Сколько нужно радиаторов на 100 кв: методика + встроенный калькулятор,объем батареи,для панорамных окон, объем воды в радиаторе отопления таблица, отопительные приборы систем водяного отопления,теплоотдача,конвекторные радиаторы, еврочугун,водяное отопление в гараже своими руками схемы,размеры радиаторов, акт опрессовки системы, обарзец,ошибка 27 котел навьен, навьен делюкс ошибка 13 как исправитькак рассчитать мощность радиатора,на квадратный метр, расчёт количества секций,расчёт количества секций, алюминиевые радиаторы,как расчитать сколько надо батарей в дом, 1 секция радиатора сколько м2 отапливаемой площадиэлектрический радиатор.

Содержание

методика + встроенный калькулятор,объем батареи,для панорамных окон, объем воды в радиаторе отопления таблица, отопительные приборы систем водяного отопления,теплоотдача,конвекторные радиаторы, еврочугун,водяное отопление в гараже своими руками схемы,размеры радиаторов, акт опрессовки системы, обарзец,ошибка 27 котел навьен, навьен делюкс ошибка 13 как исправитькак рассчитать мощность радиатора,на квадратный метр, расчёт количества секций,расчёт количества секций, алюминиевые радиаторы,как расчитать сколько надо батарей в дом, 1 секция радиатора сколько м2 отапливаемой площадиэлектрический радиатор.

Один из наиболее важных вопросов создания комфортных условий проживания в доме или квартире – это надежная, правильно рассчитанная и смонтированная, хорошо сбалансированная система отопления. Именно поэтому создание такой системы – главнейшая задача при организации строительства собственного дома или при проведении капитального ремонта в квартире многоэтажки.

Несмотря на современное разнообразие систем отопления различных типов, лидером по популярности все же остается проверенная схема: контуры труб с циркулирующим по ним теплоносителем, и приборы теплообмена – радиаторы, установленные в помещениях. Казалось бы – все просто, батареи стоят под окнами и обеспечивают требуемый нагрев… Однако, необходимо знать, что теплоотдача от радиаторов должна соответствовать и площади помещения, и целому ряду других специфических критериев. Теплотехнические расчеты, основанные на требованиях СНиП – достаточно сложная процедура, выполняемая специалистами. Тем не менее, можно выполнить ее и своими силами, естественно, с допустимым упрощением. В настоящей публикации будет рассказано, как самостоятельно провести расчет батарей отопления на площадь обогреваемого помещения с учетом различных нюансов.

Расчет батарей отопления на площадь

Но, для начала, нужно хотя бы бегло ознакомиться с существующими радиаторами отопления – от их параметров во многом будут зависеть и результаты проводимых расчетов.

Кратко о существующих типах радиаторов отопления

Содержание статьи

Современный ассортимент радиаторов, представленных в продаже, включает следующие их виды:

  • Стальные радиаторы панельной или трубчатой конструкции.
  • Чугунные батареи.
  • Алюминиевые радиаторы нескольких модификаций.
  • Биметаллические радиаторы.
Стальные радиаторы

Этот тип радиаторов не снискал себе особой популярности, несмотря на то, что некоторым моделям придается весьма элегантное дизайнерское оформление. Проблема в том, что недостатки таких приборов теплообмена существенно превышают их достоинства – невысокую цену¸ относительно небольшую массу и простоту монтажа.

Стальные радиаторы отопления имеют немало недостатков

Тонкие стальные стенки таких радиаторов недостаточно теплоёмки – быстро нагреваются, но и столь же стремительно остывают. Могут возникнуть проблемы и при гидравлических ударах – сварные соединения листов иногда дают при этом течь. Кроме того, недорогие модели, не имеющие специального покрытия, подвержены коррозии, и срок службы таких батарей невелик – обычно производители дают им довольно небольшую по длительности эксплуатации  гарантию.

В подавляющем большинстве случаев стальные радиаторы представляют собой цельную конструкцию, и варьировать теплоотдачу изменением числа секций не позволяют. Они имеют паспортную тепловую мощность, которую сразу же нужно выбирать, исходя из площади и особенностей помещения, где они планируются к установке. Исключение – некоторые трубчатые радиаторы имеют возможность изменения количества секций, но это обычно делается под заказ, при изготовлении, а не в домашних условиях.

Чугунные радиаторы

Представители этого типа батарей наверняка знакомы каждому еще с раннего детства – именно такие гармошки устанавливались ранее буквально повсеместно.

Знакомый всем с детских лет чугунный радиатор МС-140-500

Возможно, такие батареи МС-140—500 и не отличались особым изяществом, но зато верно служили не одному поколению жильцов. Каждая секция подобного радиатора обеспечивала теплоотдачу в 160 Вт. Радиатор сборный, и количество секций, в принципе, ничем не ограничивалось.

Современные чугунные батареи отопления

В настоящее время в продаже немало современных чугунных радиаторов. Их уже отличает более элегантный внешний вид, ровные гладкие наружные поверхности, которые облегчают уборку. Выпускаются и эксклюзивные варианты, с интересным рельефным рисунком чугунного литься.

При всем этом, такие модели в полной мере сохраняют основные достоинства чугунных батарей:

  • Высокая теплоемкость чугуна и массивность батарей способствуют длительному сохранению и высокой отдаче тепла.
  • Чугунные батареи, при правильной сборке и качественном уплотнении соединений, не боятся гидроударов, перепадов температур.
  • Толстые чугунные стенки мало восприимчивы к коррозии и к абразивному износу.  Может использоваться практически любой теплоноситель, так что такие батареи одинаково хороши и для автономной, и для центральной систем отопления.

Если не принимать в расчёт внешние данные старых чугунных батарей, то из недостатков можно отметить хрупкость металла (недопустимы акцентированные удары), относительную сложность монтажа, связанную в больше мере с массивностью. Кроме того, далеко не любые стеновые перегородки смогут выдержать вес таких радиаторов.

Алюминиевые радиаторы

Алюминиевые радиаторы, появившись сравнительно недавно, очень быстро завоевали популярность. Они относительно недороги, имеют современный, достаточно элегантный внешний вид, обладают отменной теплоотдачей.

При выборе алюминиевых радиаторов нужно учитывать некоторые важные нюансы

Качественные алюминиевые батареи способны выдерживать давление в 15 и более атмосфер, высокую температуру теплоносителя – порядка 100 градусов. При этом тепловая отдача от одной секции у некоторых моделей достигает порой 200 Вт. Но при этом они небольшой массой (вес секции – обычно до 2 кг) и не требуют большого объема теплоносителя (емкость – не более 500 мл).

Алюминиевые радиаторы представлены в продаже как наборными батареями, с возможностью изменения количества секций, так и цельными изделиями, рассчитанными на определенную мощность.

Недостатки алюминиевых радиаторов:

  • Некоторые типы весьма подвержены кислородной коррозии алюминия, с высоким риском газообразования при этом. Это предъявляет особы требования к качеству теплоносителя, поэтому такие батареи обычно устанавливают в автономных системах отопления.
  • Некоторые алюминиевые радиаторы неразборной конструкции, секции которых изготавливаются по технологии экструзии, могут при определенных неблагоприятных условиях дать течь на соединениях. При этом провести ремонт – попросту невозможно, и придется менять всю батарею в целом.

Изо всех алюминиевых батарей самые качественные – изготовленные с применением анодного оксидирования металла. Этим изделиям практически не страшна кислородная коррозия.

Внешне все алюминиевые радиаторы примерно похожи, поэтому необходимо очень внимательно читать техническую документацию, делая выбор.

Биметаллические радиаторы отопления

Подобные радиаторы по своей надежности оспаривают первенство с чугунными, а по тепловой отдаче – с алюминиевыми. Причина тому заключается в их особой конструкции.

Строение биметаллического радиатора отопления

Каждая из секций состоит из двух, верхнего и нижнего, стальных горизонтальных коллекторов (поз.

1), соединенных таким же стальным вертикальным каналом (поз.2). Соединение в единую батарею производится высококачественными резьбовыми муфтами (поз. 3). Высокая теплоотдача обеспечивается наружной алюминиевой оболочкой.

Стальные внутренние трубы выполнены из металла, которые не подвержен коррозии или имеет защитное полимерное покрытие. Ну а алюминиевый теплообменник ни при каких обстоятельствах не контактирует с теплоносителем, и коррозия ему абсолютно не страшна.

Таким образом, получается сочетание высокой прочности и износоустойчивости с отличными теплотехническими показателями.

Цены на популярные радиаторы отопления

Радиаторы отопления

Такие батареи не боятся даже очень больших скачков давления, высоких температур. Они, по сути, универсальны, и подходят для любых систем отопления, правда, наилучшие эксплуатационные характеристики они все же показывают в условиях высокого давления центральной системы – для контуров с естественной циркуляцией они малопригодны.

Пожалуй, единственных их недостаток – высокая цена по сравнению с любыми другими радиаторами.

Для удобства восприятия размещена таблица, в которой приведены сравнительные характеристики радиаторов. Условные обозначения в ней:

  • ТС – трубчатые стальные;
  • Чг – чугунные;
  • Ал – алюминиевые обычные;
  • АА – алюминиевые анодированные;
  • БМ – биметаллические.
 ЧгТСАлААБМ
Давление максимальное (атмосфер)
рабочее6-96-1210-2015-4035
опрессовочное12-15915-3025-7557
разрушения20-2518-2530-5010075
Ограничение по рН (водородному показателю)6,5-96,5-97-86,5-96,5-9
Подверженность коррозии под воздействием:
кислороданетданетнетда
блуждающих токовнетдаданетда
электролитических парнетслабоеданетслабое
Мощность секции при h=500 мм; Dt=70 ° , Вт16085175-200216,3до 200
Гарантия, лет1013-10303-10
Видео: рекомендации по выбору радиаторов отопления

Возможно, вас заинтересует информация о том, что собой представляет батарея биметаллическая

Как рассчитать нужное количество секций радиатора отопления

Понятно, что установленный в помещении радиатор (один или несколько) должен обеспечить прогрев до комфортной температуры и компенсировать неизбежные теплопотери, независимо от погоды на улице.

Базовой величиной для вычислений всегда выступает площадь или объем комнаты. Сами по себе профессиональные расчеты – весьма сложны, и учитывают очень большое число критериев. Но для бытовых нужд можно воспользоваться упрощенными методиками.

Самые простые способы расчета

Принято считать, что для создания нормальных условий в стандартном жилом помещении достаточно 100 Вт на квадратный метр площади. Таким образом, следует всего лишь вычислить площадь комнаты и умножить ее на 100.

Q = S × 100

Q– требуемая теплоотдача от радиаторов отопления.

S– площадь обогреваемого помещения.

Если планируется установка неразборного радиатора, то это значение и станет ориентиром для подбора необходимой модели. В случае, когда будут устанавливаться батареи, допускающие изменение количества секций, следует провести еще один подсчет:

N = Q/ Qус

N– рассчитываемое количество секций.

Qус – удельная тепловая мощность одной секции. Эта величина в обязательном порядке указывается в техническом паспорте изделия.

Как видите, расчеты эти чрезвычайно просты, и не требуют каких-либо особых знаний математики – достаточно рулетки чтобы измерить комнату и листка бумаги для вычислений. Кроме того, можно воспользоваться и таблицей, расположенной ниже – там приведены уже рассчитанные значения для комнат различной площади и определённых мощностей обогревательных секций.

Таблица секции

Однако, нужно помнить, что эти значения – для стандартной высоты потолка (2,7 м) многоэтажки. Если высота комнаты иная, то лучше просчитать количество секций батареи, исходя из объема помещения. Для этого применяется усредненный показатель – 41 Вт тепловой мощности на 1 м³ объема в панельном доме, или 34 Вт – в кирпичном.

Q = S × h× 40 (34)

где – высота потолка над уровнем пола.

Дальнейший расчет – ничем не отличается от представленного выше.

Подробный расчет  с учетом особенностей помещения

А теперь перейдем к более серьезным расчетам. Упрощенная методика вычисления, приведенная выше, может преподнести хозяевам дома или квартиры «сюрприз». Когда установленные радиаторы не будут создавать в жилых помещениях требуемого комфортного микроклимата. И причина тому – целый перечень нюансов, которых рассмотренный метод просто не учитывает. А между тем, подобные нюансы могут иметь весьма важное значение.

Итак, за основу вновь берется площадь помещения и всё те же 100 Вт на м². Но сама формула уже выглядит несколько иначе:

Q = S × 100 × А × В × С × D× Е × F× G× H× I× J

Буквами от А до J условно обозначены коэффициенты, учитывающие особенности помещения и установки в нем радиаторов. Рассмотрим их по порядку:

А – количество внешних стен в помещении.

Понятно, что чем выше площадь контакта помещения с улицей, то есть, чем больше в комнате внешних стен, тем выше общие теплопотери. Эту зависимость учитывает коэффициент А:

  • Одна внешняя стена – А = 1,0
  • Две внешних стены – А = 1,2
  • Три внешний стены – А = 1,3
  • Все четыре стены внешние – А = 1,4

В – ориентация помещения по сторонам света.

Максимальные теплопотери всегда в комнатах, в которые не поступает прямого солнечного света. Это, безусловно, северная сторона дома, и сюда же можно отнести восточную – лучи Солнца здесь бывают только по утрам, когда светило еще «не вышло на полную мощность».

Прогреваемость помещений во многом зависит от их расположения относительно сторон света

Южная и западная стороны дома всегда прогреваются Солнцем значительно сильнее.

Отсюда – значения коэффициента В:

  • Комната выходит на север или восток – В = 1,1
  • Южная или западная комнаты – В = 1, то есть, может не учитываться.

С – коэффициент, учитывающий степень утепленности стен.

Понятно, что теплопотери из отапливаемого помещения будут зависеть от качества термоизоляции внешних стен. Значение коэффициента С принимают равным:

  • Средний уровень — стены выложены в два кирпича, или предусмотрено их поверхностное утепление другим материалом – С = 1,0
  • Внешние стены не утеплены – С = 1,27
  • Высокий уровень утепления на основе теплотехнических расчетов – С = 0,85.

D – особенности климатических условий региона.

Естественно, что нельзя равнять все базовые показатели требуемой мощности обогрева «под одну гребенку» — они зависят и от уровня зимних отрицательных температур, характерного для конкретной местности. Это учитывает коэффициент D. Для его выбора берутся средние температуры самой холодной декады января – обычно это значение несложно уточнить в местной гидрометеорологической службе.

  • — 35 °С и ниже – D= 1,5
  • — 25  ÷ — 35 °С – D= 1,3
  • до – 20 °С – D= 1,1
  • не ниже – 15 °С – D= 0,9
  • не ниже – 10 °С – D= 0,7

Е – коэффициент высоты потолков помещения.

Как уже говорилось, 100 Вт/м² — это усредненное значение для стандартной высоты потолков. Если она отличается, следует ввести поправочный коэффициент Е:

  • До 2,7 м – Е = 1,0
  • 2,8 – 3,0 м – Е = 1,05
  • 3,1 – 3,5 м – Е = 1,1
  • 3,6 – 4,0 м – Е = 1,15
  • Более 4,1 м – Е = 1,2

F– коэффициент, учитывающий тип помещения, расположенного выше

Устраивать систему отопления в помещениях с холодным полом – бессмысленное занятие, и хозяева всегда в этом вопросе принимают меры. А вот тип помещения, расположенного выше, часто от них никак не зависит. А между тем, если сверху жилое или утепленное помещение, то общая потребность в тепловой энергии значительно снизится:

  • холодный чердак или неотапливаемое помещение – F= 1,0
  • утепленный чердак (в том числе – и утепленная кровля) – F= 0,9
  • отапливаемое помещение – F= 0,8

G– коэффициент учета типа установленных окон.

Различные оконные конструкции подвержены теплопотерям неодинаково. Это учитывает коэффициент G:

  • обычные деревянные рамы с двойным остеклением – G= 1,27
  • окна оснащены  однокамерным стеклопакетом (2 стекла) – G= 1,0
  •  однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет (3 стекла) — G= 0,85

Н – коэффициент площади остекления помещения.

Общее количество теплопотерь зависит и от суммарной площади окон, установленных в помещении. Эта величина рассчитывается на основании отношения площади окон к площади помещения. В зависимости от полученного результата находим коэффициент Н:

  • Отношение менее 0,1 – Н = 0,8
  • 0,11 ÷ 0,2 – Н = 0,9
  • 0,21 ÷ 0,3 – Н = 1,0
  • 0,31÷ 0,4 – Н = 1,1
  • 0,41 ÷ 0,5 – Н = 1,2

I– коэффициент, учитывающий схему подключения радиаторов.

От того, как подключены радиаторы к трубам подачи и обратки, зависит их теплоотдача. Это тоже следует учесть при планировании установки и определения нужного количества секций:

Схемы врезки радиаторов в контур отопления

  • а – диагональное подключение, подача сверху, обратка снизу – I = 1,0
  • б – одностороннее подключение, подача сверху, обратка снизу – I = 1,03
  • в – двустороннее подключение, и подача, и обратка снизу – I = 1,13
  • г – диагональное подключение, подача снизу, обратка сверху – I = 1,25
  • д – одностороннее подключение, подача снизу, обратка сверху – I = 1,28
  • е – одностороннее нижнее подключение обратки и подачи – I = 1,28

J– коэффициент, учитывающий степень открытости установленных радиаторов.

Многое зависит и от того, насколько установленные батареи открыты для свободного теплообмена с воздухом помещения. Имеющиеся или искусственно созданные преграды способны существенно снизить теплоотдачу радиатора. Это учитывает коэффициент J:

На теплоотдачу батарей влияет место и способ их установки в помещении

а – радиатор расположен открыто на стене или не прикрыт подоконником – J= 0,9

б – радиатор прикрыт сверху подоконником или полкой – J= 1,0

в – радиатор прикрыт сверху горизонтальным выступом стеновой ниши – J= 1,07

г – радиатор сверху прикрыт подоконником, а с фронтальной стороны — частично прикрыт декоративным кожухом – J= 1,12

д – радиатор полностью прикрыт декоративным кожухом  – J= 1,2

  ⃰⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰

Ну вот, наконец, и все. Теперь можно подставлять в формулу нужные значения и соответствующие условиям коэффициенты, и на выходе получится требуемая тепловая мощность для надежного обогрева помещения, с учетом все нюансов.

После этого останется или подобрать неразборный радиатор с нужной тепловой отдачей, или же разделить вычисленное значение на удельную тепловую мощность одной секции батареи выбранной модели.

Наверняка, многим такой подсчет покажется чрезмерно громоздким, в котором легко запутаться. Для облегчения проведения вычислений предлагаем воспользоваться специальным калькулятором – в него уже заложены все требуемые величины. Пользователю остается лишь ввести запрашиваемые исходные значения или выбрать из списков нужные позиции. Кнопка «рассчитать» сразу приведет к получению точного результата с округлением в большую сторону.

Калькулятор для точного расчета радиаторов отопления

Перейти к расчётам

 

Последовательно введите запрашиваемые значения или отметьте нужные варианты в предлагаемых списках

Установите ползунком значение площади помещения, м²

Сколько внешних стен в помещении?

однадветричетыре

В какую сторону света смотрят внешние стены

Север, Северо-Восток, ВостокЮг, Юго-Запад, Запад

Укажите степень утепленности внешних стен

Внешние стены не утепленыСредняя степень утепленияВнешние стены имеют качественное утепление

Укажите среднюю температуру воздуха в регионе в самую холодную декаду года

— 35 °С и нижеот — 25 °С до — 35 °Сдо — 20 °Сдо — 15 °Сне ниже — 10 °С

Укажите высоту потолка в помещении

до 2,7 м2,8 ÷ 3,0 м3,1 ÷ 3,5 м3,6 ÷ 4,0 мболее 4,1 м

Что располагается над помещением?

холодный чердак или неотапливаемое и не утепленное помещениеутепленные чердак или иное помещениеотапливаемое помещение

Укажите тип установленных окон

Обычные деревянные рамы с двойным остеклениемОкна с однокамерным (2 стекла) стеклопакетомОкна с двухкамерным (3 стекла) стеклопакетом или с аргоновым заполнением

Укажите количество окон в помещении

Укажите высоту окна, м

Укажите ширину окна, м

Выберите схему подключения батарей

Укажите особенности установки радиаторов

Радиатор располжен открыто на стене или не прикрыт подоконникомРадиатор полностью прикрыт сверху подоконником или полкойРадиатор установлен в стеновой нишеРадиатор частично прикрыт фронтальным декоративным экраномРадиатор полностью закрыт декоративным кожухом

 

Ниже будет предложено ввести паспортную мощность одной секции выбранной модели радиатора.
Если целью расчетов стоит определение потребной суммарной тепловой мощности для отопления комнаты (например, для выбора неразборных радиаторов) то оставьте поле пустым

Введите паспортную тепловую мощность одной секции выбранной модели радиатора

Автор публикации, и он же – составитель калькулятора, надеется, что посетитель нашего портала получил полноценную информацию и хорошее подспорье для самостоятельного расчета.

Возможно, вас заинтересует информация о том, как выбрать электрокотел.

Расчет секций алюминиевых радиаторов на квадратный метр

Здесь вы узнаете про расчет секций алюминиевых радиаторов на квадратный метр: сколько нужно батарей на комнату и частный дом, пример вычисления максимального количества обогревателей на необходимою площадь.

Мало знать, что алюминиевые батареи обладают высоким уровнем теплоотдачи.

Перед их установкой обязательно нужно произвести расчет, какое именно их количество должно быть в каждом отдельном помещении.

Только зная, сколько алюминиевых радиаторов нужно на 1 м2, можно с уверенностью покупать необходимое количество секций.

Расчет секций алюминиевых радиаторов на квадратный метр

Как правило, производителями заранее просчитаны нормы мощности батарей из алюминия, которые зависят от таких параметров, как высота потолков и площадь помещения. Так считается, что на то, чтобы нагреть 1 м2 комнаты с потолком до 3 м высоты потребует тепловая мощность в 100 Вт.

Эти цифры приблизительны, так как расчет алюминиевых радиаторов отопления по площади в данном случае не предусматривает возможных теплопотерь в помещении или более высокие или низкие потолки. Это общепринятые строительные нормы, которые указывают в техпаспорте своей продукции производители.

Кроме них:

  1. Немалую важность играет параметр тепловой мощности одного ребра радиатора. Для алюминиевого обогревателя она составляет 180-190 Вт.
  2. Температура носителя так же должна учитываться. Ее можно узнать в управляющем тепловом хозяйстве, если отопление централизованное, либо измерить самостоятельно в автономной системе. Для алюминиевых батарей показатель равен 100-130 градусам. Разделив температуру на тепловую мощность радиатора, получается, что для обогрева 1 м2 потребуется 0.55 секций.
  3. В том случае, если высота потолков «переросла» классические стандарты, то необходимо применять специальный коэффициент:
    • если потолок равен 3 м, то параметры умножаются на 1.05;
    • при высоте 3.5 м он составляет 1.1;
    • при показателе 4 м – это 1.15;
    • высота стены 4.5 м – коэффициент равен 1.2.
  4. Можно воспользоваться таблицей, которую предоставляют производители к своей продукции.


Сколько нужно секций алюминиевого радиатора?

Расчет количества секций алюминиевого радиатора производится по форме, подходящей для обогревателей любого типа:

Q = S х100 х k/P

В данном случае:

  • S – площадь помещения, где требуется установка батареи;
  • k – коэффициент корректировки показателя 100 Вт/м2 в зависимости от высоты потолка;
  • P – мощность одного элемента радиатора.

При расчете количества секций алюминиевых радиаторов отопления получается, что в помещении площадью 20 м2 при высоте потолка 2.7 м для алюминиевого радиатора с мощностью одной секции 0.138 кВт потребуется 14 секций.

Q = 20 х 100 / 0.138 = 14.49

В данном примере коэффициент не применяется, так как высота потолка менее 3 м. Но даже такой секций алюминиевых радиаторов отопления не будут верными, так как не взяты во внимание возможные теплопотери помещения. Следует учитывать, что в зависимости от того, сколько в комнате окон, является ли она угловой и есть ли в ней балкон: все это указывает на количество источников теплопотерь.

Делая расчет алюминиевых радиаторов по площади помещения, следует в формуле учитывать процент потери тепла в зависимости от того, где они будут установлены:

  • если они закреплены под подоконником, то потери составят до 4%;
  • установка в нише моментально увеличивает этот показатель до 7%;
  • если алюминиевый радиатор для красоты прикрыть с одной стороны экраном, то потери составят до 7-8%;
  • закрытый экраном полностью, он будет терять до 25%, что делает его в принципе малорентабельным.

Это далеко не все показатели, которые следует учесть при установке алюминиевых батарей.

Пример расчета

Если рассчитывать, сколько секций алюминиевого радиатора надо на комнату площадью 20 м2 при норме 100 Вт/м2, то так же следует вносить корректировочные коэффициенты потери тепла:

  • каждое окно добавляет к показателю 0.2 кВт;
  • дверь «обходится» в 0.1 кВт.

Если предполагается, что радиатор будет размещен под подоконником, то корректирующий коэффициент составит 1.04, а сама формула будет выглядеть следующим образом:

Q = (20 х 100 + 0,2 + 0,1) х 1,3 х 1,04 / 72 = 37,56

Где:

  • первый показатель – это площадь комнаты;
  • второй – стандартное количество Вт на м2;
  • третий и четвертый указывают на то, что в комнате по одному окну и двери;
  • следующий показатель – это уровень теплоотдачи алюминиевого радиатора в кВт;
  • шестой – корректирующий коэффициент касаемо расположения батареи.

Все следует разделить на теплоотдачу одного ребра обогревателя. Его можно определить из таблицы от производителя, где указаны коэффициенты нагрева носителя по отношению к мощности устройства. Средний показатель для одного ребра равен 180 Вт, а корректировка – 0.4. Таким образом, умножив эти цифры, получается, что 72 Вт дает одна секция при нагреве воды до +60 градусов.

Так как округление производится в большую сторону, то максимальное количество секций в алюминиевом радиаторе конкретно для этого помещения составит 38 ребер. Для улучшения работы конструкции, ее следует разделить на 2 части по 19 ребер каждая.

Вычисление по объему

Если производить подобные вычисления, то потребуются обратиться к нормативам, установленным в СНиП. В них учитываются не только показатели радиатора, но и то, из какого материала построено здание.

Например, для дома из кирпича нормой для 1 м2 будет 34 Вт, а для панельных строений – 41 Вт. Чтобы рассчитать количество секций батареи по объему помещения, следует: объем помещения умножить на нормы теплозатрат и разделить на теплоотдачу 1 секции.

Например:

  1. Чтобы высчитать объем комнаты площадью 16 м2, нужно умножить этот показатель на высоту потолков, например, 3 м (16х3 = 43 м3).
  2. Норма тепла для кирпичного здания = 34 Вт, чтобы узнать какое требуется количество для данной комнаты, 48 м3 х 34 Вт (для панельного дома на 41 Вт) = 1632 Вт.
  3. Определяем, сколько требуется секций при мощности радиатора, например, 140 Вт. Для этого 1632 Вт/ 140 Вт =11.66.

Округлив этот показатель, получаем результат, что для комнаты объемом 48 м3 требуется алюминиевый радиатор из 12 секций.

Тепловая мощность 1 секции

Как правило, производители указывают в технических характеристиках обогревателей средние показатели теплоотдачи. Так для обогревателей из алюминия он составляет 1.9-2.0 м2. Чтобы высчитать, какое количество секций потребуется, нужно площадь помещения разделить на этот коэффициент.

Например, для той же комнаты площадью 16 м2 потребуется 8 секций, так как 16/ 2 = 8.

Эти расчеты приблизительные и использовать их без учета теплопотерь и реальных условий размещения батареи нельзя, так как можно получить после монтажа конструкции холодную комнату.

Чтобы получить самые точные показатели, придется рассчитать количество тепла, которое необходимо для обогрева конкретной жилой площади. Для этого придется учитывать многие корректирующие коэффициенты. Особенно важен такой подход, когда требуется расчет алюминиевых радиаторов отопления для частного дома.

Формула, необходимая для этого выглядит следующим образом:

КТ = 100Вт/м2 х S х К1 х К2 х К3 х К4 х К5 х К6 х К7

  1. КТ – это то количество тепла, которое требуется данному помещению.
  2. S – площадь.
  3. К1 – обозначение коэффициента для остекленного окна. Для стандартного двойного остекления он равен 1.27, для двойного стеклопакета – 1.0, а для тройного – 0.85.
  4. К2 – это коэффициент уровня утепления стены. Для неутепленной панели он = 1.27, для кирпичной стены с кладкой в один слой = 1.0, а в два кирпича = 0.85.
  5. К3 – это соотношение площади, занимаемой окном и полом.Когда между ними:
    • 50% — коэффициент составляет 1.2;
    • 40% — 1.1;
    • 30% — 1.0;
    • 20% — 0.9;
    • 10% — 0.8.
  6. К4 – это коэффициент, учитывающий температуру воздуха по СНиП в самые холодные дни года:
    • +35 = 1.5;
    • +25 = 1.2;
    • +20 = 1.1;
    • +15 = 0.9;
    • +10 = 0.7.
  7. К5 указывает на корректировку при наличии наружных стен.Например:
    • когда она одна, показатель равен 1.1;
    • две наружные стены – 1.2;
    • 3 стены – 1.3;
    • все четыре стены – 1.4.
  8. К6 учитывает наличие помещения над комнатой, для которой производятся расчеты.При наличии:
    • неотапливаемого чердака – коэффициент 1. 0;
    • чердак с обогревом – 0.9;
    • жилая комната – 0.8.
  9. К7 – это коэффициент, который указывает на высоту потолка в комнате:
    • 2.5 м = 1.0;
    • 3.0 м = 1.05;
    • 3.5 м = 1.1;
    • 4.0 м = 1.15;
    • 4.5 м = 1.2.

Если применить эту формулу, то можно предусмотреть и учесть практически все нюансы, которые могут повлиять на обогрев жилой площади. Сделав расчет по ней, можно быть точно уверенным, что полученный результат указывает на оптимальное количество секций алюминиевого радиатора для конкретного помещения.

Какой бы принцип расчетов ни был предпринят, важно сделать его в целом, так как правильно подобранные батареи позволяют не только наслаждаться теплом, но и значительно экономят на энергозатратах. Последнее особенно важно в условиях постоянно растущих тарифов.

Полезное видео

Стальные радиаторы отопления. Расчет мощности стальных радиаторов отопления с учетом площади помещения и теплопотерь.

Все про стальные радиаторы отопления: расчет мощности (таблица), определение с учетом теплопотерь, процентное увеличение и вычисление по площади помещения, а также как подобрать панельные батареи.

От того, насколько правильно и грамотно был произведен расчет мощности стального радиатора, настолько же можно ожидать от него тепла.

В данном случае нужно учесть, чтобы совпали технические параметры отопительной системы и обогревателя.

Расчет по площади помещения

Чтобы теплоотдача стальных радиаторов была максимальной, можно воспользоваться расчетом их мощностей, исходя из размера комнаты.

Если взять в качестве примера помещение с площадью 15 м2 и потолками высотой 3 м, то, высчитав его объем (15х3=45) и умножив на количество требуемых Вт (по СНиП – 41 Вт/м3 для панельных домов и 34 Вт/ м3 для кирпичных), то получится, что потребляемая мощность равна 1845 Вт (панельное здание) или 1530 Вт (кирпичное).

После этого достаточно проследить, чтобы расчет мощности стальных радиаторов отопления (можно свериться с таблицей, которую предоставляет производитель) соответствовал полученным параметрам. Например, при покупке обогревателя типа 22 нужно отдать предпочтение конструкции, имеющей высоту 500 мм, а длину 900 мм, которой свойственна мощность 1851 Вт.

Если предстоит замена старых батарей на новые или переустройство всей отопительной системы, то следует тщательно ознакомиться с требованиями СНиП. Это избавит от возможных недочетов и нарушений при монтажных работах.

Стальные радиаторы отопления: расчет мощности (таблица)

Определение мощности с учетом теплопотерь

Кроме показателей, связанных с материалом, из которого построен многоквартирный дом и указанных в СНиП, в расчетах можно использовать температурные параметры воздуха на улице. Этот способ основан на учете теплопотерь в помещении.

Для каждой климатической зоны определен коэффициент в соответствии с холодными температурами:

  • при -10 ° C – 0.7;
  • — 15 ° C – 0.9;
  • при — 20 ° C – 1.1;
  • — 25 ° C – 1.3;
  • до — 30 ° C – 1.5.

Теплоотдача стальных радиаторов отопления (таблица предоставляется фирмой-производителем) должна быть определена с учетом количества наружных стен. Так если в комнате она одна, то результат, полученный при расчете стальных радиаторов отопления по площади, нужно умножить на коэффициент 1.1, если их две или три, то он равен 1.2 или 1.3.

Например, если температура за окном – 25 ° C, то при расчете стального радиатора типа 22 и требуемой мощностью 1845 Вт (панельный дом) в помещении, где 2 наружные стены, получится следующий результат:

  • 1845х1.2х1.3 = 2878.2 Вт. Этому показателю соответствуют панельные конструкции 22-го типа 500 мм высоты и 1400 мм длины, имеющие мощность 2880 Вт.

Так подбираются панельные радиаторы отопления (расчет по площади с учетом коэффициента теплопотерь). Подобный подход к выбору мощности панельной батареи обеспечит максимально эффективную ее работу.

Чтобы было легче произвести расчет стальных радиаторов отопления по площади, калькулятор онлайн сделает это в считанные секунды, достаточно внести в него необходимые параметры.

Процентное увеличение мощности

Можно учитывать теплопотери не только по стенам, но и окнам.

Например, прежде чем выбирать стальной радиатор отопления, расчет по площади нужно увеличить на определенное количество процентов в зависимости от количества окон в помещении:

  1. При наличии двух наружных стен и одного окна показатель увеличивается на 20%.
  2. Если и окон, и стен, выходящих наружу по два, то прибавляется 30%.
  3. Когда стены внутренние, но окно выходит на север, то на 10%.
  4. Если квартира расположена внутри дома, а обогреватели закрыты решетками, то теплоотдача стальных панельных радиаторов должна быть увеличена на 15%.

Учет подобных нюансов перед установкой панельных батарей из стали позволяет правильно выбрать нужную модель. Это сэкономит средства на ее эксплуатации при максимальной теплоотдаче.

Поэтому не следует думать только о том, как подобрать стальные радиаторы отопления по площади помещения, но и учитывать его теплопотери и даже расположение окон. Такой комплексный подход позволяет учесть все факторы, влияющие на температуру в квартире или доме.

Калькулятор расчета количества секций радиаторов отопления: делаем правильный расчет количества секций на комнату

В подавляющем числе случаев основными приборами конечного теплообмена в системах отопления остаются радиаторы. Значит, важно не только правильно заранее рассчитать требуемую тепловую мощность котла отопления, но и правильно расставить приборы теплообмена в помещениях дома или квартиры, чтобы обеспечить комфортный микроклимат в каждом из них.

Калькулятор расчета количества секций радиаторов отопления

В этом вопросе поможет калькулятор расчета количества секций радиаторов отопления, который размещен ниже. Он также позволяет определить необходимую суммарную тепловую мощность радиатора, если тот является неразборной моделью.

Если в ходе расчетов будут возникать вопросы, то ниже калькулятора размещены основные пояснения по его структуре и правилам применения.

Калькулятор расчета количества секций радиаторов отопления

 Перейти к расчётам

 

Укажите запрашиваемые данные и нажмите
«РАССЧИТАТЬ ПАРАМЕТРЫ РАДИАТОРА ОТОПЛЕНИЯ»

 

КЛИМАТИЧЕСКИЕ УСЛОВИЯ РЕГИОНА

 

ГЕОМЕТРИЯ ПОМЕЩЕНИЯ

Площадь помещения, м²

 

ДРУГИЕ ВАЖНЫЕ ОСОБЕННОСТИ ПОМЕЩЕНИЯ

Внешние стены смотрят на:

Положение внешней стены относительно зимней розы ветров

 

ТИП, КОЛИЧЕСТВО И РАЗМЕРЫ ОКОН В ПОМЕЩЕНИИ

Высота окна, м Ширина окна, м

Тип установленных окон

 

ДВЕРИ НА УЛИЦУ ИЛИ В ХОЛОДНЫЕ ПОМЕЩЕНИЯ

 

ОСОБЕННОСТИ ПОДКЛЮЧЕНИЯ И РАСПОЛОЖЕНИЯ РАДИАТОРОВ

Планируемая схема врезки радиаторов в контур отопления

Планируемое размещение радиатора на стене

 

ВЫБОР НАПРАВЛЕНИЯ РАСЧЕТА

ЧТО ТРЕБУЕТСЯ РАССЧИТАТЬ?

Паспортная мощность одной секции радиатора, Ватт (только для разборных моделей)

Некоторые разъяснения по работе с калькулятором

Часто можно встретить утверждение, что для расчета требуемой тепловой отдачи радиаторов достаточно принять соотношение 100 Вт на 1 м² площади комнаты. Однако, согласитесь, что такой подход совершенно не учитывает ни климатических условий региона проживания, ни специфики дома и конкретного помещения, ни особенностей установки самих радиаторов. А ведь все это имеет определенное значение.

В данном алгоритме за основу также взято соотношение 100 Вт/м², однако, введены поправочные коэффициенты, которые и внесут необходимые коррективы, учитывающие различные нюансы.

— Площадь помещения – хозяевам известна.

— Количество внешних стен – чем их больше, тем выше теплопотери, которые необходимо компенсировать дополнительной мощностью радиаторов. В угловых квартирах часто комнаты имеют по две внешних стены, а в частных домах встречаются помещения и с тремя такими стенами. В то же время бывают и внутренние помещения, в которых теплопотери через стены практически отсутствуют.

— Направление внешних стен по сторонам света. Южная или юго-западная сторона будет получать какой-никакой солнечный «заряд», а вот стены с севера и северо-востока Солнца не видят никогда.

— Зимняя «роза ветров» – стены с наветренной стороны, естественно, выхолаживаются намного быстрее. Если хозяевам этот параметр неизвестен, то можно оставить без заполнения – калькулятор рассчитает для самых неблагоприятных условий.

— Уровень минимальных температур – скажет о климатических особенностях региона. Сюда должны вноситься не аномальные значения, а средние, характерные для данной местности в самую холодную декаду года.

— Степень утепления стен. По большому счету, стены без утепления – вообще не должны рассматриваться. Средний уровень утепления будет соответствовать, примерно, стене в 2 кирпича из пустотного керамического кирпича. Полноценное утепление – выполненное в полном объеме на основании теплотехнических расчетов.

— Немалые теплопотери происходят через перекрытия – полы и потолки. Поэтому важное значение имеет соседство помещения сверху и снизу – по вертикали.

— Количество, размер и тип окон – связь с теплотехническими характеристиками помещения очевидна.

— Количество входных дверей (на улицу, в подъезд или на неотапливаемый балкон) – любое открытие будет сопровождаться «порцией» поступающего холодного воздуха, и это необходимо каким-то образом компенсировать.

— Имеет значение схема врезки радиаторов в контур – теплоотдача от этого существенно изменяется. Кроме того, эффективность теплообмена зависит и от степени закрытости батареи на стене.

— Наконец, последним пунктом будет предложено ввести удельную тепловую мощность одной секции батареи отопления. В результате будет получено требуемое количество секций для размещения в данном помещении. Если расчет проводится для неразборной модели, то этот пункт оставляют незаполненным, а результирующее значение берут из второй строки расчета – она покажет необходимую мощность радиатора в кВт.

В расчетное значение уже заложен необходимый эксплуатационный резерв.

алюминиевый радиатор отопления

Что необходимо еще знать про радиаторы отопления?

При выборе этих приборов теплообмена следует учитывать ряд важных нюансов. Подробнее об этом можно узнать в публикациях нашего портала, посвящённых стальным, алюминиевым и биметаллическим радиаторам отопления.

Сколько секций радиатора

  • Меню
  • Каталог
    • НАЗАД
    • Каталог
    • Радиаторы и комплектующие
    • Гидрострелки и коллектора
    • Теплый пол водяной
    • Теплый пол электрический
    • Теплоноситель для отопления
    • Насосы и автоматика
    • Запорно-регулирующая арматура
    • Полипропиленовые системы
    • Металлопластиковые системы
    • Сшитый полиэтилен для отопления
    • Канализационные системы
    • Полиэтиленовые системы (ПНД)
    • Фитинги

Расчет количества радиаторов отопления по площади помещения |Системы отопления

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ПАНЕЛЬНЫХ РАДИАТОРОВ ОТОПЛЕНИЯ

Основным материалом для изготовления панельных радиаторов является сталь. Сталь, как высокотехнологичный материал обладает отличным набором свойств: прочность, ковкость, гибкость – всё это предает агрегатам из стали массу полезных свойств, а хорошая податливость сварке и высокая теплопроводность делают сталь идеальным материалом для радиаторов отопления.

 

Главной конструктивной единицей панельного радиатора является панель, которых, в зависимости от типа радиатора, может быть и одна, и две, и три.

 

Панель радиатора – это два сваренных между собой тонких стальных листа. Листы же до сварки проходят штамповку, где им предаётся профиль – это и есть каналы для циркуляции нагретой жидкости в панели радиатора. Панели, если их две и более, соединенные между собой трубками, с металлическим кожухом по бокам и декоративной верхней решеткой и есть готовый панельный радиатор отопления.

 

Для повышения теплоотдачи и скорости обогрева помещения, радиатор может оснащаться конвекционными ходами с внутренней стороны панелей в виде ребристого листа из более тонкой стали, что способствует перемещению воздушных масс в помещении и равномерному обогреву.

 

Как видно, технология изготовления данных агрегатов проста, что и объясняет их достаточно низкую стоимость.

 

Если производитель не экономит на качестве материала и для производства радиаторов использует качественную сталь, применяет современные технологичные методы нанесения защитного покрытия, то такой радиатор гарантированно и бесперебойно служит долгие годы.

 

В зависимости от количества панелей и конвекторов панельные радиаторы делятся на типы. Двухзначное число к маркировке панельного радиатора является обозначением его принадлежности к определенному типу, где первая цифра – это количество панелей, а вторая, соответственно, количество конвекторов.

ТИПЫ ПАНЕЛЬНЫХ РАДИАТОРОВ ОТОПЛЕНИЯ

Тип 10 – панельный радиатор, состоящий из одной панели без конвектора, кожухов и верхней решетки.

 

Тип 20 – панельный радиатор, состоящий из соединенных между собой патрубками двух панелей, без конвектора, кожухов и закрытый верхней решетки.

Тип 30 – панельный радиатор, состоящий из соединенных между собой патрубками трех панелей, без конвектора, кожухов и закрытый верхней решетки.

Тип 11 – панельный радиатор, состоящий из одной панели, одного конвектора, без кожухов и верхней решетки.

Тип 21 – панельный радиатор, состоящий из соединенных между собой патрубками двух панелей, одним конвектором, закрытый кожухом и верхней решеткой.

Тип 22 – панельный радиатор, состоящий из соединенных между собой патрубками двух панелей, двумя конвекторами, закрытый кожухом и верхней решеткой.

Тип 33 – панельный радиатор, состоящий из соединенных между собой патрубками трех панелей, тремя конвекторами, закрытый кожухом и верхней решеткой.

ПОДБОР ТРЕБУЕМОГО ПАНЕЛЬНОГО РАДИАТОРА, РАСЧЕТ ПО ПЛОЩАДИ ПОМЕЩЕНИЯ

Панельный радиатор является эффективным отопительным агрегатом и за счет большой нагреваемой площади имеет повышенную теплоотдачу. Панельные радиаторы имеют широкий диапазон размеров, как по вертикали, от 300 до 900 мм, так и по горизонтали, от 400 до 3000 мм.

 

В зависимости от размера и типа панельного радиатора меняется и его показатель теплоотдачи, то есть количество отдаваемого тепла радиатором в единицу времени, который измеряется в Ваттах (Вт). Каждый радиатор, помимо маркировки типа и габаритов имеет свой основной показатель – тепловую мощность.

 

Есть усредненные простейшие формулы расчета требуемой суммарной тепловой мощности для отопления помещений.

 

Первый способ, исходит из расчета в 100 Вт на 1 м² помещения. Для примера, если комната 15 м² то 100 х 15 = 1 500 Вт. Соответственно, нам необходим радиатор мощностью не ниже 1 500 Вт, к примеру подойдет панельный радиатор 500х800, тип 22 с мощностью 1 515 Вт.

 

Но существует множество внешних факторов и переменных, влияющих на сумму необходимой тепловой энергии для поддержания комфортной температуры в комнате.

 

Факторы влияния есть очевидные: высота потолков, количество окон, наличие наружной двери в комнате, теплоизоляция дома – пола, стен и потолков, метод подключения и расположение радиаторов отопления. Но не менее важными факторами будут и роза ветров, верхний и нижний температурные пороги в отапливаемое время года, даже ориентация стен по сторонам света.

 

В действительности сложно учесть все эти факторы для точного расчета требуемой тепловой мощности и для бытового расчета приняты некоторые правила:

 

— наличие окна в помещении + 100 Вт;

— наличие наружной двери + 200;

— суммарное влияние всех неучтенных факторов + 20% к полученной сумме требуемой тепловой мощности.

 

Во второй формуле будем исходить из расчета в 40 Вт на 1 м³ и учета вышеизложенных правил.

К примеру, комната 3 на 6 метров и высотой потолков 3,2 метров, двумя окнами, одно шириной 900 мм, второе — 1200 мм и внешней дверью:

 

(3 х 6 х 3,2 х 40 + (100 х 2) + 200) + 20% = 3 245 Вт

 

Итого, 3 245 Вт тепловой энергии радиаторов требуется для обогрева нашей комнаты.

            3 245 / 2 окна и получаем среднюю тепловую мощность на один радиатор, равную 1 622 Вт

Конечно, можно установить под каждое окно в комнате по одному радиатору Airfel 500×900, тип 22 с тепловой мощностью 1704, но для достижения максимального эффекта необходимо учесть и размеры оконных проёмов.

 

Касаемо установки самих радиаторов, необходимо следовать некоторым правилам. Например, при наличии окон в комнате, как во втором примете, радиаторы нужно устанавливать на стене под окнами, чтобы конвекционный поток нагретого воздуха создавал тепловой щит. Также радиатор должен быть равен минимум 80% от ширины оконного проема.

 

А теперь, воспользовавшись таблицей отдаваемой тепловой мощности и учитывая количество окон в комнате и их ширину проемов, подберем панельный радиатор, отвечающий нашим требованиям:

ТАБЛИЦА ТЕПЛООТДАЧИ ПАНЕЛЬНЫХ РАДИАТОРОВ AIRFEL

Изучив таблицу теплоотдачи, рекомендовано в комнате из примера установить два отопительных радиатора, один — Airfel 500×800 mm с тепловой мощностью 1515 Вт под окном шириной 900 мм и второй — Airfel 500×1000 mm с тепловой мощностью 1894 Вт под окном шириной 1200 мм. Мощности подобранных радиаторов будет достаточно для отопления нашей комнаты, а оставшийся запас можно использовать во время резкого похолодания, тем самым избежать перепадов температуры в помещении.

ТАБЛИЦА ТЕПЛООТДАЧИ ПАНЕЛЬНЫХ РАДИАТОРОВ PRADO

ToughSF: Все радиаторы

На каждом космическом корабле будут радиаторы. Такая энергия, как солнечный свет, реакторы, жилые помещения и ракетные двигатели, накапливается в виде тепла, если не удаляется с помощью излучения.
Мы рассмотрим, как работает этот важнейший компонент, а затем рассмотрим существующие, будущие и возможные конструкции. Стефан Больцманн
На Земле тепло покидает транспортное средство посредством теплопроводности, конвекции и излучения. В космическом вакууме только излучение отводит избыточное тепло.
Радиаторы Международной космической станции.
Космические корабли подвергаются воздействию солнечного света в космосе, который они поглощают в виде тепла через корпус. Различное бортовое оборудование производит отходящее тепло из-за своей различной неэффективности, с разной скоростью и температурой. Даже бригада способствует выработке отработанного тепла. Если это отработанное тепло не удалить, оно будет накапливаться и повышать температуру космического корабля, пока не расплавится. По этой причине радиаторы очень важны. Радиаторы работают за счет излучения электромагнитной энергии. Он состоит из фотонов с длиной волны, определяемой температурой излучателя.
Угадайте, при какой температуре этот выпускной коллектор.
Примеры включают инфракрасные длины волн, излучаемые нашим телом (300K), красно-оранжевые видимые длины волн, излучаемые расплавленным железом (1430K) и ярко-белый цвет поверхности Солнца (5800K).

Для наших целей мы сосредоточимся на способности радиатора отводить энергию. Скорость измеряется в ваттах: ватты отработанного тепла, поглощаемые и производимые системами космического корабля, для сравнения с ваттами отработанного тепла, излучаемыми радиатором.-8.

Температура указана в Кельвинах.

Расчетные факторы

Используя уравнение Стефана Больцмана, мы можем быстро увидеть, что радиатор с лучшим коэффициентом излучения, большей площадью поверхности и более высокой температурой удаляет больше отработанного тепла.
Слева радиаторы 1100К. Справа радиаторы 2700К. Последний фактически потребляет в три раза больше отходящего тепла.
На космических кораблях важно использовать самые легкие компоненты для каждой задачи.Космический корабль с более легкими радиаторами будет быстрее ускоряться и иметь больше deltaV, что означает, что он может идти дальше и делать больше при меньшем количестве топлива.

Если нам нужен легкий радиатор, мы хотим, чтобы он имел самый высокий коэффициент излучения. Мы можем добиться этого, используя естественно темные материалы, такие как графит, или закрашивая блестящие металлы черной краской.

Радиатор большего размера весит больше. Поэтому нам нужны радиаторы минимального размера. Чтобы компенсировать меньшую площадь поверхности, мы можем увеличить рабочую температуру.Небольшое повышение температуры приводит к значительному увеличению количества удаляемого отходящего тепла. Это означает, что горячие радиаторы намного легче и меньше холодных.

Дополнительные сведения

Система EAC ISS
Типичный радиатор принимает охлаждающую жидкость от горячего компонента. Температура компонента охлаждающей жидкости на выходе — это начальная температура в радиаторе. Радиатор служит интерфейсом, который отводит тепло охлаждающей жидкости, что приводит к более низкой температуре на выходе из радиатора. Охлаждающая жидкость возвращается к компоненту для завершения цикла отвода отходящего тепла.
Обратите внимание, что максимальная температура теплообменника, подаваемая на пар, является самой низкой температурой жидкого натрия в активной зоне реактора.
Тепло течет только от горячего объекта к более холодному. Поэтому радиатор может работать только тогда, когда температура компонента выше, чем температура охлаждающей жидкости на выходе из радиатора.Например, если ядерный реактор работает при 2000 К, радиатор должен работать при 2000 К или меньше.
Реактор от COADE. Реактор работает при температуре 2907К, а в радиатор поступает теплоноситель при 2400К.
Разница между температурами на входе и выходе в радиаторе зависит от многих факторов, но, как правило, мы хотим максимально возможной разницы. Эта разница температур особенно важна для выработки электроэнергии.Большая разница означает, что от источника тепла можно извлечь больше энергии. Это также означает, что для охлаждения компонента требуется меньше охлаждающей жидкости. Это создает проблемы с реалистичным дизайном.
Общее решение — использовать два комплекта радиаторов, работающих при разных температурах: один низкотемпературный контур и один высокотемпературный. Он отлично работает, когда ваше низкотемпературное отходящее тепло составляет несколько киловатт от систем жизнеобеспечения и авионики. Необходимо найти другие решения для компонентов, которые должны храниться при низких температурах, но при этом выделяют мегаватты отходящего тепла, например, лазеры.

Эта конструкция имеет три комплекта радиаторов с уменьшающейся площадью для различных температурных составляющих.
Для низкотемпературных высокотемпературных компонентов необходимо использовать тепловые насосы. Они могут перемещать отходящее тепло против температурного градиента, позволяя, например, радиатору 1000K охладить компонент на 500K. Однако это требует затрат энергии. Перемещение тепла от 500K до 1000K обходится насосу в 1 ватт на каждый перемещенный ватт. Реалистичный насос не будет эффективен на 100% и потребует более 1 ватта, чтобы переместить ватт отработанного тепла.

  • Мощность насоса: (Отходящее тепло * Tc / (Th — Tc)) / КПД насоса
Мощность насоса — это количество ватт, потребляемых тепловыми насосами. Отработанное тепло — это количество ватт, которое необходимо отвести от компонента. Tc — температура компонента. Это температура радиатора в Кельвинах. КПД насоса — это коэффициент.
Холодильный цикл является примером теплового насоса.
Охлаждающая жидкость, как правило, должна быть жидкой.Это накладывает нижний и верхний предел температуры охлаждающей жидкости; любой холоднее, и он замерзнет и заблокирует трубы, любой более горячий он закипит и перестанет течь. Например, водяную охлаждающую жидкость можно использовать только при температуре от 273 до 373 К. Что еще более важно, это ограничивает разницу температур, которую можно получить от радиатора.

Большие перепады температур требуют, чтобы охлаждающая жидкость долгое время находилась внутри радиатора. Для этого требуются радиаторы большего размера или длинные обходные пути для труб. По мере того, как охлаждающая жидкость становится холоднее, она излучает меньшую скорость, а это означает, что последнее понижение температуры на 10 кельвинов может занять экспоненциально больше времени, чем первое снижение на 10 кельвинов.Есть сильная убывающая доходность.

Есть также структурные проблемы. Большие перепады температур вызывают термические нагрузки. Они могут быть слишком большими, чтобы справиться с ними. Легкие, напряженные радиаторы склонны плохо реагировать на любые боевые повреждения, что делает радиаторы слабым местом для любого военного корабля.

Опорные лонжероны радиаторов МКС. Разгоняемый космический корабль будет нуждаться в гораздо большей поддержке.
В целом, мы должны помнить, что существует ограниченный диапазон температур между горячим и холодным концом радиатора, и что его характеристики не могут быть просто получены с помощью уравнения Стефана Больцмана для максимальной температуры.2 радиаторные панели:
Мы можем видеть, что натрию требуется 17 секунд, чтобы остыть от 1000 К до точки, близкой к его температуре плавления 370 К. Любой кулер — и застынет в трубках. Если мы усредним излучаемые ватты, мы получим значение, близкое к 11,46 кВт. Это соответствует средней температуре излучения 545 К.

Наконец, радиатор подвергается нагрузкам при ускорении космического корабля. Некоторые типы радиаторов ломаются или разлетаются при сильном ускорении, поэтому перед выбором конструкции необходимо учитывать характеристики космического корабля.

Твердотельные радиаторы

Простой дизайн, используемый сегодня. Он состоит из металлической пластины, через которую проходят полые трубки для прохождения охлаждающей жидкости. Отработанное тепло выходит из хладагента в материал радиатора, который излучает его от его открытых поверхностей.
Эта конструкция имеет довольно высокую массу на единицу площади и низкие температурные ограничения, что делает ее одной из худших по производительности. Максимальная температура — это то, что делает материалы радиатора прочными и прочными, что важно, поскольку многие металлы быстро теряют прочность по мере приближения к своей температуре плавления.

Охлаждающая жидкость должна оставаться жидкой на протяжении всего цикла охлаждения, поэтому это ограничивает возможную разницу температур. Использование металлов, таких как олово, или солей, таких как натрий, позволяет улучшить разницу температур, но для их перекачивания требуется специальное, иногда нереактивное, иногда энергоемкое оборудование.
Несколько радиаторов будут передавать тепло друг другу и терять эффективность.
При расположении радиаторов вокруг космического корабля необходимо учитывать взаимное отражение, когда тепло одного радиатора перехватывается и поглощается другим радиатором.2, если рассматривать только открытые панели.

Пока что только радиаторы из углеродного волокна без покрытия, работающие на 800-1000К, достигли такой плотности.

Альтернативная конструкция обеспечивает лучшую плотность за счет удаления контуров охлаждающей жидкости и насосов. Тепловая трубка имеет горячий конец и холодный конец, разделенные вакуумом.
Тепловая трубка, отводящая отработанное тепло в радиатор.
Твердый хладагент выкипает, а затем конденсируется на холодном конце, а затем снова циркулирует за счет капиллярного действия или центробежного ускорения.Этот метод допускает высокие рабочие температуры и не требует насосов движущихся частей, но высокая масса на единицу площади сводит на нет многие из его преимуществ.

На военном корабле радиаторы — слабое место. Яркие, открытые и трудно защищаемые, в них легко попасть, а после повреждения они могут вывести космический корабль из строя. Они могут убить военный корабль, даже не пробивая броню. Избыточные радиаторы налагают массовый штраф. Покрытие радиаторов пластинами из брони значительно снижает их теплопроводность между охлаждающей жидкостью и открытыми поверхностями, что, в свою очередь, снижает их эффективность.

Решения по снижению уязвимости радиаторов включают направление их ребром к противнику, перемещение их в заднюю часть корабля или использование выдвижных конструкций.
Справа радиаторы освещены огнем противника. Слева выступ корпуса защищает радиаторы от повреждений.
Если все радиаторы убраны, космический корабль должен полагаться на радиаторы для охлаждения. Источник тепла мощностью в мегаватт может выпарить тонну воды менее чем за семь минут, так что это будет работать только в течение очень коротких периодов времени.

Высокотемпературные твердотельные радиаторы сталкиваются с проблемами, такими как необходимость иметь дело с закипанием охлаждающей жидкости или необходимость выдерживать огромное давление для поддержания жидкости в сверхкритическом состоянии. Решение — использовать твердые металлические блоки вместо охлаждающей жидкости. Запуск этих блоков, как поезд по рельсам, позволяет использовать надежные радиаторы, которые могут выдерживать сильные ускорения и температуры вплоть до точек кипения блоков охлаждающей жидкости (4000K в некоторых случаях, если рельсы активно охлаждаются). Чем меньше блоки, вплоть до размера шариков, тем быстрее они остывают и тем короче должна быть дорожка, что приводит к экономии массы и площади.

Радиаторы подвижные

Одна из основных причин, по которой твердые радиаторы настолько массивны, заключается в том, что им нужны трубы для охлаждающей жидкости, насосы и теплообменники для отвода отработанного тепла от оборудования к открытым поверхностям.

Чтобы значительно уменьшить плотность площади, мы можем разработать радиатор, не требующий громоздких контуров охлаждающей жидкости. Вместо этого перемещаем радиатор.

Движущиеся радиаторы зависят от самого материала радиатора, который перемещается через теплообменник в космос, чтобы отвести тепло, а затем обратно внутрь.2 оценки. Однако движущихся частей гораздо больше, а излучающие поверхности составляют лишь небольшую часть объема, занимаемого радиаторами. Если не будут использованы очень легкие материалы, опорная конструкция сведет на нет массовое преимущество такого радиатора.
От высокой границы.
Диск-барабанная конструкция имеет теплообменник в форме барабана, который катится по излучающему диску. Радиатор hoola-hoop представляет собой большой диск, удерживаемый на конце барабанным теплообменником.
Петли для ремня держатся ребром к солнцу. Угловые петли будут меньше страдать от повторного поглощения излучаемого тепла на внутренних поверхностях, что более важно при более высоких рабочих температурах.
Если колесо или петля заменяется гибким или гусеничным ремнем, его можно заставить двигаться по разным путям. «Радиатор с поясной петлей» может приблизить радиатор к космическому кораблю и снизить прочность конструкции, необходимую для выдерживания ускорений или вибраций.
Конфигурация проволочной петли использует черные углеродные волокна в качестве излучающей поверхности. Они выбрасываются из теплообменника и удерживаются на месте центростремительной силой. Использование материалов с высокой прочностью на разрыв позволяет создавать чрезвычайно легкие петли.
От высокой границы. Для изготовления проводов используются углеродные нанотрубки.
Ролики могут направлять провода вместо центростремительной силы, тем самым становясь еще более легкой версией ленточного радиатора.Потребуются материалы с высокой прочностью на разрыв, так как это позволяет роликам и двигателям удерживать провода под натяжением, чтобы предотвратить их скольжение или спутывание.
Радиатор с вращающимся диском — это движущийся радиатор, центральным элементом которого является вращающийся диск. На ступицу разбрызгивается охлаждающая жидкость. Поверхностное натяжение жидкости с низким давлением пара заставляет ее растекаться в тонкую, ровную пленку по диску. Когда диск вращается, центростремительная сила заставляет пленку течь, пока она охлаждается, к желобам коллектора на краях.В этой конфигурации не используются тяжелые тепловые трубы и радиаторные насосы, но требуется использование жидкостей с очень низким давлением пара. Диск можно наклонять внутрь, наружу или наклонять, чтобы справиться с ускорением космического корабля.
Радиаторы с пузырьковой мембраной представляют собой трехмерную версию радиатора с вращающимся диском. Горячая охлаждающая жидкость разбрызгивается на надутую мембрану, в результате чего она растекается в виде тонкой пленки, которая очень эффективно теряет тепло. Вращение мембраны заставляет пленку жидкости собираться на экваторе пузыря, где она собирается и перерабатывается.
Преимущества включают возможность использования охлаждающих жидкостей с высоким давлением пара и очень легкую конструкцию. К недостаткам можно отнести необходимость удерживать пары под высоким давлением в емкости, которая должна оставаться легкой и прозрачной.

Электрорадиаторы

В упомянутых до сих пор конструкциях используются физические конструкции для удержания радиаторов на месте. Это накладывает некоторые ограничения, такие как необходимость оставаться в пределах температурных пределов опорных конструкций, а для более крупных радиаторов требуется тяжелая опора, чтобы выдерживать даже легкие ускорения.

Решением было бы использовать магнитные силы для удержания радиаторов на месте. Сильный магнит может заменить физические опорные конструкции для значительной экономии массы.

Примеры таких радиаторов включают радиатор с флюсовыми выводами. Магнитные поля удерживают твердые компоненты радиатора на месте. Теплопроводящие ленты передают тепло к магнитным компонентам.

Однако есть сложности. Большинство металлов теряют свои магнитные свойства при нагревании, становясь совершенно нечувствительными к магнитным полям выше точки Кюри.Требуется тщательный выбор используемых материалов и контроль температуры.

Радиатор с точкой Кюри работает примерно при температуре, при которой частицы металлической пыли теряют свой магнетизм. Железо, например, теряет ферромагнетизм при 1043К.

Вращающийся электромагнитный совок собирает железную пыль после охлаждения.

В радиаторе с точкой Кюри используются металлические опилки или даже капли жидкости.Он нагревается до температуры выше точки Кюри и выбрасывается в космос подальше от космического корабля. Магнитное поле есть, но оно не влияет на них. Железо может выделяться при температуре до 3134К и собираться при 1043К, но кобальт имеет температуру Кюри до 1388К, естественно черный и кипит при 3400К, что делает его лучшим хладагентом. Небольшой размер частиц или капель жидкости позволяет излучать несколько мегаватт отработанного тепла на квадратный метр.

Когда частицы охлаждаются ниже точки Кюри, они восстанавливают свой ферромагнетизм.На них начинает действовать магнитное поле, и они возвращаются к космическому кораблю для сбора.

Магнитные радиаторы — отличное решение для боевых повреждений — в худшем случае противник нарушит охлаждение на несколько секунд. Однако они потребляют много энергии и требуют тяжелого оборудования для создания сильных магнитных полей. Любое неожиданное ускорение или толчок космического корабля могут рассеять весь материал, удерживаемый на месте магнитными полями.


Альтернативные электрические радиаторы используют электростатические силы для удержания заряженных частиц на месте.Одним из примеров является пылевой радиатор, заряженный ETHER. Заряженные частицы движутся по силовым линиям и совершают эллиптические орбиты между теплообменником и точкой сбора. Подобно капельному радиатору, заряженные частицы могут механически диспергироваться и эффективно собираться на другом конце с помощью ложек с противоположным зарядом.
Преимущество электростатических излучателей заключается в том, что они потребляют меньше энергии, поскольку создать сильную разность зарядов легче, чем расширить сильное магнитное поле.Оборудование легче и менее чувствительно к изменениям температуры, поскольку не используется сверхпроводящее или криогенное оборудование, а заряженные частицы могут удерживать заряд при большей разнице температур, чем они могут сохранять свои магнитные свойства.

Однако заряд, переносимый частицами, может быть нейтрализован естественным солнечным ветром или при контакте с проводником. Это означает, что им нужен чистый короткий путь между теплообменником и точкой сбора.

Жидкокапельные радиаторы

В жидкокапельных радиаторах не используются излучающие поверхности — охлаждающая жидкость подвергается прямому воздействию вакуума.Полученные в результате капли имеют невероятную площадь поверхности для своей массы, что обеспечивает быстрое охлаждение и чрезвычайно низкую поверхностную плотность.
Поскольку охлаждающую жидкость не нужно физически удерживать, ее можно нагреть до очень высоких температур и при этом очень быстро остыть. Для жидкостей нет ограничений по термическому напряжению, поэтому изменение температуры может быть сколь угодно резким или быстрым. Они не обязаны сохранять магнитные свойства или держать заряд. Этот калькулятор может дать приблизительное представление о производительности LDR.2. Не включает массу теплообменника, каплеуловителя и коллектора.
Уже разработаны решения для таких проблем, как капли, сдуваемые солнечным ветром, сталкивающиеся и сливающиеся в более крупные капли или движущиеся с разными скоростями внутри слоя капель.

Давление пара по-прежнему вызывает беспокойство — горячие жидкости в вакууме имеют тенденцию быстро испаряться. Необходимо использовать специальные охлаждающие жидкости с низким давлением пара, такие как жидкий галлий, алюминий или олово до 1200K, литий до 1500K.Посолить эти жидкости таким материалом, как графитовая «крошка» или покрыть их черными чернилами, необходимо для достижения высокого коэффициента излучения. Наножидкости могут позволить использовать жидкости даже с более высокими температурами. Достижение более высоких температур означает принятие высоких показателей потерь теплоносителя или заключение излучающего объема в мембрану, которая конденсирует и собирает пары. Мембрана должна быть прозрачной при температурах излучения.

Варианты жидкокапельных радиаторов в основном связаны с тем, как сдерживать и направлять поток охлаждающей жидкости между точками выброса и сбора.

Прямоугольный LDR имеет каплеуловитель и коллектор одинаковой длины. Коллекторный рычаг можно сделать шире эмиттера для улавливания капель, отклонившихся от их траектории из-за неожиданных движений или ошибок в формировании капель. Можно было бы перемещать коллектор выше и ниже плоскости капли, чтобы перехватывать капли, когда космический корабль ускоряется, поскольку это может привести к отклонению листа капли от плоскости.
Конструкция ICAN-II с прямоугольными жидкокапельными радиаторами.
Треугольный LDR экономит массу за счет использования маленькой сборной тарелки вместо длинной руки. Однако он менее способен улавливать отклоняющиеся капли или компенсировать ускорение космического корабля.
Треугольные варианты LDR.
В некоторых конструкциях LDR отсутствуют длинные ответвления и мембраны, а капли просто распыляются в космос. Импульс капель заставляет их следовать по траекториям, которые возвращают их обратно к коллекторам.Фонтан LDR стреляет каплями перед разгонным космическим кораблем. Как только они остынут, их собирают. Этот метод распыления капель позволяет получить максимально легкие конструкции, но при этом существует риск потери капель.
Лучше всего работает с космическими кораблями, которые плавно ускоряются в течение длительных периодов времени, например с ядерно-электрическими кораблями на межпланетных траекториях. LDR с душем рассеивает капли перед космическим кораблем, а коллекторы просто собирают их, как черпак. У него меньший риск рассеивания капель, чем у фонтанного LDR, но для этого требуется длинная насадка для душа.

Мембраны высокого давления могут быть дополнением к любому жидкокапельному радиатору. Они заключают в себе объем, через который проходят капли. Преимущества включают повторную конденсацию паров из слишком горячих капель, улавливание случайных капель, обеспечение более высокой скорости капель и большую устойчивость к нестабильности капельного слоя. Однако они должны оставаться прозрачными для всех длин волн, на которых излучают капли, и удерживать давление паров газа. Это конкурирующие требования: поглощение на малых длинах волн достигается с помощью очень тонких мембран, в то время как высокое давление требует толстых мембран.

Радиаторы Advanced

Магнитно-накачиваемый и сфокусированный LDR:
Магнитно сфокусированный соплом коллектора.
Феррожидкости при низких температурах и жидкий металл при высоких температурах могут использоваться в качестве охлаждающей жидкости в жидкокапельных радиаторах. Они реагируют на вихревые токи и магнитные поля, позволяя перекачивать хладагент без каких-либо движущихся частей посредством магнитогидродинамики.
Магнитные поля также можно использовать для восстановления капельного листа. Циклические поля могут толкать и тянуть группу капель на расстояния, пропорциональные напряженности поля. Поля с высокой напряженностью могут позволить каплям простираться на несколько десятков метров, прежде чем они будут восстановлены. Они также позволят LDR компенсировать свою уязвимость к рассеянию и потере капель при ускорении космического корабля, удерживая капли на месте.

Вместе LDR может стать чрезвычайно легким для занимаемой площади, поскольку никакая физическая опорная конструкция не должна перекрывать его длину.

Газовые теплоносители:

Мы рассматривали твердые тела и жидкости как хладагенты. Также можно использовать газы.

Газовые теплоносители уже используются в ядерных реакторах. Двуокись углерода и гелий были выбраны, поскольку они инертны и выдерживают более высокие температуры, чем вода или натриевые охлаждающие жидкости.

В космосе главное преимущество газового хладагента состоит в том, что он может работать при гораздо более высоких температурах, чем жидкий или твердый хладагент. Тот же газ можно было запустить из ядерного реактора в трубы радиатора и обратно.Это также позволяет использовать надувные конструкции для радиаторов, которые могут быть намного легче, чем их жесткие аналоги.
Радиаторы с надувными ребрами.


Радиаторы с несколькими выдвижными ребрами.


Надувные мешки проще и прочнее, чем выкатные плавники, но имеют меньшую площадь поверхности.
Однако есть ограничения и сложности. Горячий газ под давлением может быть очень химически активным. Хотя вы можете нагреть газ до температуры 3000K +, стенки труб, содержащих газ, также должны выдерживать эти температуры. Многие из сбережений массы, которые достигаются при эксплуатации радиатора при высоких температурах, теряются, пытаясь удержать газовый хладагент и выжить. Например, перекачка газа требует гораздо большей мощности на 1 кг перемещенного газа, чем перекачка жидкости.

Другая трудность — очень низкая скорость передачи тепла между теплообменником и газом.Горячий газ с низкой плотностью, такой как нагретый гелий, может иметь теплопроводность в сотни раз ниже, чем жидкость, такая как расплавленный натрий. Это приводит к трудностям как на границе теплообмена, так и на границе излучающей поверхности.

Многие из этих проблем могут быть решены с помощью двухфазного контура охлаждающей жидкости, что означает, что он проводит часть своего времени как жидкость, а часть своего времени как газ. До теплообменника охлаждающая жидкость находится в жидком виде. Он течет по трубам с помощью простых насосов. Теплообменник разделен на множество труб меньшего размера, чтобы увеличить площадь контакта между теплообменником и хладагентом.

За теплообменником охлаждающая жидкость расширяется. Падение давления позволяет ему закипеть в газ. Этот газ проходит через объем, закрытый герметичной мембраной. Благодаря комбинации расширения и декомпрессии и закона Стефана-Больцмана газ быстро охлаждается и конденсируется на стенках мембраны. Это образует тонкую пленку в условиях микрогравитации, которая может быть направлена ​​к точкам сбора, где жидкость перекачивается обратно в теплообменник.

Плазменный радиатор Dusty:

В этом излучателе используется проводящая плазма, управляемая магнитными полями, для перемещения и управления частицами пыли.

Частицы пыли, взвешенные в плазме, ведут себя удивительным образом, и их все еще обнаруживают в области исследований пылевой плазмы. Интересные варианты поведения включают самоорганизацию в квазикристаллическую структуру, построение мостов, похожих на нити ДНК, через плазму или сбор в диски с пустыми центрами. Все это происходит из-за самоотталкивающих зарядов, которые частицы пыли получают внутри плазмы.
Лучшее понимание этого поведения может позволить радиатору сочетать в себе все полезные характеристики: широкий диапазон рабочих температур, очень низкую массу на квадратный метр, легкость манипулирования электромагнитными и электростатическими силами, низкую уязвимость к повреждениям и способность выдерживать сильные ускорения.
Плазма может быть довольно холодной и по-прежнему служить для манипулирования частицами пыли. Низкотемпературная плазма безопасна для манипуляций и довольно прозрачна для длин волн, на которых будут излучать частицы пыли, что означает, что она не нагревается или не уносится тепловым расширением.

В простом пылевом плазменном излучателе плазма была бы захвачена магнитными петлями, такими как корональные петли. По этим плазменным трубкам двигалась пыль. Более продвинутые пылевые плазменные излучатели будут распылять частицы пыли в плазму и заставлять ее самоорганизовываться в тонкие плоскости для получения максимальной площади излучающей поверхности.Простое изменение состояния ионизации частиц путем пропускания электрического тока через плазму позволило бы пыли слипаться и следовать линиям магнитного поля прямо обратно к коллектору.

Переносной генератор какого размера мне нужен? Вот ваш ответ

Это плохой сезон ураганов. Вы хотите быть готовы, поэтому вы спрашиваете себя: «Какой размер портативного генератора мне нужен?»
Слава богу, мегаури случаются нечасто.Здесь, в Generator Grader, мы искренне любим всех, кого затронули эти непредсказуемые штормы.
Когда грозит гроза, мы рассматриваем варианты отключения электроэнергии. Нам снова повезет? Или снова не повезло? По правде говоря, лучше перестраховаться, чем сожалеть. Переносной генератор — хорошее вложение даже в хорошую погоду. Если вы посещаете этот сайт в случае возможной чрезвычайной ситуации или если у вас уже есть портативный генератор, просто помните: «Всегда будьте в безопасности!»
Чтобы сэкономить ваше время, многие покупатели новых генераторов заинтересованы только в том, чтобы справиться с их холодильником / морозильной камерой при отключении электроэнергии.Если это вы, то посмотрите на тот, который обеспечивает не менее 2000 ватт в импульсном режиме. Хотя большинству холодильников для работы требуется менее 1000 Вт, при включении компрессора им требуются дополнительные ватты.

Какой размер?

Вы приняли решение приобрести портативный генератор. Большой! Обычный вопрос, который мне задают покупатели, которым нужен портативный генератор: «Какой размер портативного генератора мне нужен для домашнего использования?» Лучший ответ на этот вопрос не пользуется большой популярностью. Ответ: «Это зависит» .

Многие люди покупают портативный генератор и желают, чтобы в первую очередь учли все факторы. Посмотрим правде в глаза, генераторы дорогие, и вы не хотите тратить один, пока покупаете тот, который вы должны были купить в первую очередь.

Возьмем, к примеру, два самых продаваемых генератора. Earthquake ig800w — это инверторный генератор мощностью 800 Вт, который может питать только один или два элемента одновременно. Не менее популярный Generac xg8000e — это генератор мощностью 8000 Вт, которого достаточно для подключения к панели питания вашего дома, чтобы обеспечить большинство ваших потребностей при отключении электроэнергии.

Почему одна группа людей думает, что один размер — это то, что им нужно, а другая группа людей думает, что им нужен совершенно другой размер, вот почему «это зависит от обстоятельств».

Для лучшего объяснения «зависит от обстоятельств» прочтите ниже и взгляните на удобную таблицу, в которой указаны расчетные требования к мощности некоторых стандартных бытовых устройств и приборов.

Эксплуатационная мощность и импульсная мощность — в чем разница?

Два столбца в таблице, которые вам необходимо понять, — это «рабочие» ватты и «пусковые» или «импульсные» ватты.Разница в том, что всем устройствам требуется определенное количество ватт для непрерывной работы, а некоторым требуется дополнительное количество ватт для запуска или включения. Вот почему портативные генераторы рассчитаны на их рабочую мощность и импульсную мощность. Эксплуатационная мощность обычно составляет 90% от импульсной мощности большинства портативных генераторов. Не следует ожидать, что генератор будет постоянно работать с мощностью, превышающей номинальную.

устройство рабочая мощность пусковая (импульсная) мощность
Электрический водонагреватель (40 галлонов.) 4000 0
Горячая плита 2500 0
Электроплита — каждый элемент 1500-2500 0
Оконный кондиционер — 12000 БТЕ 1200 1800
Микроволновая печь — варьируется 625 800
Водяной насос для скважины 1000 1000
Отстойник800 1200
Холодильник с морозильной камерой800 1200
Морозильник500500
Воздуходувка печи800 1300
Компьютер 800 0
Телевидение 500 0
Стерео400 0
DVD-плеер 100 0
Корпусный вентилятор300600
Радиочасы300 0
Лампочка 75 0
Радиальная пила 2000 2000
Циркулярная пила 1500 1500
Торцовочная пила 1200 1200
Сабельная пила 960 1040
Электродрель600 900
Воздушный компрессор (1 л.с.) 1500 3000
Устройство открывания двери гаража 480 600
Система безопасности 180 0

Устройства резистивного типа не требуют импульсной мощности.Обычно это устройства, вырабатывающие тепло, такие как лампочки, тостеры и кофеварки. Устройства и приборы с электродвигателем в них требуют дополнительных ватт для их «запуска». Запуск может быть таким же простым, как включение фена или электродрели. «Запуск» в холодильнике совершенно другой, и он будет запускаться и останавливаться постоянно. Прислушайтесь к своему холодильнику, и вы услышите, как он периодически включается при запуске вентилятора, компрессора или цикла размораживания.Эти «всплески» мощности иногда могут в два или три раза превышать мощность, необходимую для простой работы устройства.

Переносной генератор какого размера мне нужен?

При расчете потребляемой мощности необходимо учитывать это дополнительное требование. При чтении этой таблицы возьмем, к примеру, стандартный холодильник / морозильник. Для непрерывной работы агрегата вам потребуется примерно 800 Вт. Однако, когда срабатывает компрессор, он требует дополнительных 1200 ватт при скачке напряжения. Таким образом, для постоянного питания вашего холодильника / морозильника требуется 2000 Вт.

По мере того, как потребляемая мощность составляет 800 ватт, разница в 1200 ватт может быть использована для питания чего-то еще. Если у вас есть генератор низкой или средней ватт (до 3500 погонных ватт), вы можете включить холодильник большую часть времени и рассчитывать на то, что он будет оставаться холодным при закрытых дверцах, а затем отключите его от сети и переключите питание на другие нужды.

Будьте осторожны, просматривая другие таблицы на других сайтах, в которых объясняются расчетные требования к мощности. Некоторые из них включают погонные ватты, уже добавленные в столбец импульсной мощности.

Итак, чтобы дать лучший ответ, чем «Это зависит от обстоятельств», вы должны спросить себя: «Для чего мне нужен портативный генератор?»

  • Аварийное использование при отключении электроэнергии
  • для подключения к электросети вашего дома в качестве резервного
  • на время использования по дому
  • для использования на работе в удаленных местах вдали от электрических розеток
  • для кемпинга, автостоянки, использования на колесах
  • все перечисленное?

Теперь спросите себя: «При использовании портативного генератора для моих целей, на что я хочу подавать питание и сколько одновременно?»

Вот хорошее эмпирическое правило: добавляйте рабочие ватты для БОЛЬШИНСТВА устройств, которые вам понадобятся в любой момент времени.Th

CCNA 1 Введение в сети v6.0 — Глава 8 ITN Ответы на экзамен

Как найти: Нажмите «Ctrl + F» в браузере и введите любую формулировку вопроса, чтобы найти этот вопрос / ответ.

ПРИМЕЧАНИЕ. Если у вас есть новый вопрос по этому тесту, прокомментируйте список вопросов и множественный выбор в форме под этой статьей. Мы обновим для вас ответы в кратчайшие сроки. Спасибо! Мы искренне ценим ваш вклад в наш сайт.

  1. Что происходит при соединении двух или более переключателей вместе?
    • Увеличено количество широковещательных доменов.
    • Увеличен размер широковещательного домена. *
    • Количество коллизионных доменов уменьшено.
    • Размер области коллизии увеличен.

    Объяснение:
    Когда два или более коммутатора соединены вместе, размер широковещательного домена увеличивается, а вместе с ним и количество конфликтных доменов.Количество широковещательных доменов увеличивается только при добавлении маршрутизаторов.

  2. См. Выставку. Сколько существует широковещательных доменов?

    Объяснение:
    Маршрутизатор используется для маршрутизации трафика между разными сетями. Широковещательному трафику не разрешено пересекать маршрутизатор, и поэтому он будет содержаться в соответствующих подсетях, откуда он исходил.

  3. По каким двум причинам сетевой администратор может захотеть создать подсети? (Выберите два.)
    • упрощает проектирование сети
    • повышает производительность сети *
    • проще реализовать политики безопасности *
    • уменьшение количества необходимых маршрутизаторов
    • уменьшение количества необходимых переключателей

    Explain:
    Две причины для создания подсетей включают уменьшение общего сетевого трафика и повышение производительности сети. Подсети также позволяют администратору реализовывать политики безопасности на основе подсетей.На количество маршрутизаторов или коммутаторов это не повлияет. Подсети не упрощают структуру сети.

  4. См. Выставку. Компания использует для своей сети адресный блок 128.107.0.0/16. Какая маска подсети могла бы обеспечить максимальное количество подсетей одинакового размера, обеспечивая при этом достаточное количество адресов узлов для каждой подсети на выставке?
    • 255.255.255.0
    • 255.255.255.128 *
    • 255.255.255.192
    • 255,255.255,224
    • 255.255.255.240

    Объяснение:
    Самая большая подсеть в топологии состоит из 100 хостов, поэтому маска подсети должна содержать не менее 7 битов хоста (27-2 = 126). 255.255.255.0 имеет 8 бит хостов, но это не соответствует требованию предоставления максимального количества подсетей.

  5. См. Выставку. Сетевой администратор назначил LAN LBMISS диапазон адресов 192.168.10.0. Этот диапазон адресов разбит на подсети с использованием префикса / 29.Чтобы приспособить новое здание, техник решил использовать пятую подсеть для настройки новой сети (нулевая подсеть является первой подсетью). В соответствии с политиками компании интерфейсу маршрутизатора всегда назначается первый используемый адрес хоста, а серверу рабочей группы дается последний используемый адрес хоста. Какую конфигурацию следует ввести в свойствах сервера рабочей группы, чтобы разрешить подключение к Интернету?
    • IP-адрес: 192.168.10.65 маска подсети: 255.255.255.240, шлюз по умолчанию: 192.168.10.76
    • IP-адрес: 192.168.10.38 маска подсети: 255.255.255.240, шлюз по умолчанию: 192.168.10.33
    • IP-адрес: 192.168.10.38 маска подсети: 255.255.255.248, шлюз по умолчанию: 192.168.10.33 *
    • IP-адрес: 192.168.10.41 маска подсети: 255.255.255.248, шлюз по умолчанию: 192.168.10.46
    • IP-адрес: 192.168.10.254 маска подсети: 255.255.255.0, шлюз по умолчанию: 192.168.10.1

    Объяснение:
    Использование префикса / 29 для подсети 192.168.10.0 приводит к подсетям, которые увеличиваются на 8:
    192.168.10.0 (1)
    192.168.10.8 (2)
    192.168.10.16 (3)
    192.168.10.24 (4)
    192.168.10.32 (5)

  6. Если сетевое устройство имеет маску / 28, сколько IP-адресов доступно для хостов в этой сети?

    Объяснение:
    Маска A / 28 такая же, как 255.255.255.240. Остается 4 бита хоста. С 4 битами хоста возможны 16 IP-адресов, но один адрес представляет номер подсети, а один адрес представляет широковещательный адрес.Затем можно использовать 14 адресов для назначения сетевым устройствам.

  7. Какая маска подсети будет использоваться, если доступно 5 бит хоста?
    • 255.255.255.0
    • 255.255.255.128
    • 255.255.255.224 *
    • 255.255.255.240

    Объяснение:
    Маска подсети 255.255.255.0 имеет 8 бит хоста. Маска 255.255.255.128 дает 7 бит хоста. Маска 255.255.255.224 имеет 5 бит хоста.Наконец, 255.255.255.240 представляет 4 бита хоста.

  8. Сколько адресов хостов доступно в сети 172.16.128.0 с маской подсети 255.255.252.0?
    • 510
    • 512
    • 1022 *
    • 1024
    • 2046
    • 2048

    Объясните:
    Маска 255.255.252.0 равна префиксу / 22. Префикс A / 22 предоставляет 22 бита для сетевой части и оставляет 10 бит для хост-части.10-2 = 1022).

  9. Сколько битов необходимо заимствовать из хостовой части адреса, чтобы разместить маршрутизатор с пятью подключенными сетями?

    Объяснение:
    Для каждой сети, которая напрямую связана с интерфейсом маршрутизатора, требуется собственная подсеть. Формула 2n, где n — количество заимствованных битов, используется для вычисления доступного количества подсетей при заимствовании определенного количества битов.

  10. Сетевой администратор хочет иметь одну и ту же сетевую маску для всех сетей на определенном небольшом сайте.На сайте есть следующие сети и количество устройств:
    IP-телефонов — 22 адреса
    ПК — 20 необходимых адресов
    Принтеры — 2 адреса
    Сканеры — 2 адреса

    Сетевой администратор считает, что 192.168.10.0/24 является быть сетью, используемой на этом сайте. Какая отдельная маска подсети наиболее эффективно использовала бы доступные адреса для использования в четырех подсетях?
    • 255.255.255.0
    • 255.255.255.192
    • 255.255.255.224 *
    • 255.255.255.240
    • 255.255.255.248
    • 255.255.255.252

    Объясните:
    Если должна использоваться та же маска, тогда сеть с наибольшим количеством хостов должна быть проверена на количество хостов, которое в данном случае составляет 22 хоста. Таким образом, необходимо 5 бит хоста. Для этих сетей подходит маска подсети / 27 или 255.255.255.224.

  11. Компания имеет сетевой адрес 192.168.1.64 с маской подсети 255.255.255.192. Компания хочет создать две подсети, которые будут содержать 10 и 18 хостов соответственно. Какие две сети смогли бы этого достичь? (Выберите два.)
    • 192.168.1.16/28
    • 192.168.1.64/27*
    • 192.168.1.128/27
    • 192.168.1.96/28*
    • 192.168.1.192/28

    Объяснение:
    Подсеть 192.168.1.64 / 27 имеет 5 битов, выделенных для адресов хоста, и, следовательно, сможет поддерживать 32 адреса, но только 30 действительных IP-адресов хоста.Подсеть 192.168.1.96/28 имеет 4 бита для адресов хоста и сможет поддерживать 16 адресов, но только 14 действительных IP-адресов хоста

  12. Сетевой администратор периодически разбивает сеть на подсети. Самая маленькая подсеть имеет маску 255.255.255.248. Сколько используемых адресов хостов будет предоставлять эта подсеть?

    Объясните:
    Маска 255.255.255.248 эквивалентна префиксу / 29. Это оставляет 3 бита для хостов, обеспечивая в общей сложности 6 используемых IP-адресов (23 = 8 — 2 = 6).

  13. См. Выставку. Учитывая сетевой адрес 192.168.5.0 и маску подсети 255.255.255.224, сколько всего адресов хостов не используется в назначенных подсетях?

    Объяснение:
    Сетевой IP-адрес 192.168.5.0 с маской подсети 255.255.255.224 предоставляет 30 используемых IP-адресов для каждой подсети. Подсети A требуется 30 адресов хоста. Нет потерянных адресов. Подсеть B использует 2 из 30 доступных IP-адресов, потому что это последовательный канал.Следовательно, он теряет 28 адресов. Точно так же подсеть C тратит впустую 28 адресов. Подсети D требуется 14 адресов, поэтому она теряет 16 адресов. Общее количество потерянных адресов составляет 0 + 28 + 28 + 16 = 72 адреса.

  14. См. Выставку. Учитывая уже используемые адреса и необходимость оставаться в пределах диапазона сети 10.16.10.0/24, какой адрес подсети можно назначить сети, содержащей 25 хостов?
    • 10.16.10.160/26
    • 10.16.10.128/28
    • 10.16.10.64 / 27 *
    • 10.16.10.224/26
    • 10.16.10.240/27
    • 10.16.10.240/28

    Объяснение:
    Адреса с 10.16.10.0 по 10.16.10.63 используются для самой левой сети. Адреса с 10.16.10.192 по 10.16.10.207 используются центральной сетью. Адресное пространство от 208 до 255 предполагает маску / 28, которая не позволяет разместить достаточно битов хоста для размещения 25 адресов хоста. Доступные диапазоны адресов включают 10.16. 10.64 / 26 и 10.16.10.128 / 26. Для размещения 25 хостов необходимо 5 бит хостов, поэтому необходима маска / 27. Четыре возможных подсети / 27 могут быть созданы из доступных адресов между 10.16.10.64 и 10.16.10.191:
    10.16.10.64/27
    10.16.10.96/27
    10.16.10.128/27
    10.16.10.160/27

  15. См. Выставку. Учитывая сетевой адрес 192.168.5.0 и маску подсети 255.255.255.224 для всех подсетей, сколько всего адресов хоста не используется в назначенных подсетях?
  16. Сетевому администратору необходимо отслеживать сетевой трафик к серверам в центре обработки данных и от них.Какие функции схемы IP-адресации следует применять к этим устройствам?
    • случайные статические адреса для повышения безопасности
    • адресов из разных подсетей для резервирования
    • предсказуемых статических IP-адресов для упрощения идентификации *
    • динамических адресов для снижения вероятности дублирования адресов

    Объяснение:
    При мониторинге серверов сетевой администратор должен иметь возможность быстро их идентифицировать.Использование предсказуемой схемы статической адресации для этих устройств упрощает их идентификацию. Безопасность сервера, избыточность и дублирование адресов не являются особенностями схемы IP-адресации.

  17. Какие две причины обычно делают DHCP предпочтительным методом назначения IP-адресов хостам в больших сетях? (Выберите два.)
    • Это устраняет большинство ошибок конфигурации адреса. *
    • Он гарантирует, что адреса применяются только к устройствам, которым требуется постоянный адрес.
    • Это гарантирует, что каждое устройство, которому нужен адрес, получит его.
    • Он предоставляет адрес только тем устройствам, которым разрешено подключение к сети.
    • Это снижает нагрузку на обслуживающий персонал сети. *

    Explain:
    DHCP обычно является предпочтительным методом назначения IP-адресов хостам в больших сетях, поскольку он снижает нагрузку на персонал службы поддержки сети и практически исключает ошибки ввода.Однако сам DHCP не делает различий между авторизованными и неавторизованными устройствами и назначает параметры конфигурации всем запрашивающим устройствам. DHCP-серверы обычно настраиваются для назначения адресов из диапазона подсетей, поэтому нет гарантии, что каждое устройство, которому нужен адрес, получит его.

  18. DHCP-сервер используется для динамического назначения IP-адресов хостам в сети. Пул адресов настроен как 192.168.10.0/24. В этой сети есть 3 принтера, которым необходимо использовать зарезервированные статические IP-адреса из пула.Сколько IP-адресов в пуле осталось назначить другим хостам?

    Объясните:
    Если блок адресов, выделенный для пула, равен 192.168.10.0/24, то узлам в сети нужно назначить 254 IP-адреса. Поскольку существует 3 принтера, адреса которых должны быть назначены статически, остается 251 IP-адрес для назначения.

  19. См. Выставку. Компания развертывает схему адресации IPv6 для своей сети.В проектном документе компании указано, что часть IPv6-адресов подсети используется для нового иерархического дизайна сети, при этом подраздел сайта представляет несколько географических сайтов компании, раздел дочерних сайтов представляет несколько кампусов на каждом сайте, а подраздел сайта — это несколько кампусов на каждом сайте. раздел подсети для обозначения каждого сегмента сети, разделенного маршрутизаторами. Какое максимальное количество подсетей достигается при такой схеме на подсайт?

    Объясните:
    Поскольку для представления подсети используется только один шестнадцатеричный символ, этот один символ может представлять 16 различных значений от 0 до F.

  20. Какой префикс для адреса хоста 2001: DB8: BC15: A: 12AB :: 1/64?
    • 2001: DB8: BC15
    • 2001: DB8: BC15: A *
    • 2001: DB8: BC15: A: 1
    • 2001: DB8: BC15: A: 12

    Объяснение:
    Сетевая часть или префикс IPv6-адреса определяется длиной префикса. Длина префикса A / 64 указывает на то, что первые 64 бита IPv6-адреса являются сетевой частью.Следовательно, префикс 2001: DB8: BC15: A.

  21. Рассмотрим следующий диапазон адресов:
     2001: 0DB8: BC15: 00A0: 0000 ::
    2001: 0DB8: BC15: 00A1: 0000 ::
    2001: 0DB8: BC15: 00A2: 0000 ::
    …
    2001: 0DB8: BC15: 00AF: 0000 :: 

    Длина префикса для диапазона адресов: /60

    Объяснение:
    Все адреса имеют общую часть 2001: 0DB8: BC15: 00A. Каждая цифра или буква в адресе представляют 4 бита, поэтому длина префикса составляет / 60.

  22. Сопоставьте подсеть с адресом хоста, который будет включен в подсеть. (Используются не все варианты.) Вопрос

    Ответ

    Объясните:
    Подсеть 192.168.1.32/27 будет иметь допустимый диапазон узлов от 192.168.1.33 до 192.168.1.62 с широковещательным адресом 192.168.1.63
    Подсеть 192.168.1.64/27 будет иметь допустимый диапазон узлов от 192.168.1.65 — 192.168.1.94 с широковещательным адресом 192.168.1.95
    Подсеть 192.168.1.96/27 будет иметь допустимый диапазон узлов от 192.168.1.97 до 192.168.1.126 с широковещательным адресом 192.168.1.127

  23. См. Выставку. Сопоставьте сеть с правильным IP-адресом и префиксом, которые будут удовлетворять требованиям адресации используемых хостов для каждой сети. (Не все параметры используются.) Справа налево сеть A имеет 100 узлов, подключенных к маршрутизатору справа. Маршрутизатор справа подключен через последовательный канал к маршрутизатору слева.Последовательный канал представляет собой сеть D с 2 хостами. Левый маршрутизатор соединяет сеть B с 50 хостами и сеть C с 25 хостами.
    • Вопрос
    • Ответ

    Объяснение:
    Сеть A должна использовать 192.168.0.0 / 25, что дает 128 адресов узлов.
    Сеть B должна использовать 192.168.0.128 / 26, что дает 64 адреса хоста.
    Сеть C должна использовать 192.168.0.192 / 27, что дает 32 адреса хоста.
    Сеть D должна использовать 192.168.0.224 / 30, что дает 4 адреса хоста.

Старая версия

  1. Сколько бит в IPv4-адресе?
  2. Какие две части являются компонентами IPv4-адреса? (Выберите два.)
    • часть подсети
    • сетевая часть *
    • логическая часть
    • хост-часть *
    • физическая часть
    • часть вещания
  3. Какое обозначение длины префикса для маски подсети 255.255.255.224?
  4. Сообщение отправлено на все хосты удаленной сети. Что это за тип сообщения?
    • ограниченная передача
    • многоадресная передача
    • прямая трансляция *
    • одноадресная
  5. Какие два утверждения описывают характеристики широковещательной рассылки уровня 3? (Выберите два.)
    • Широковещательные рассылки представляют собой угрозу, и пользователи должны избегать использования протоколов, реализующих их.
    • Маршрутизаторы создают широковещательные домены.*
    • Некоторые протоколы IPv6 используют широковещательную рассылку.
    • На каждом интерфейсе коммутатора есть широковещательный домен.
    • Ограниченный широковещательный пакет имеет IP-адрес назначения 255.255.255.255. *
    • Маршрутизатор не будет пересылать широковещательные пакеты уровня 3 любого типа.
  6. Какой метод сетевой миграции инкапсулирует пакеты IPv6 внутри пакетов IPv4, чтобы передавать их по сетевым инфраструктурам IPv4?
    • инкапсуляция
    • перевод
    • двойной стек
    • туннелирование *
  7. Какие два утверждения относительно адресов IPv4 и IPv6 верны? (Выберите два.)
    • IPv6-адреса представлены шестнадцатеричными числами. *
    • IPv4-адресов представлены шестнадцатеричными числами.
    • IPv6-адреса
    • имеют длину 32 бита.
    • IPv4-адреса имеют длину 32 бита. *
    • IPv4-адреса
    • имеют длину 128 бит.
    • IPv6-адреса
    • имеют длину 64 бита.
  8. Какой IPv6-адрес наиболее сжат для полного адреса FE80: 0: 0: 0: 2AA: FF: FE9A: 4CA3?
    • FE8 :: 2AA: FF: FE9A: 4CA3?
    • FE80 :: 2AA: FF: FE9A: 4CA3 *
    • FE80 :: 0: 2AA: FF: FE9A: 4CA3?
    • FE80 ::: 0: 2AA: FF: FE9A: 4CA3?
  9. Какие два типа одноадресных адресов IPv6? (Выберите два.)
    • многоадресная передача
    • петля *
    • локальная ссылка *
    • Anycast
    • трансляция
  10. Каковы три части глобального одноадресного IPv6-адреса? (Выберите три.)
    • идентификатор интерфейса, который используется для идентификации локальной сети для конкретного хоста
    • префикс глобальной маршрутизации, который используется для идентификации сетевой части адреса, предоставленного провайдером *
    • идентификатор подсети, который используется для идентификации сетей внутри локального корпоративного сайта *
    • префикс глобальной маршрутизации, который используется для идентификации части сетевого адреса, предоставленного локальным администратором
    • идентификатор интерфейса, который используется для идентификации локального хоста в сети *
  11. Устройство с поддержкой IPv6 отправляет пакет данных с адресом назначения FF02 :: 1.Какова цель этого пакета?
    • все DHCP-серверы IPv6 *
    • все узлы с поддержкой IPv6 на локальном канале *
    • все маршрутизаторы с настроенным IPv6 на локальном канале *
    • все маршрутизаторы с настроенным IPv6 в сети *
  12. Когда маршрутизатор Cisco перемещается из сети IPv4 в полную среду IPv6, какая серия команд правильно включит пересылку IPv6 и адресацию интерфейсов?
    • Маршрутизатор # configure terminal
      Router (config) # interface fastethernet 0/0
      Router (config-if) # ip-адрес 192.168.1.254 255.255.255.0
      Маршрутизатор (config-if) # без выключения
      Router (config-if) # exit
      Router (config) # ipv6 unicast-routing
    • Маршрутизатор # настроить терминал
      Маршрутизатор (config) # interface fastethernet 0/0
      Router (config-if) # ipv6 address 2001: db8: bced: 1 :: 9/64
      Router (config- if) # выключение отсутствует
      Router (config-if) # exit
      Router (config) # ipv6 unicast-routing *
    • Router # configure terminal
      Router (config) # interface fastethernet 0/0
      Router (config-if) # ipv6 address 2001: db8: bced: 1 :: 9/64
      Router (config-if) # no shutdown
    • Router # configure terminal
      Router (config) # interface fastethernet 0/0
      Router (config-if) # ip address 2001: db8: bced: 1 :: 9/64
      Router (config-if) # ip address 192.168.1.254 255.255.255.0
      Маршрутизатор (config-if) # без выключения
  13. Какие два сообщения ICMP используются протоколами IPv4 и IPv6? (Выберите два.)?
    • запрос маршрутизатора
    • перенаправление маршрута *
    • запрос соседа
    • протокол недоступен *
    • объявление маршрутизатора
  14. Когда хосту с поддержкой IPv6 необходимо обнаружить MAC-адрес предполагаемого пункта назначения IPv6, какой адрес назначения используется исходным хостом в сообщении NS?
    • многоадресный адрес для всех узлов
    • многоадресный адрес запрошенного узла *
    • link-локальный адрес получателя
    • глобальный одноадресный адрес получателя
  15. Когда маршрутизатор сбросит пакет трассировки?
    • , когда маршрутизатор получает сообщение ICMP о превышении времени
    • , когда значение RTT достигает нуля
    • , когда хост отвечает сообщением эхо-ответа ICMP
    • , когда значение в поле TTL достигает нуля *
    • , когда значения сообщений Echo Request и Echo Reply достигают нуля
  16. На что указывает успешный эхо-запрос на адрес IPv6 :: 1?
    • Хост подключен правильно.
    • Адрес шлюза по умолчанию настроен правильно.
    • Все хосты по локальной ссылке доступны.
    • Локальный адрес канала настроен правильно.
    • IP правильно установлен на хосте. *
  17. Какие две вещи можно определить с помощью команды ping? (Выберите два.)
    • количество маршрутизаторов между исходным и целевым устройством
    • IP-адрес маршрутизатора, ближайшего к устройству назначения
    • среднее время, необходимое пакету для достижения пункта назначения и для возврата ответа источнику *
    • , доступно ли целевое устройство через сеть *
    • среднее время, необходимое каждому маршрутизатору на пути между источником и местом назначения, чтобы ответить
  18. Заполните поле.
    Десятичный эквивалент двоичного числа 10010101: 149
  19. 20. Заполните поле.
    Какой десятичный эквивалент шестнадцатеричного числа 0x3F? 63 *
  20. Откройте действие PT. Выполните задачи, указанные в инструкциях к занятиям, а затем ответьте на вопрос. Какое сообщение отображается на веб-сервере?
    • Вы все сделали правильно!
    • Правильная конфигурация! *
    • Настроен IPv6-адрес
    • !
    • Успешная настройка!
  21. Сопоставьте каждый IPv4-адрес с соответствующей категорией адресов.(Не все параметры используются.)

    Поместите параметры в следующем порядке:
    Адрес хоста [A] 192.168.100.161/25 [A]
    Адрес хоста [B] 203.0.113.100/24 ​​[ B]
    Адрес хоста [C] 10.0.50.10/30 [C]
    Сетевой адрес [D] 192.168.1.80/29 [D]
    Сетевой адрес [E] 172.110.12.64/28 [E]
    Сетевой адрес [F] 10.10.10.128/25 [F]
    Широковещательный адрес [G] 10.0.0.159/27 [G]
    Адрес широковещательной передачи [H] 192.168.1.191/26 [H]
  22. Сопоставьте каждое описание с соответствующим IP-адресом. (Используются не все параметры)

    169.254.1.5 -> локальный адрес канала
    192.0.2.153 -> адрес TEST-NET
    240.2.6.255 -> экспериментальный адрес
    172.19. 20.5 -> частный адрес
    127.0.0.1 -> адрес обратной связи
  23. Сопоставьте каждое описание с соответствующим IP-адресом.(Не все параметры используются.)

    192.31.18.123 -> устаревший адрес класса C
    198.256.2.6 -> недопустимый IPv4-адрес
    64.100.3.5 -> устаревший адрес класса A
    224.2.6.255 -> унаследованный адрес класса D
    128.107.5.1 -> унаследованный адрес класса B
  24. Какие три адреса можно использовать в качестве адреса назначения для сообщений OSPFv3? (Выберите три.)
    • FF02 :: A
    • FF02 :: 1: 2
    • 2001: db8: cafe :: 1
    • FE80 :: 1 *
    • FF02 :: 5 *
    • FF02 :: 6 *
  25. Каков результат подключения нескольких коммутаторов друг к другу?
    • Количество широковещательных доменов увеличивается.
    • Количество коллизионных доменов уменьшается.
    • Размер широковещательного домена увеличивается. *
    • Размер области коллизии уменьшается.
  26. Какая подстановочная маска будет использоваться для объявления сети 192.168.5.96/27 как части конфигурации OSPF?
    • 255.255.255.224
    • 0.0.0.32
    • 255.255.255.223
    • 0,0.0.31 *

Загрузите файл PDF ниже:

Intermediate Reading — Сколько у вас должно быть друзей?

Сколько у тебя должно быть друзей?

Люди часто говорят, что деньги могут приносить богатство, а друзья — богатство. Новое исследование, однако, показывает, что друзья могут приносить оба вида богатства. Американское исследование попросило восемнадцатилетних детей перечислить трех своих лучших друзей. Спустя годы было обнаружено, что те, кого называли чаще всего, как правило, получали больше всего. Фактически, каждый дополнительный друг добавил два процента к своей зарплате. Исследователи считают, что это связано с тем, что люди с лучшими социальными навыками лучше справляются с работой. Итак, чем больше друзей, тем лучше?

Согласно одной теории, у всех нас около 150 друзей. Это может показаться большим, но только около пяти из них действительно близкие друзья, из тех, которым можно позвонить в 4:00 утра. Еще около десяти являются частью внутренней группы, и в их число могут входить члены семьи. Тогда есть около тридцати пяти не очень близких друзей, а остальные 100 действительно просто знакомые. Сьюзи, исследователь рынка, соглашается: «У меня много друзей, но сейчас я учусь и работаю, поэтому вижусь с несколькими друзьями только раз в неделю или около того».

Изменили ли это веб-сайты социальных сетей? Facebook, одна из самых популярных социальных сетей, насчитывает более 300 миллионов активных пользователей по всему миру, и все они заводят новых друзей в Интернете. Среднее количество друзей на Facebook — 130, но у многих людей есть сотни или даже тысячи онлайн-друзей. Пауло, графический дизайнер, считает себя типичным представителем своего поколения: «У меня более 700 друзей в Facebook, многие из них из других стран. В наши дни иметь друга на другом конце света так же просто, как и друга за углом ». Однако исследования показывают, что, хотя у некоторых людей может быть более 150 друзей, количество близких друзей остается неизменным — около пяти.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *