема отопления так называемого частного сектора крайне актуальна. Как показывает практика, там не всегда есть газопровод, поэтому люди вынуждены искать альтернативные источники тепла.
Давайте в данной статье поговорим о том, что такое грунтовый геотермальный теплонасос или, как его называют в быту — тепловой насос. Принцип работы данного агрегата известен далеко не каждому, ровно как и его конструкция.
Содержание статьи
Тепловой насос: принцип работы для отопления дома
С этими моментами мы и попытаемся разобраться.
Что нужно знать?
Вы можете говорить о том, что раз тепловые насосы такие эффективные, то почему так слабо распространены. Все дело заключается в высокой стоимости оборудования и монтажа. Именно по этой простой причине многие отказываются от данного решения и выбирают, скажем, электрические или угольные котлы.
Тем не менее отбрасывать данный вариант не стоит по многим причинам, о чем мы обязательно скажем в данной статье. Тепловые насосы после установки становятся весьма экономичными, так как используют энергию грунта. Геотермальный насос — это 3 в 1. Он сочетает в себе не только отопительный котел и систему ГВС, но и кондиционер.
Давайте поближе познакомимся с данным оборудованием и рассмотрим все его сильные и слабые стороны.
Принцип действия агрегата
Принцип работы теплового насоса для отопления заключается в использовании разности потенциалов тепловой энергии. Именно поэтому подобное оборудование может применяться в любой среде. Главное, чтобы её температура была не менее 1 градуса по Цельсию.
Мы имеем теплоноситель, который движется по трубопроводу, где, собственно, и нагревается на 2-5 градусов. После этого теплоноситель поступает в теплообменник (внутренний контур), где отдает собранную энергию. В это время во внешнем контуре есть хладагент, который имеет низкую температуру кипения.
Соответственно, он превращается в газ. Поступая в компрессор, газ сжимается, в результате чего его температура становится еще выше. Дальше газ идет на конденсатор, где теряет свое тепло, отдавая его системе отопления. Хладагент приобретает жидкое состояние и поступает обратно во внешний контур.
Вкратце о видах тепловых насосов
Сегодня известно несколько популярных конструкций геотермальных насосов. Но при любом раскладе их принцип действия можно сравнивать с работой холодильной техники. Именно поэтому независимо от вида насос в летнее время может быть использован в качестве кондиционера. Так вот, тепловые насосы классифицируются по тому, откуда они могут добывать тепло:
- Из грунта;
- Из водоема;
- Из воздуха.
Первый вид наиболее предпочтителен в холодных регионах. Дело в том, что температура воздуха зачастую опускается до -20 и ниже (на примере РФ), а вот глубина промерзания грунта обычно несущественная.
Что касается водоемов, то они есть не везде, да и использовать их не слишком целесообразно. В любом случае, лучше выбирать грунтовый тепловой насос для отопления дома.
Принцип работы агрегата мы немного рассмотрели, поэтому идем дальше.
«Грунт-вода»: как лучше разместить?
Получение тепла из грунта считается наиболее целесообразным и рациональным. Обусловлено это тем, что на глубине 5 метров практически не происходит температурных колебаний. В качестве теплоносителя используется специальная жидкость. Её принято называть рассолом. Она является полностью экологически безопасной.
Что касается метода размещения, то есть горизонтальный и вертикальный. Первый вид характерен тем, что пластиковые трубы, представляющие внешний контур, укладываются на площади горизонтально.
Это весьма проблематично, так как работы по укладке должны проводиться на площади 25-50 квадратных метров. В случае с вертикальным расположением бурятся вертикальные скважины глубиной 50-150 метров.
Чем глубже будут уложены зонды, тем эффективней будет работать геотермальный тепловой насос. Принцип работы мы уже рассмотрели, а сейчас поговорим еще о важных деталях.
Тепловой насос «Вода-вода»: принцип работы
Также не стоит сразу отбрасывать возможность использования кинетической энергии воды. Дело в том, что на большой глубине температура остается достаточно высокой и изменяется в небольших диапазонах, если это вообще происходит. Вы можете пойти несколькими путями и использовать:
- Открытые водоемы, такие как реки и озера.
- Грунтовые воды (скважина, колодец).
- Сточные воды пром.циклов (обратное водоснабжение).
С экономической и технической точки зрения проще всего наладить работу геотермального насоса в открытом водоеме. При этом существенных конструктивных отличий между насосами «грунт-вода» и «вода-вода» нет.
В последнем случае погружаемые в открытый водоем трубы снабжаются грузом. Что касается использования грунтовых вод, то конструкция и монтаж более сложные. Необходимо выделить отдельную скважину для сброса воды.
Принцип работы теплового насоса «Воздух-вода»
Такой тип насосов считается одним из наименее эффективных по целому ряду причин. Во-первых, в холодное время года температура воздушных масс существенно понижается. В конечном итоге это приводит к уменьшению мощности насоса.
Он может не справиться с отоплением большого дома. Во-вторых, конструкция более сложная и менее надежная. Тем не менее расходы на монтаж и обслуживание существенно снижаются.
Это обусловлено тем, что вам не нужен водоем, колодец, а также не требуется копать траншеи под трубы на дачном участке.
Размещается система на крыше здания или в другом подходящем месте. Стоит заметить, что подобная конструкция имеет один существенный плюс. Он заключается в возможности использования отработанных газов, воздуха, который покидает помещение, повторно. Этим можно компенсировать недостаточную мощность оборудования в зимний период.
Насосы «воздух-воздух» и кое-что еще
Подобные установки встречаются еще реже, нежели «Воздух-вода», на что есть целый ряд причин.
Как вы уже догадались, в нашем случае в качестве теплоносителя используется воздух, который нагревается от более теплой воздушной массы из окружающей среды.
Есть большое количество недостатков такой системы, начиная от низкой производительности и заканчивая высокой стоимостью.Тепловой насос «воздух-воздух», принцип работы которого вы знаете, неплох только в теплых регионах.
Тут есть и сильные стороны. Во-первых, дешевизна теплоносителя. Скорее всего, вы не столкнетесь с проблемой течи воздухопровода. Во-вторых, эффективность такого решения крайне высока в весенне-осенний период. Зимой же использовать воздушный тепловой насос, принцип работы которого мы рассмотрели, нецелесообразно.
Самодельный тепловой насос
Проведенные исследования показали, что срок окупаемости оборудования напрямую зависит от отапливаемой площади. Если речь идет о доме в 400 квадратных метров, то это примерно 2-2,5 года.
А вот для тех, кто имеет жилье площадью поменьше, вполне можно использовать самодельные насосы. Может показаться, что сделать такое оборудование сложно, но на самом деле это несколько не так.
Достаточно закупить необходимые комплектующие, и можно приступать к монтажу.
Первым делом приобретается компрессор. Можно взять такой, какой на кондиционере. Монтируют его аналогичным образом на стену здания. Помимо этого, нужен конденсатор. Его можно соорудить самостоятельно или же купить.
Если пойти первым методом, то понадобится медный змеевик толщиной не менее 1мм, его помещают в корпус. Это может быть подходящий по габаритам бак. После монтажа бак сваривается, и делаются нужные резьбовые соединения.
Заключительная часть работ
При любом раскладе на окончательной стадии вам потребуется нанять специалиста. Именно знающий человек должен осуществлять пайку медных трубок, закачку фреона, а также первый запуск компрессора. После сборки всей конструкции её подключают к внутренней системе отопления. Наружный контур устанавливается в последнюю очередь, а его особенности зависят от типа используемого теплового насоса.
- Не стоит упускать из виду такой важный момент, как замена устаревшей или поврежденной проводки в доме.
- Специалисты рекомендуют устанавливать счетчик мощностью не менее 40 ампер, чего должно быть вполне достаточно для эксплуатации теплового насоса.
- Не лишним будет отметить, что в некоторых случаях подобное оборудование не оправдывает ожидания. Это обусловлено, в частности, неточными термодинамическими расчетами.
Чтобы не случилось так, что вы потратили кучу денег на отопление, а зимой пришлось поставить угольный котел, обращайтесь в проверенные организации с положительными отзывами.
Безопасность и экологичность прежде всего
Отопление с помощью описанных в данной статье насосов является одним из наиболее экологических методов. Обусловлено это по большей части сокращением выбросов в атмосферу углекислых газов, а также сбережением невосстанавливаемых энергоресурсов. Кстати, в нашем случае используются возобновляемые ресурсы, поэтому бояться, что тепло вдруг закончится, не стоит.
Благодаря использованию вещества, кипящего при низких температурах, появилась возможность реализовать обратный термодинамический цикл и при меньших затратах энергии получать достаточное количество тепла в дом. Что касается пожаробезопасности, то тут и так все понятно. Нет вероятности утечки газа или мазута, взрыва, нет опасных мест для хранения горючих материалов и многое другое.
В этом плане тепловые насосы очень хороши.
Заключение
Теперь вы полностью знакомы с тем, что такое и каким может быть тепловой насос (принцип работы). Своими руками подобный агрегат сделать можно, а в некоторых случаях даже нужно. В этом случае вы можете сэкономить порядка 30% средств на покупку оборудования. Но опять же монтажными работами желательно должен заниматься специалист, это же касается и проводимых расчетов.
Как ни крути, сегодня это еще достаточно дорогостоящий вид отопления с большим сроком окупаемости. В большинстве случаев куда проще провести газ или топить углем или дровами. Тем не менее для больших загородных домов это очень перспективный вид отопления.
Его говорить об экономичности оборудования, то получается что на 1 кВт потраченной энергии мы получаем порядка 5-7 кВт тепловой. По охлаждению это 2-2,5 кВт на выходе, что тоже очень даже неплохо. Стоит отметить еще и бесшумность работы насоса.
Принцип работы теплового насоса для отопления дома
В условиях растущих цен на топливо многие задумываются о снижении расходов. Учёные ломают голову над получением дешёвой энергии и максимальном использовании сил природы. Именно на простых законах физики и использовании природных стихий построен принцип действия теплового насоса.
Понятие теплового насоса и принцип его работы
Если сильно упростить структуру насоса, производящего тепло, то получится работа холодильника или кондиционера, но в более глобальном масштабе. Такая тепловая установка не требует топливного котла. Её нужно правильно смонтировать и подключить к источнику электропитания. Это вовсе не обозначает, что насос отапливает дом электричеством — киловатты тратятся на функционирование системы.
Устройство насоса
Принцип действия теплового насоса не особо отличается от выбранного вида — тепло забирается во внешней среде и передаётся в дом. Такие установки имеют всего три главных компонента:
- Зонд, собирающий тепло.
- Сам тепловой насос, включая компрессор.
- Система отопления здания с теплообменной камерой.
Первый и последний пункт теплонасосной установки — это трубы и радиаторы. Теплообменный зонд представляет собой большой горизонтальный змеевик, вертикальные трубы или открытый забор воды из естественного водоёма. Суть системы заключается в самом насосе. В нём 6 составляющих:
- капилляр;
- хладагент;
- компрессор;
- испаритель;
- конденсатор;
- терморегулятор.
Принцип работы теплового насоса
Такая установка условно «отбирает» тепло у природных носителей и передаёт их с систему отопления. По такому же принципу работает обычный холодильник — он забирает «лишние» градусы из морозильной камеры и выводит их на воздушный теплообменник на задней стенке. Хотя это лишь один из видов обмена тепловой энергии, связанный с воздухом, есть и другие виды.
Разновидности тепловых насосов
Общий принцип теплонасосных установок заключается в обмене температур между носителями. Тепло первичного источника передаётся системе отопления без использования топлива. Эти источники можно поделить на 3 группы:
- геотермальные;
- аэротермические;
- гидротермальные.
Это три разных стихии — воздух, вода и земля. Именно от этих природных носителей тепловой энергии происходит отопление дома. Помимо отличий в «стихии» установки отличаются и типом монтажа. Они делятся на 2 вида:
- Открытого типа.
- Закрытых разновидностей.
Каждый из видов теплонасосных установок имеет свои плюсы и минусы. В ряде случаев из-за особенностей монтажа определённые разновидности просто невозможны в конкретном месте. Другие нерентабельны или низкоэффективны в определённых регионах, хотя в других местах они наиболее выгодны.
Достоинства и недостатки насосов разных видов
Наиболее простой и быстромонтируемый вид теплоустановки — это аэротермический. Теплообмен происходит с воздухом, не требуя монтажа большого количества оборудования. Плюсами являются:
- лёгкость установки без труб и радиаторов;
- безопасность и экологичность эксплуатации;
- возможность использования в летнее время для охлаждения.
Минусами этого типа установок признана её неэффективность в холодных регионах. Уже при 0 градусов Цельсия аэротермическая установка работает с 50% мощностью. При падении температуры до минус 20 С использование воздушного насоса становится нерентабельным. Эта установка не подходит для регионов с сильными морозами, также её монтаж будет не рентабельным в местах с частым безветрием.
Установка грунт-вода, использующая в качестве теплоносителя землю, одна из самых сложных в монтаже. Это один из недостатков установки, вне зависимости от горизонтального или вертикального расположения зонда.
Помимо этого к минусам можно отнести невозможность использования земли для с/х нужд при горизонтальном змеевике и невозможность самостоятельной установки при вертикальном расположении.
Список плюсов значительно шире:
- длительный срок работы при разовых вложениях;
- максимальная эффективность при любой погоде;
- эксплуатация и на охлаждение, и на обогрев здания;
- возможность использования в регионах с сильными морозами.
Теплонасосные установки уверенно завоёвывают внимание владельцев частных домов и компаний, имеющих малоэтажные строения. Этот вид отопления позволяет серьёзно снизить расходы на обогрев, снижая стоимость эксплуатации жилых и офисных зданий.
Почти все виды установок возможно смонтировать самостоятельно, не прибегая к услугам специалистов. Для этого достаточно лишь приобрести сам насос и расходные материалы, а также ознакомится с особенностями монтажа.
Особенности монтажа теплового насоса
Почти все теплонасосные установки допускают возможность самостоятельного монтажа. Возможность самому установить насос при вертикальном расположении зонда исключена — требуется бурение скважины на глубину не менее 100 метров. Во всех остальных случаях достаточно соблюсти простые требования.
Минимальные требования
Система вода-вода не может функционировать без поверхностного водоёма в шаговой доступности при самостоятельной установке. Возможен монтаж силами профессионалов вертикальной системы, если есть источник подземных вод.
Устройство теплового насоса требует наличия обязательного источника электропитания. При невозможности подключения насоса к стационарному электроснабжению допускается использование бензинового или дизельного генератора.
Монтаж воздушного теплового насоса
По сути, эта система представляет собой большой кондиционер в случае принципа воздух-воздух. В этом случае процесс монтажа прост — необходимо выбрать правильное месторасположение и обеспечить вход воздуховода в здание с обязательной установкой фильтров.
При выборе места установки воздухозаборников нужно учесть шум, производимый ими в работе. А также требуется обеспечить возможный отход конденсата для предотвращения обледенения. Воздушный теплонасос наиболее простой в монтаже.
Установка водяного горизонтального насоса
Сначала необходимо собрать геоконтур из обычных полимерных труб необходимо при помощи грузил опустить на дно водоёма вместе с испарителем. Допустима установка в водоёмах со сточными или промышленными водами, не повреждающими полимер.
Теплообменник водяного горизонтального теплового насоса
Этот способ более простой, чем монтаж системы вода-грунт, но не всегда возможен из-за отсутствия водоёма. По стоимости оборудования и проводимых работ он входит в ту же ценовую категорию, что и воздушный насос, но имеет более высокий уровень КПД.
Монтаж горизонтального насоса грунт-вода
Эта система наиболее популярна в частном секторе. Она понятна для самостоятельного монтажа, но требует большого объёма земляных работ. Возможно простое «U-образное» расположение труб под землёй на большое расстояние или же монтаж змеевидной системы на ограниченном участке.
Необходимо учесть, что для получения 1 кВт тепловой энергии требуется 50 кв. м. коллекторов. При змеевидном расположении труб они должны быть удалены друг от друга на расстояние в 0,7─1 м. КПД горизонтальной системы при правильном монтаже достигает 3─5 кВт тепловой энергии на один потраченный киловатт электричества.
Вертикальные насосные установки
При монтаже вертикальной системы вода-вода открытого типа с использованием подземных водоёмов возможны дополнительные бонусы. Эта система позволяет одновременно обеспечить здание автономными источниками питьевой воды.
Нюансы расчётов при установке теплового насоса
Поняв, как работает тепловой насос, необходимо правильно рассчитать его мощность. Расчёт теплового насоса кажется простым только на первый взгляд. Лучше всего доверить эту работу специалистам, особенно если здание находиться в регионе с холодным климатом.
Грунтовый теплообменник вертикального теплового насоса
При самостоятельных расчётах применяется формула с такими данными:
- R — теплопотери здания;
- V — объёмы дома в м³;
- T — максимальный перепад температур дом-улица;
- k — коэффициент теплопроводности здания (СНиП).
Сама формула выглядит так: R=k*V*T. Единицей измерения результата умножения являются ккал. Для перевода их в кВт необходимо произвести деление на 860. Полученный результат покажет максимально необходимую мощность насоса.
Случаи низкой рентабельности насоса
Неправильные расчёты могут привести к недостаточной мощности. В тёплых областях это приведёт к монтажу излишне мощной системы, но в морозных регионах не позволит качественно отапливать здание.
Выше сказано, что воздушный насос неэффективен при морозах в минус 20 С. На самом деле сейчас уже существуют модели, способные функционировать при температуре в минус 32 С, оставаясь рентабельными. Пока такие системы реализуются по очень высокой стоимости и их эксплуатация обоснована только при невозможности выбора другого вида отопления.
Если теплонасосная установка уже запланирована на этапе строительства дома, то стоит заранее рассчитать монтаж системы тёплых полов. Это наиболее выгодная система отопления с использованием тепловых насосов.
Подключение к действующей радиаторной системе также эффективно, но менее рентабельно.
Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Это поможет развитию сайта.
Как правильно выбрать тепловой насос?
Тепловой насос — механическое приспособление позволяющее обеспечить перенос тепла от ресурса с низкой потенциальной тепловой энергией (с низкой температурой) до отопительной системы (теплоносителю) с повышенной температурой. Попробуем объяснить это более понятным языком.
Уходят в прошлое времена, когда человек отапливал свое жилище путем сжигания древесины в каминах или печах. На смену приходят многофункциональные котлы длительного горения. В регионах где доступен магистральный газ для отопления применяют эффективное газовое оборудование. В местах, не доступных для газовых магистралей, все активнее используется газгольдер.
Человечество понимает, что сжигать невозобновляемые источники энергии дело не перспективное, ресурсы постепенно истощаются. Ученые не останавливаясь ищут новые способы добычи тепловой энергии и разрабатывают современные механизмы для реализации поставленных задач.
В одном из таких проектов был сконструирован тепловой насос. Действительно, как и большинству генерирующих тепло агрегатов, функционирование теплового насоса не возможно без электрической энергии.
- Серьезным отличием является то, что электричество не задействовано в нагреве например ТЭНа, как в масляном радиаторе и не замыкает спираль в тепловой пушке.
- В тепловом насосе нет нагревательных элементов, он не создаёт тепловую энергию, тепловой насос служит лишь переносчиком её из окружающей среды до потребителя (теплоносителя).
- Электричество, потребляемое тепловым насосом, затрачивается только на сжатие хладагента и его перекачку обеспечивая циркуляцию.
- Хладагент выступает в качестве необходимой рабочей среды, именно он перемещает тепло из окружающей среды в отопительную систему и систему горячего водоснабжения.
Как подобрать тепловой насос, принцип его работы, а также узнать о плюсах и минусах подобного оборудования нам поможет этот обзор.
Тепловой насос для отопления
Традиционное отопление частного дома по прежнему остается предпочтительным, если в избытке недорогие ресурсы. Вопрос, что делать, когда доступность дешевых источников ограниченна? Альтернативным решением выступает тепловой насос — опыт эксплуатации более 40 лет в странах Евросоюза, говорит нам о том, что это может быть весьма эффективно.
В Российской Федерации тепловой насос не получил должного распространения. Причиной тому два фактора.
- Во первых, в избытке нефть, газ, древесина.
- Во вторых, ос
Общая информация о тепловых насосах типа «воздух-вода»
Тепловые насосы типа «воздух-вода» могут обеспечить эффективное отопление и охлаждение для вашей семьи, особенно если вы живете в умеренном климате. После правильной установки тепловой насос типа «воздух-вода» может подавать в дом от полутора до трех раз больше тепловой энергии, чем расходует электричество. Это может произойти из-за того, что тепловой насос передает тепло, а не преобразовывает его из вида топлива, как это делают обычные системы отопления сгорания.
Хотя воздушные тепловые насосы используются в большинстве Соединенных Штатов и Скандинавских стран, они обычно не очень хорошо работают при низких температурах. В климатических условиях с минусовой температурой зимой тепловые насосы типа воздух-вода могут быть неэффективными для всех ваших потребностей в отоплении. Если бы вам пришлось установить систему газового отопления для резервного копирования, вы можете решить эту проблему. Однако воздушные тепловые насосы, специально разработанные для холодного климата, начали давать многообещающие результаты.
Как работают тепловые насосы типа «воздух-вода»?
Полная и современная система теплового насоса обеспечивает эффективную экономию энергии и снижение выбросов углекислого газа. Производство тепла является безопасным и экономичным благодаря встроенному нагревателю горячей воды, погружному нагревателю, циркуляционному насосу и климатической системе во внутреннем блоке. Тепло поступает извне через наружный блок, где хладагент циркулирует в замкнутой системе трубопроводов, передавая тепло от источника к внутреннему блоку.Критерии, по которым передается тепло, могут быть упрощены следующим образом:
1. Хладагент во внешнем блоке забирает тепло из воздуха снаружи и сжимается компрессором до более высокой температуры.
2. Горячий хладагент направляется во внутренний блок.
3. Хладагент выделяет тепло в систему для дальнейшего распределения.
4. Теперь хладагент находится в жидком состоянии и отправляется обратно на наружный блок, где процесс повторяется.
При обратном процессе, описанном выше, хладагент в наружном блоке будет отбирать тепло у воды и выделять его во внешнюю среду, таким образом, тепловой насос может охлаждать домохозяйство, если это необходимо. Узнайте больше о том, как работают воздушные тепловые насосы.
Воздушные тепловые насосы Передовые технологии
Как и в каждом новом секторе технологий, достижения всегда близки. В секторе тепловых насосов нет исключений. Вот почему три новых системы выросли достаточно, чтобы привлечь интерес:
- Чиллер с обратным циклом (RCC) — он позволяет выбирать из широкого спектра систем распределения отопления и охлаждения, таких как системы напольного отопления и системы принудительного воздуха с несколькими зонами.Это дает вам возможность работать с максимальной эффективностью даже при низких температурах. Система RCC рекомендуется для полностью электрических домов.
- Тепловой насос холодного климата — он оснащен двухскоростным двухцилиндровым компрессором для эффективной работы, резервным вспомогательным компрессором, который позволяет системе функционировать эффективно даже при -9,4. Он также имеет пластинчатый теплообменник, который также известен как «экономайзер», который дополнительно увеличивает производительность теплового насоса до температуры ниже -18 градусов по Цельсию.Эта система скоро будет доступна и для бытовых потребителей.
- Тепловой насос All Climate — производитель заявил, что он может работать даже в самые холодные зимние условия без тепла, поддерживая приятную температуру в помещении, даже когда температура на улице опускается ниже -20. Этот тепловой насос может снизить затраты на отопление и охлаждение примерно на 25-60 процентов. Система All Climate включает отопление в качестве основной функции, поэтому первоначальные затраты высоки, но система продолжает ежедневно улучшаться, поэтому экономия энергии более чем компенсирует первоначальные затраты.
В заключение отметим, что тепловой насос «воздух-вода» — это путь в будущее в вопросах экологически чистых и чистых систем отопления. Хотя первоначальные затраты высоки, выгоды можно увидеть через год после того, как ваши инвестиции сделаны, и сожаление станет последним, о чем вы думаете.
,Конструкция / Принцип работы
4.7.1 Конструкция / Принцип работы
Принцип работы одноступенчатых насосов Roots соответствует принципу работы многоступенчатых насосов как описано в главе 4.5. В корне вакуумный насос, два синхронно вращающиеся в противоположных направлениях роторы (4) вращаются бесконтактно в корпусе (рисунок 4,16). Роторы имеют конфигурацию восьмерки и разделены друг от друга и от статора с помощью узкого зазора.Их операционная принцип аналогичен шестеренчатому насосу с одним зубом Зубчатая передача, которая прокачивает газ из впускного отверстия (3) в выпуск порт (12). Один вал приводится в действие двигателем (1). Другой вал синхронизируется с помощью пары шестерен (6) в камере редуктора. Смазка ограничена двумя подшипниковыми и зубчатыми камерами, которые изолированы от всасывающей камеры (8) лабиринтными уплотнениями (5) с компрессионные кольца. Потому что на всасывании нет трения камера, вакуумный насос Roots может работать на высоких скоростях вращения (1500-3000 об / мин).Отсутствие возвратно-поступательных масс также обеспечивает бесперебойную динамическую балансировку, а это означает, что вакуум Roots насосы работают очень тихо, несмотря на их высокие скорости.
Дизайн
Подшипники вала ротора расположены в двух боковых крышках. Они есть сконструированы как фиксированные подшипники с одной стороны и как подвижные (незакрепленные) подшипники с другой стороны, чтобы обеспечить неравномерное тепловое расширение между корпусом и ротор. Подшипники смазываются маслом, которое вытесняется на подшипники и редукторы на брызговых дисках.Прохождение карданного вала в снаружи в стандартных версиях уплотнены кольцами с радиальным уплотнением вала изготовлены из FPM, которые погружены в уплотнительное масло. Чтобы защитить вал, уплотнительные кольца расположены на защитной гильзе, которую можно заменить при изношены. Если требуется герметичное уплотнение снаружи, насос также может приводиться в движение с помощью муфты постоянного магнита с банкой. это конструкция обеспечивает скорость утечки $ Q_I $ менее 10 -6 Па м 3 с -1 .
Свойства насоса, прогрев
Так как насосы Roots не имеют внутреннего сжатия или выхода клапан, когда камера всасывания открыта, его объем газа поднимается обратно во всасывающую камеру, а затем должен быть разряжен против давление на выходе. В результате этого эффекта, особенно в наличие высокого перепада давления между входом и выходом, высокий уровень рассеяния энергии, что приводит к значительный прогрев насоса при низких расходах газа, которые только транспортируют небольшое количество тепла.Вращающиеся поршни Рутса относительно сложно охладить по сравнению с корпусом, так как они практически вакуумной изоляцией. Следовательно, они расширяются больше, чем жилье. к предотвратить контакт или захват, максимально возможное давление дифференциальная, а также рассеянная энергия ограничена перепускной клапан (7). Это связано со стороной впуска и давления сторона прокачиваемых каналов. Открывается грузонесущая пластина клапана когда максимальный перепад давления превышен и позволяет большая или меньшая часть всасываемого газа течет обратно из сторона нагнетания на стороне впуска, в зависимости от пропускной способности.Из-за ограниченный перепад давления, стандартные насосы Roots не могут разряжать против атмосферного давления и требовать вспомогательного насоса. Однако вакуумные насосы Roots с перепускными клапанами могут быть включены вместе с задним насосом даже при атмосферном давлении, таким образом увеличивая скорость их прокачки с самого начала. Это сокращает время эвакуации.
Рисунок 4.16: Принцип работы насоса Рутса
Подпорные насосы
Одноступенчатые или двухступенчатые лопастные насосы или лопасти Насосы используются в качестве масляных задних насосов.Винтовые насосы или Многоступенчатые насосы Roots можно использовать в качестве насосов с сухой подкладкой. насос Подобные комбинации могут быть использованы для всех приложений с высокая скорость откачки в диапазоне низкого и среднего вакуума. Жидкое кольцо Насосы также могут быть использованы в качестве вспомогательных насосов.
Роторные насосы с газовым охлаждением
, чтобы позволить вакуумным насосам Roots работать против атмосферного давление, некоторые модели с газовым охлаждением и не имеют переливных клапанов (Рисунок 4.17). В этом случае газ, который вытекает из выходного фланца (6) через охладитель (7) повторно поступает в середину всасывания камера (4). Этот искусственно созданный поток газа охлаждает насос, позволяя ему сжиматься против атмосферного давления. Вход газа контролируется поршнями Roots, что устраняет необходимость дополнительные клапаны. Там нет возможности тепловой перегрузки, даже при работе под предельным давлением.
Рисунок 4.17: Принцип работы насоса Рутса с газовым охлаждением
На рисунке 4.17 показано поперечное сечение с циркуляцией газа Корни вакуумного насоса. Направление потока газа вертикальное сверху дно, позволяя жидким или твердым частицам увлекаться на входе поток стекает вниз. На первом этапе камера (3) открывается вращение поршней (1) и (2). Газ поступает в камеру через входной фланец (5) при давлении $ p_1 $.На этапе II Камера (3) изолирована от входного фланца и напорный фланец. Впускное отверстие (4) для охлаждающего газа открыто вращением поршней в фазе III. Камера (3) заполнена до давления на выходе $ p_2 $, и газ продвигается к напорный фланец. Первоначально объем всасывания не изменяется с вращательное движение поршней Рутса. Газ сжимается приток охлаждающего газа. Поршень Roots теперь продолжает вращаться (фаза IV), и это движение выталкивает сжатый газ над охладителем (7) в сторону разряда (фаза V) при давлении $ p_2 $.
Газоохлаждаемые насосы Roots могут использоваться в диапазоне входного давления от 130 до 1,013 гПа. Потому что во всасывании нет смазки камеры, они не выделяют туман и не загрязняют среду, которая прокачивается. Соединение двух из этих насосов последовательно позволяет предельное давление должно быть снижено до 20-30 гПа. В комбинации с дополнительные вакуумные насосы Roots, предельное давление может быть снижено до средний вакуумный диапазон.
Скорость откачки и степень сжатия
Характеристическими характеристиками насосов Roots являются насосные скорость и степень сжатия.Теоретическая скорость накачки $ S_ {th} = S_0 $ — объемный расход, без которого насос перемещается без противодавление. Степень сжатия $ K_0 $ при работе без газа смещение (входной фланец закрыт) зависит от давления на выходе $ P_2 $. Диапазон скоростей откачки от 200 м 3 · ч -1 до нескольких тысяч м 3 · ч -1 . типичный Значения $ K_0 $ находятся в диапазоне от 10 до 75.
Рисунок 4.18: Степень сжатия без нагрузки для воздуха для корней насосы
На степень сжатия негативно влияют два эффекта:
- обратным потоком в зазоры между поршнем и корпусом
- газом, который осаждается адсорбцией на поверхности поршень на стороне выпуска и повторно десорбируется после вращения в направлении сторона всасывания.
В случае выходных давлений от 10 -2 до 1 гПа, молекулярный в зазорах уплотнения преобладает поток, что приводит к уменьшению обратного потока из-за их низкая проводимость.Однако объем газа, который перекачивается обратно через адсорбцию, которая является относительно высокой по сравнению с объем перекачиваемого газа, снижает степень сжатия.
$ K_0 $ является самым высоким в диапазоне от 1 до 10 гПа, так как молекулярный поток все еще преобладает из-за низкого давления на входе в уплотняющие зазоры насоса, и поэтому обратный поток низкий. С газом транспорт через адсорбцию не является функцией давления, он меньше важно, чем поток газа, пропорциональный давлению, который транспортируется по скорости накачки.
При давлениях, превышающих 10 гПа, ламинарный поток возникает в разрывы и проводимости разрывов значительно увеличиваются, что приводит к снижению коэффициента сжатия. Этот эффект особенно заметно в насосах Roots с газовым охлаждением, которые достигают степени сжатия только приблизительно $ K_0 $ = 10.
Ширина зазора имеет большое влияние на степень сжатия. Из-за различного теплового расширения поршней и корпуса, однако они не должны опускаться ниже определенных минимальных значений, чтобы избегать контакта ротор-статор.
,% PDF-1.4 % 172 0 объектов > endobj Xref 172 77 0000000016 00000 n 0000001891 00000 n 0000002031 00000 n 0000003084 00000 n 0000003321 00000 n 0000003744 00000 n 0000003796 00000 n 0000003867 00000 n 0000003973 00000 n 0000004025 00000 n 0000004132 00000 n 0000004184 00000 n 0000004236 00000 n 0000004288 00000 n 0000004329 00000 n 0000004428 00000 n 0000004450 00000 n 0000004763 00000 n 0000005005 00000 n 0000006239 00000 n 0000006772 00000 n 0000007173 00000 n 0000007559 00000 n 0000021880 00000 n 0000022131 00000 n 0000022391 00000 n 0000036363 00000 n 0000036777 00000 n 0000038013 00000 n 0000038437 00000 n 0000038459 00000 n 0000039062 00000 n 0000039084 00000 n 0000040319 00000 n 0000040695 00000 n 0000055966 00000 n 0000056206 00000 n 0000056452 00000 n 0000057210 00000 n 0000057232 00000 n 0000073072 00000 n 0000073326 00000 n 0000073456 00000 n 0000073800 00000 n 0000075037 00000 n 0000075695 00000 n 0000075717 00000 n 0000076398 00000 n 0000076420 00000 n 0000077088 00000 n 0000077110 00000 n 0000077825 00000 n 0000077847 00000 n 0000080525 00000 n 0000081896 00000 n 0000083257 00000 n 0000083426 00000 n 0000084797 00000 n 0000085732 00000 n 0000085803 00000 n 0000085874 00000 n 0000086048 00000 n 0000086985 00000 n 0000088779 00000 n 0000088887 00000 n 0000090258 00000 n 0000090330 00000 n 0000090406 00000 n 0000090979 00000 n 0000094014 00000 n 0000112789 00000 n 0000129434 00000 n 0000145838 00000 n 0000147645 00000 n 0000177011 00000 n 0000002087 00000 n 0000003062 00000 n прицеп ] >> startxref 0 %% EOF 173 0 объектов > endobj 174 0 объектов > endobj 247 0 объектов > поток Hb«`f`Pg`g` \ Ā
.Конструкция / Принцип работы
4.4.1 Конструкция / Принцип работы
Два параллельных винтовых ротора с опорой на подшипниках (3) синхронное и бесконтактное вращение противоположных нитей в цилиндрическом корпусе (2), плотно закрывающем их, и вместе образуют многоступенчатый насос. Из-за встречной сетки двух роторы, запечатанные в каждой нити объемы продвигаются вдоль роторы до выхода (4).У насоса нет клапанов на входе (1) или розетка. Когда объем смещения достигает выхода открытие, давление уравновешено с атмосферой. Это означает что атмосферный воздух поступает в объем вытеснения и затем разряжен снова, когда ротор вращается. Этот пульсирующий поток газа генерирует высокий уровень рассеиваемой энергии и нагрев насоса. Рассеянный энергия может быть минимизирована с помощью внутреннего сжатия. это внутреннее сжатие достигается за счет уменьшения шага резьбы в направление выхода.Зазоры между корпусом и роторами, а также между роторами относительно друг друга, определить Предельное давление, которого может достичь винтовой насос. Геометрия и конфигурация зазора, которая возникает, когда роторы взаимодействуют друг с другом также существенно влияет на предельное давление.
Потому что рассеянная энергия, которая генерируется пульсирующим поток газа нагревает насос со стороны выхода, охлаждение требуется при именно это место.Зазор между корпусом и роторами Функция разности температур между теплыми роторами и охлаждаемый корпус. Количество выделяемого тепла и температура являются функцией диапазона входного давления. Температура самая низкая при высокое давление на входе (почти атмосферное), так как практически нет сжатия здесь выполняется работа и перемещенных воздушных перевозок достаточно тепло из насоса. Кроме того, высокий поток газа также предотвращает Колебания газа на последней стадии.Во время работы на пределе давление (р <1 гПа), колебание атмосферного воздуха производит более высокие температуры на выходе, так как нет газа проходит через насос и, следовательно, тепло не переносится из насоса.
Насосы HeptaDry— это сухие винтовые насосы с внутренним сжатием. Винтовые роторы имеют симметричную геометрию с переменным шагом. Эти насосы не имеют торцевой пластины с контрольными отверстиями; вместо, газ выпускается в осевом направлении против атмосферного давления.Из-за внутреннее сжатие, объем пульсирующего газа невелик.
Это приводит к снижению энергопотребления, тихой работе, равномерное распределение температуры внутри насоса и воды с низким охлаждением потребление. Это делает эти насосы чрезвычайно экономичными, несмотря на их надежный дизайн.
,