Защитные составы для дерева: Какие бывают защитные составы для дерева: обзор от ivd.ru

Содержание

Защитные составы для древесины

Древесина — прекрасный строительный материал, но есть у нее и специфические особенности, в числе которых горючесть и способность к загниванию. В процессе строительства и эксплуатации неизбежно возникает вопрос: когда, в какой последовательности и какими составами обеспечить биозащиту древесины? Что стоит принять во внимание при выборе защитного состава?

Прежде всего, производитель должен иметь репутацию серьезной компанией, зарекомендовавшей себя в области профессиональных пропиток для древесины.

При самостоятельном нанесении защитного состава максимальный срок его службы (при использовании внутри помещения) может составить 30-35 лет. Этого можно достичь при нанесении состава методом глубокой пропитки или вымачиванием. Для обычных биозащитных составов средний срок службы — 5-6 лет.

Как правило, чем экономичнее защитный состав по цене, тем выше его расход. Не торопитесь покупать недорогие составы, сначала посчитайте, какое количество вам понадобится для обработки. В среднем расход составляет 200-250 г/кв. м. Показатель 500-600 г/кв.м характерен для огнезащитных, но не для биозащитных составов. Кроме того, можно предположить, что удешевление состава достигается путем снижения концентрации входящих в него защитных компонентов (антисептических, фунгицидных, инсектицидных и пр.).

Производители указывают на упаковке компоненты, входящие в состав продукта. К экологичным относятся почти все масла натурального происхождения. Если при наружных работах запахом пропитки можно пренебречь, то при выборе состава для внутренних работ этот фактор учитывается. Внутри помещения оптимально применять покрытия на акриловой основе, снаружи — на алкидной.

Для сохранения текстуры древесины можно использовать масла, лаки, краски и лазури. В зависимости от степени блеска наносимого материала, поверхность будет матовая или глянцевая.

Лаки защищают древесину от атмосферных осадков, ультрафиолета и грибков. Тонированные лаки предпочтительнее прозрачных. Они лучше защищают от УФ-лучей, кроме того, при нанесении бесцветного лака есть риск не увидеть пропущенные места, которые затем могут статьи очагами разрушения.

Антисептики обычно бесцветные, иногда зеленоватого или янтарного оттенка. Обеспечивают более глубокое проникновение в древесину по сравнению с лаками и красками. Для изменившей цвет древесины (почерневшей, с грибком или синевой) применяют специальные отбеливатели по дереву.

Огнезащитные материалы при нагревании либо препятствуют возгоранию, либо переводят древесину в трудносгораемую.

Краски полностью скрывают основу, прячут дефекты поверхности. Составы для наружных работ по дереву обладают хорошей эластичностью, атмосферостойкостью, прочностью и высокой адгезией.

Поражение древесины грибком чаще возникает в сырых местах, куда попадает мало солнечного света. Водоросль образуется на солнечном свету в сырых местах. Причиной может быть и использование низкокачественной краски, содержащей недостаточное количество фунгицидов и альгицидов, не загрунтованность древесины перед окрашиванием, нанесение краски на поверхность, с которой не были удалены водоросли и грибок.

Обработайте пораженные участки фунгицидной смывкой или смесью отбеливателя и воды в соотношении 1:3. Смесь или смывку оставьте на поверхности на 20 минут, затем протрите поверхность щеткой и сполосните. Нанесите водную грунтовку для наружной отделки, затем высококачественную водную краску с нужным уровнем блеска.

Для комплексной защиты древесины применяются биоантипирены — пропитки, предотвращающие горение, гниение дерева, поражение древесными грибами, жуками-древоточцами. Традиционно для защиты дерева от огня применялись солевые антипирены. При нагревании растворенные в воде соли плавились и покрывали волокна древесины защитной пленкой, выделяли кристаллизационную воду или разлагались с выделением большого количества негорючих газов, которые экранировали поверхность древесины от кислорода воздуха.

Новая технология — антипирены-реагенты. Они преобразуют клетчатку поверхностного слоя древесины в трудновоспламеняемое соединение. Преимущество таких составов по сравнению с солевыми — долговечность обработки и многократное усиление огнезащитных и фунгицидных свойств. Реагентные биоантипирены используются и как самостоятельные антисептики и фунгициды. Работать с ними можно круглый год в широком диапазоне температур.

Биоантипирены не горючи, не ядовиты, наносятся кистью, валиком, распылителем. При работе необходимо соблюдать меры безопасности (защитить глаза, органы дыхания, открытые участки тела).

Для глубокой пропитки древесины защитными составами применяют автоклавную пропитку. Древесина помещается в специальную камеру, где создается вакуум. В итоге из клеток древесины удаляют воздух. Затем в камеру под действием вакуума нагнетается защитный состав. Под давлением он проникает в клетки древесины. Завершающий этап — вакуум для удаления излишков препарата. Уровень гидравлического давления и время воздействия зависят от породы древесины и области применения.

Процесс пропитки древесины длится около 230 минут для сосны и кедра, 195 минут для березы, 400 минут для ели, пихты и лиственницы. Глубина проникновения защитного состава в древесину составляет от 2 до 50 мм (в зависимости от породы дерева). В этом и состоит основное преимущество автоклавной обработки. При поверхностной обработке защитный состав проникает в древесину на глубину до 1,5 мм, но его распределение по толщине — неравномерное.

9 советов по выбору средств для защиты древесины от гниения, влаги и возгорания

Содержание статьи

Древесина – универсальный строительный и отделочный материал. Из дерева строят дома, беседки, заборы, из него делают мебель, его используют в качестве наружной и внутренней отделки. Такая популярность объясняется экологичностью материала и его прекрасным внешним видом, но, увы, врагов у дерева много – оно боится огня, влаги, насекомых, перепадов температур и солнечных лучей. Ранее древесину защищали составами на основе соли и уксуса – сегодня же промышленность позволяет производить более эффективные средства, которые дарят дереву долговечность и устойчивость к негативным факторам внешней среды. Этих составов настолько много, что правильно выбрать средство для защиты древесины от гниения, огня и прочих воздействий становится непросто. Разберемся в основных аспектах грамотной покупки.

№1. От чего и в каких случаях защищать древесину?

Средства защиты древесины направлены против разных негативных воздействий, и выбор зависит от того, в каких условиях будет эксплуатироваться материал. Главными врагами древесины считаются:

  • влага (туман, дождь, повышенная влажность в помещении). Дереву свойственна способность впитывать влагу и разбухать при ее повышенном содержании в окружающей среде и, наоборот, усыхать в засушливое время. Такие колебания в объеме приводят, как минимум, к трещинам, а при возведении здания из дерева вся конструкция может серьезно пострадать. Поэтому необходимо обрабатывать древесину средствами, которые уменьшают влагопоглощение, но не влияют на способность «дышать»;
  • плесень, грибок, мхи и насекомые часто поражают древесину при повышенной влажности и ограниченном доступе воздуха. Гниение, появления мха, распространение короедов, термитов, древоточцев и прочих вредителей влияет не только на внешний вид древесины, но и на ее структуру;
  • огонь. Древесина легко воспламеняется и быстро горит. Пока нет средств, которые бы на 100% защищали от огня, но есть вещества, которые воздействуют на структуру и увеличивают время невозгораемости;
  • УФ-лучи при длительном и интенсивном воздействии разрушают древесину, больше всего воздействуя на лигнин, вещество, которое обеспечивает жесткость и твердость.

Для повышения устойчивости ко всем этим факторам есть целый ряд специфических средств – комплексного состава пока не существует, поэтому если древесину необходимо защитить, например, и от влаги, и от огня, потребуется использование нескольких средств.

№2. Общие принципы выбора защитных средств для древесины

Вне зависимости от того, на борьбу с каким фактором направлено средство, при выборе обращайте внимание на такие нюансы:

  • срок службы покрытия. Защитное средство может продержаться на поверхности около 2-5 лет, и если производитель указывает на упаковке подобные цифры, то, вероятно, он не врет, а вот к долговечности в 20-40 лет стоит относиться с осторожностью. Скорее всего, это просто маркетинговый ход, а мелкими буквами в незаметном на упаковке месте будет указано, что такой срок защиты возможен только при нанесении средства методом глубокой пропитки (это промышленная техника) или при условии вымывания состава, чего достичь невозможно;
  • расход состава. Часто дешевые средства неприятно удивляют повышенным расходом состава, отчего вся их экономичность сводится на нет, поэтому при покупке стоит обратить внимание на указанные производителям цифры. Средний расход биозащитных средств составляет 200-250 г/м2, но никак не 500-600 г/м2, что можно увидеть на упаковках некоторых недорогих составов. Такой большой расход свойственен только огнезащитным составам;
  • имя производителя. Качественные защитные средства можно изготовить только на высокотехнологичных производственных линиях, которые могут позволить себе крупные предприятия с известным именем. Ради своего спокойствия и гарантии результата лучше немного переплатить;
  • универсальность. Некоторые компании предлагают комплексные средства, которые якобы защищают древесину и от огня, и от гниения, а действующие вещества, по заявлениям производителей, только усиливают эффект друг друга. Специалисты же утверждают, что даже вещества, которые могут быть в одном растворе, порой не только не усиливают действие друг друга, но и уменьшают защиту;
  • состав и сертификат соответствия. В состав защитных средств входит масса веществ, каждому из которых отводится своя роль, но внимание стоит уделять основе препарата – это могут быть органические и неорганические вещества. Неорганические вещества, к которым относятся бихроматы натрия и калия, хлористые, хром- и фторсодержащие соединения, соли меди и цинка, негативно воздействуют на человека, металлы и цвет древесины, поэтому запрещены к использованию в Европе. Средства на органической основе более эффективны и позволяют избежать негативного воздействия на здоровье. Любое защитное средство должно иметь сертификат соответствия, подтверждающий его безопасность.

№3. Методы защиты древесины

Для обеспечения максимально долгой сохранности древесины используют комплекс мер. Это конструктивные решения, заключающиеся в правильном размещении и планировке, а также регулярный контроль состояния древесины и непосредственно сами средства для защиты древесины.

Защитные средства могут быть нанесены такими основными способами:

  • антисептирование – поверхностная обработка дерева. В частном строительстве может проводиться с помощью кисти или распылителей, а в промышленных условиях выполняется благодаря вымачиванию в защитных составах;
  • консервирование проводят только в промышленных условиях. Для этого может быть использована автоклавная пропитка, когда обработка проводится под действием высокого давления, пропитка в горяче-холодных ванных или обработка автоклавно-диффузионным способом.

№4. Средства для защиты древесины от влаги

Повышенный уровень влажности – главный враг древесины, так как не просто ухудшает эксплуатационные качества, но и становится причиной появления плесени и грибка. Обработка, направленная на защиту от влаги, начинается еще с заготовки древесины, и большое значение имеет правильная сушка. Даже хорошо высушенный материал со временем начнет впитывать влагу, но и по этому параметру разные сорта древесины сильно отличаются. Лиственница, ясень, сосна, дуб более устойчивы к воздействию влаги, ель, пихта и бук – среднеустойчивы, а клен, береза и граб наиболее уязвимы. Ряд тропических деревьев (кумару, кусия, ипе, сизаль) практически не боятся влаги и нуждаются лишь в минимальной защите.

Важнейший показатель древесины – внутриклеточная влага. Для строительства можно использовать материал с показателем на уровне 5-20%, причем для устройства стропильных конструкций и внутренней отделки подойдет древесины с влажностью 9-15%, а для наружной обшивки – 12-18%.

Для уменьшения способности древесины впитывать влагу из окружающей среды, т.е. для снижения ее гигроскопичности, используют лаки, масляные пропитки и пасты, которые делятся на две группы:

  • составы, образующие пленку на поверхности, не отличаются достаточной долговечностью, поэтому повторять обработку придется достаточно часто;
  • проникающие составы более долговечны и способны попадать в поры древесины, используются для обработки заборов, оконных рам, стен дома, садовой мебели.

Как правило, гидрофобизаторы не меняют цвет древесины, а их эффект заключается в том, что капли воды просто скатываются с поверхности, не проникая в структуру. Ряд подобных средств обладает еще и морозостойким эффектом.

№5. Средства для защиты древесины от гниения, плесени и насекомых

Постоянная повышенная влажность, колебания температуры и интенсивное воздействие солнечных лучей делают древесину уязвимой перед микроорганизмами и насекомыми. В качестве профилактики появления плесени используют антисептики – средства, которые предотвращают, но не убивают бактерии. Уже во время заготовки древесины ее покрывают антисептиками, повторная обработка осуществляется после монтажа и зачистки древесины. Антисептики производят в виде жидкостей и паст, они также надежно защищают от поражения насекомыми. Есть антисептики грунтовочного типа, которые используют под лак и покраску, но проникновение и срок службы у них небольшой. Антисептики можно колеровать, а специалисты говорят, что таким способом намного легче добиться равномерного окрашивания стен, чем при использовании колерованного лака.

Если на древесине уже есть следы гнили, то перед использованием антисептика, необходима обработка фунгицидами – веществами, убивающими споры грибков и плесени. Основой в фунгицидных растворах может служить:

  • вода. Это экологичные и недорогие составы, недостаток которых заключается в том, что они постепенно вымываются водой, поэтому подходят только для внутренней обработки древесины, которая не взаимодействует с влагой и грунтом;
  • уайт-спирит. Такие препараты более устойчивы к внешним воздействиям, плохо вымываются водой, так как проникают глубоко внутрь древесины, но не совсем экологичны, обладают резким запахом, что значительно осложняет обработку.

При обнаружении на древесине следов воздействия насекомых следует провести обработку инсектицидными пропитками, которые выпускаются:

  • на водной основе. Используются, в основном, для годовой защиты древесины при транспортировке и хранении;
  • на алкидной основе – это более устойчивые средства, которые подходят не только в качестве лечебных препаратов, но и как профилактика.

Регулярный контроль состояния древесины на запах гнили, наличие белых тонких или синеватых и буроватых пленок позволит вовремя предотвратить гниение.

Порой могут понадобиться средства для отбеливания древесины и устранения синеватых, зеленоватых и черных пятен. Такие вещества наносят кистью на поврежденные места, и уже через несколько часов возвращается первоначальный цвет.

При покупке антисептических составов обращайте внимание, что разные породы впитывают составы с разной интенсивностью. Так, береза и бук обладают высокой впитываемостью, кедр, лиственница, дуб, липа, граб – средней, а ель и пихта – низкой. Кроме того, для разных целей используют совершенно разные составы. Если при транспортировке древесина нуждается лишь в профилактической обработке, то при возведении стропильной системы необходимо использовать трудновымываемые средства, которые часто окрашивают древесину в буроватые и сероватые оттенки, снижая ее декоративные качества, поэтому для фасадов такие средства не подходят.

№6. Средства для защиты древесины от огня

При воздействии огня древесина рано или поздно воспламеняется, правда, большие бревна сопротивляются огню намного дольше, чем доски, так как на их поверхности образуется обуглившийся слой, который медленно тлеет. Любые сколы и трещины повышают уязвимость перед пламенем. Для защиты древесины от огня используют антипирены, которые способны задержать воспламенение и распространение огня.

Антипирены выпускаются в таких формах:

  • жидкие составы: лаки, пропитки, эмали и краски;
  • твердые составы: засыпки и обмазки.

Ранее антипирены повсеместно выпускались в твердой форме, сегодня рынок предлагает преимущественно готовые жидкие растворы или концентраты. Такая форма выпуска позволяет использовать средство более эффективно и одновременно повысить безопасность, ведь при работе с порошками неизбежно попадание ядовитой пыли в организм, да и дополнительное оборудование требуется, что усложняет процесс обработки.

Антипирены по принципу действия делят на:

  • активные, это, в основном пропитки, в состав которых входят соли фосфорной и борной кислоты. Под воздействием высоких температур они расплавляются, образуя защитный слой, который препятствует распространению огня;
  • пассивные, к которым относят огнезащитные покрытия, создающие на поверхности древесины тонкий теплоотражающий слой. Он при воздействии высоких температур вспучивается, образуя экран из негорючей пены, который замедляет распространение пламени и обугливание древесины.

Самой качественной будет защита, нанесенная в промышленных условиях, но и самостоятельно с помощью кисти, валика или аэрозоля можно провести подобную обработку. Обрабатывать древесину с влажностью более 15% не рекомендуется. Для хорошо просушенного дерева подойдут составы на основе органических полимеров, а для не древесины с влажностью 10-15% для гарантии лучше использовать водорастворимые антипирены.  Небольшие деревянные элементы можно окунать в раствор и оставлять там на период от 30 минут до 24 часов.

По эффективности все антипирены делятся на группы:

  • Г1 – средства, благодаря обработке которыми древесина после двухминутного воздействия пламени газовой горелки теряет до 9% массы;
  • Г2 – средства с потерей массы до 25%;
  • Г3 – средства, которые не обеспечивают должной защиты дерева.

Для обработки лестниц и несущих конструкций выбирают защитные средства класса Г1, во всех остальных случаях подойдут антипирены класса Г2. Если производитель и вовсе не указывает эффективность, то от покупки такого средства лучше отказаться.

№7. Средства для защиты древесины от ультрафиолета

Под постоянным действием солнечных лучей древесина начинает темнеть и разрушаться, поэтому если подобное влияние на материал неизбежно, негативные последствия обязательно необходимо предотвратить. Как правило, специальные добавки для предотвращения губительного воздействия солнечных лучей, входят в состав водоотталкивающих пропиток и биозащитных средств, лаков и красок, о чем будет свидетельствовать соответствующая надпись на упаковке.

№8. Последовательность нанесения защитных средств

Чтобы обеспечить древесине максимальную сохранность, ее обрабатывают защитными средствами в такой последовательности:

  • антисептики на этапе заготовки и транспортировки, а также после сооружения конструкции, мебели, организации отделки;
  • обработка антипиренами при необходимости;
  • обработка влагоотталкивающими пропитками, которая также предотвратит вымывание антипирена и антисептика;
  • нанесения лакокрасочных средств с защитой от ультрафиолета;
  • герметизация стыков и швов с помощью акрилового герметика – немаловажный процесс, препятствующий проникновению в древесину влаги.

№9. Производители защитных средств для древесины

Полки магазинов заполнены различными защитными препаратами для древесины, но не все они одинаково эффективны. При выборе стоит обращать внимание на указания на упаковке, в т.ч. учитывать влияние средства на цвет древесины, его коррозионную активность и наличие запаха, а также учитывать имя производителя, которое становится гарантией качества. Среди всего обилия средств, выделить стоит продукцию таких компаний:

  • Pinotex – эстонский производитель защитных средств для древесины. Его продукция получила огромную популярность на отечественном рынке. Выпускает составы для защиты древесины внутри и снаружи дома: грунтовки, пропитки, краски и антисептики. Отлично себя зарекомендовали антисептики грунтовочного типа, колерованные антисептики, а также антисептики с ультрафиолетовым фильтром. Защитные средства компании, предназначенные для использования на террасах и открытых площадках, названы одними из лучших;
  • Tikkurila – концерн со 150-летней историей, заводы которого расположены в нескольких странах. Имя этого производителя – гарантия качества продукции, так как за всеми этапами производства тут тщательно следят. Средств защиты для дерева огромное количество, выпускаются под торговой маркой Valtti;
  • Belinka Belles – словенский производитель, который стремительно завоевывает признание отечественных покупателей. Выпускает широкий спектр защитных средств, в т.ч. грунтовки-антисептики, несмываемый антисептик, специальные защитное средство для саун и уникальное гибридное покрытие;
  • «Сенеж» — отечественная компания, которая выпускает полный комплекс средств для защиты древесины от любых негативных воздействий. Производит тонирующие антисептики у УФ-фильтром, антисептики для бань и саун (эти средства, кстати, считаются одними из лучших в своем роде), консервирующие антисептики, огне-биозащитные средства, вещества для отбеливания древесины;
  • Neomid – бренд защитных средств от компании «Экспертэкология-Неохим». Отечественный производитель делает ставку на производство концентрированных препаратов, что удешевляет их стоимость. Популярностью пользуются антисептики для защиты древесины во влажной среде и грунте, антисептики с УФ-защитой, средства для отбеливания древесины, защиты от огня, а также вещества для обработки саун и бань.

Кроме того, неплохо показали себя защитные средства от белорусской компании Sadolin, немецкой Dufa, английской Dulux, отечественных компаний «Рогнеда» (торговая марка «Акватекс») и «Древесный лекарь».

Существует масса народных средств для защиты древесины от гниения и вредителей, но для достижения наилучших результатов лучше отдавать предпочтение профессиональным препаратам и наносить их в соответствии с инструкцией.

Статья написана для сайта remstroiblog.ru.

виды и состав, что лучше для древесины, как сделать своими руками, применение для наружных и внутренних работ

Древесина является натуральным и красивым материалом, который используется в разных отраслях производства и строительства. Однако существенным недостатком дерева считается его податливость воздействию окружающей среды и насекомых. Оно легко поражается различными паразитирующими колониями, впитывает грязь и подвержено механическим и физическим повреждениям.

Пропитка для дерева способна защитить структуру дерева от всех этих факторов и даже придать ей более эстетичный внешний вид.

Не забудь поделиться с друзьями!

Содержание статьи

Зачем нужно делать пропитку дерева

Древесина пользуется большим спросом благодаря прочности, экологичности, гигроскопичности, шумоизоляции и теплоемкости. Кроме того, красота и легкость обработки древесины ставят ее намного выше других материалов при изготовлении мебели, в строительстве, отделке домов и производственных помещений.

Необработанное дерево разрушается под воздействием многих факторов, поэтому были созданы многочисленные пропитки и антисептики, которые защищают материал:

  • от грибков,
  • от плесени,
  • от гнили,
  • от насекомых,
  • от ультрафиолета,
  • от перепадов температур,
  • от атмосферных осадков,
  • от различных повреждений,
  • от проникновения и оседания грязи.

Виды пропиток в зависимости от их основы

Любая защитная пропитка предназначена для разных целей и места использования. В связи с этим разрабатывается специальный состав на основе главного компонента. Благодаря сочетанию добавочных средств пропитки могут иметь или нет запах, отличаться по консистенции и цвету, создавать на поверхности дерева пленку или полностью проникать в поры обрабатываемого материала.

На водной основе

Пропитки на водной основе доступны в полностью готовом виде. Они отличаются отсутствием неприятного запаха, поэтому подходят как для наружных, так и для внутренних работ.

Водная основа подразумевает нанесение средства даже на влажную поверхность или на солевые покрытия, сочетание которых неэффективно с жидкостями на основе растворителей.

Нанесение производится кистью или пульверизатором, вакуумным методом посредством замачивания. Средство быстро сохнет и глубоко проникает в древесину, но имеет одно ограничение –

его нельзя применять для обработки старого сухого материала. Это приводит к разбуханию последнего и образованию на нем трещин.

По назначению вещества могут иметь антисептические, противопожарные и декоративные свойства, защищать от намокания. Они обладают более низкой износостойкостью по сравнению с другими средствами.

На акриловой основе

Пропитки на акриловой основе применяют для защиты и декорирования деревянных поверхностей как снаружи, так и внутри помещений. Они экологически безопасны для человека, не имеют запаха.

Такие смеси обладают укрепляющими и водоотталкивающими свойствами, способны отлично защитить от грибка, плесени и гниения. После применения пропитки срок службы материала увеличивается.

Обработке подлежит массив на любой стадии строительства. Наносится средство кисточкой или пульверизатором.

К недостаткам акриловых пропиток можно отнести непереносимость низких температур.

На солевой основе

Солевые пропитки доступны в виде порошка или готового раствора. Они чаще всего используются для обработки стропильных систем с целью их защиты от грибков, плесени и вредителей. Кроме того, за счет оседания солевых кристаллов такие средства эффективно защищают от возгорания.

Возможно нанесение кистью, однако наибольшего эффекта удастся достичь только путем замачивания или обработки в вакуумной камере. По этой причине в быту смеси используют редко, но можно заказать такую обработку на производстве.

На масляной основе

Масляные пропитки обладают высокими водоотталкивающими свойствами. Их активно используют для покрытия деревянных конструкций и мебели, которая находится на улице и постоянно подвергается воздействию атмосферных осадков.

Масло в основе средства глубоко проникает в волокна массива, предотвращает его пересыхание и растрескивание, а также воздействие грязи и пыли. Обработанное пропиткой изделие незначительно меняет цвет, приобретая при этом красивую блестящую поверхность.

Такое покрытие недолговечно. Его необходимо обновлять каждый год, нанося пульверизатором или кистью в несколько слоев.

К недостаткам можно отнести горючесть смеси и невозможность нанесения поверх нее других средств.

На основе алкидных смол

Алкидные пропитки имеют в составе антисептические добавки, масло и воск. Смеси прекрасно подчеркивают естественную красоту древесины, защищают ее от плесени, грибков и воздействия, как атмосферного, так и физического.

После нанесения кистью или валиком следует долгий срок высыхания

, что многие относят к существенному недостатку такого средства.

На битумной основе

Битумная пропитка представляет собой густую массу черного цвета. В основе смеси лежит бензин и солярка. Чаще всего средство изготавливается самостоятельно и предназначено исключительно для внешних работ ввиду высокой токсичности и резкого запаха.

Обработке подлежит любой вид древесины, даже высушенной. После нанесения образуется плотный защитный слой, который предотвращает развитие вредных бактерий и грибков, нападение насекомых.

Состав подразумевает защиту от влаги, но высокую воспламеняемость.

Силиконовая

Силиконовая пропитка обладает всеми положительными характеристиками других типов средств

: водоотталкивающими, антисептическими, защищает от ультрафиолета и биологического разрушения. При этом смесь не образует пленку, позволяя массиву дышать.

Наносится любым удобным способом. Продается в виде концентрированных или простых жидкостей.

Виды пропиток по назначению

Пропитка для древесины может иметь различные характеристики по типу воздействия. В каждом отдельном случае подбирается та, которая подходит больше всего.

Антисептики

Антисептические свойства пропитки направлены на защиту дерева от гниения и образования грибка и плесени, от нападений различных насекомых. Их отдельные составляющие исключают воздействие биологических факторов.

Хороший антисептик отличается высокой стойкостью. Он глубоко проникает в структуру материала, не имеет неприятного запаха и полностью безвреден для людей. Для защиты во время хранения и транспортировки производится поверхностное опрыскивание. При монтаже рекомендуется обработка путем замачивания.

Огнезащита

Для защиты от возгорания используются кислотные, щелочные и солевые пропитки. С дополнительными защитными слоями такие средства обеспечивают высокую противопожарную безопасность, сохраняют свои характеристики долгое время. Смеси полностью безопасны для живых существ.

Кислотные составы являются самыми надежными в этом вопросе. При этом обеспечивается дополнительная прочность материала с сохранением гигроскопичных характеристик.

Щелочные пропитки используются намного реже. Они нарушают структуру дерева и совсем не подходят для обработки видимых поверхностей.

Самыми неэффективными считаются солевые растворы. Со временем кристаллы соли выступают на поверхность и портят внешний вид изделия.

Срок действия противопожарного слоя на наружных поверхностях составляет 2 года. При внутренних работах – 5 лет. Принцип действия состоит в том, что вещества, входящие в состав пропитки, под действием высоких температур плавятся и образуют тонкую пленку, препятствующую попаданию кислорода.

Морозостойкость

Морозостойкие жидкости предназначены для сохранения свойств древесины при температуре около -40 °С. Они обладают антисептическими и защитными характеристиками.

Водоотталкивающий эффект

Благодаря наличию в составе воска и масел обеспечивается абсолютная защита дерева от проникновения влаги. Поскольку разрушается массив даже от водорода, находящего в воздухе, практически все пропитки обладают таким действием, но существуют и специальные средства, которые предназначены для обработки поверхностей в банях и саунах, для внешних работ.

Декоративные свойства

Декоративная пропитка для дерева, чаще всего акриловая, используется с целью подчеркивания естественной текстуры массива. В декоративных целях выбирают средства с нужным оттенком, матовой или глянцевой пленкой, которая образуется после высыхания.

Комплексные пропитки

Большая часть пропиток обладает сразу многими свойствами, отличается сложным составом, доступна в виде концентратов.

Наиболее востребованными являются антисептические пропитки с водоотталкивающими и противопожарными свойствами.

Какая пропитка лучше

Широкий ассортимент средств может сделать выбор в пользу какого-либо одного сложным, поэтому нужно сразу разграничить желаемые воздействия от состава. Кроме того, важно правильное применение жидкостей по типу внутренних или наружных работ.

Для внутренних работ

Выбирая пропитку для обработки древесины, которая будет или уже установлена внутри помещения, в первую очередь обращают внимание на экологичность и безопасность раствора. Таким требованиям отвечают средства на водной основе, с натуральными растворителями и маслами.

Условно все товары этой линейки можно разделить на 3 группы:

  • антисептики, которые предназначены для защиты от гниения, образования плесени и грибка, перепадов температур, изменения формы и цвета;
  • влагозащитные, которыми обрабатывают бани, чтобы защитить массив от постоянного воздействия высоких температур и влаги;
  • огнезащитные, существенно или полностью снижающие риск возгорания.

Для наружных работ

При обработке древесины, которая будет постоянно находиться на улице и подвергаться воздействию различных вредных и атмосферных факторов, рекомендуется использование более агрессивных пропиток. При этом вред здоровью и экологичность, ввиду проведения работ на улице, отходят на второй план.

В первую очередь применяется антисептическая пропитка, которая не только не даст различным микроорганизмам жить и размножаться в структуре дерева, разрушая его, но и сохранит внешний вид, т. к. в процессе жизнедеятельности бактерий и грибков материал чернеет.

Если предварительно поверхности придали нужный оттенок, пропитка должна защищать от ультрафиолета.

Важно! Самые едкие пропитки – битумные. Смеси используют для обработки несущих конструкций. После их нанесения дерево не боится ни влаги, ни нападений микроорганизмов. Ему не страшны даже грызуны.

Цвет

Если планируется сохранить натуральный оттенок дерева, смесь подбирается бесцветная и обладающая рядом защитных характеристик. Для придания массиву нужного оттенка более дорогих пород используются цветные пропитки для дерева. При этом не следует путать простую покраску и пропитывание. В первом случае образуется непрозрачный фон колера, а во втором сохраняется прозрачность и видна структура.

Колеровкой заниматься нецелесообразно. Проще в магазине по карте оттенков подобрать наиболее понравившуюся пропитку.

Нанесение проводится любым удобным способом в несколько этапов, между которыми выдерживается пауза на время полного высыхания предыдущего слоя.

Изготовление пропитки своими руками

Самодельные составы могут ничем не уступать по своим характеристикам покупным, но себестоимость их будет гораздо дешевле. Никаких сложностей при производстве не должно возникнуть. Главное – придерживаться правил техники безопасности, использовать средства для защиты лица и рук.

Пропитка, которую многие предпочитают сделать дома самостоятельно, – битумная. Кроме главного компонента, понадобится бензин или дизельное топливо.

Для производства требуется источник открытого огня, большая металлическая емкость и длинная мешалка. Твердый битум вначале необходимо расплавить, постоянно помешивая и контролируя наличие нерастворившихся комков. Затем емкость отставляют или тушат огонь под ней и дают массе немного остыть. Постепенно добавляют растворитель и вымешивают до необходимой консистенции. При использовании бензина необходимо учитывать, что он быстро испаряется.

Нагрев битумной массы следует проводить медленно во избежание пенообразования и переливания через край емкости. Процесс приготовления может занять разное время, в зависимости от объемов массы.

Готовое средство способно застывать, поэтому его нужно сразу расходовать, добавляя при необходимости растворитель.

Можно в домашних условиях приготовить дешевый антисептик из воды и медного купороса. Как и любой солевой раствор, такая смесь изготавливается путем растворения в воде в заданном соотношении, которое зависит от типа древесины:

  1. Для обработки бытовых сооружений или предметов, находящихся внутри дома, достаточно слабого раствора, который содержит до 4% солей, не более 400 г на 10 л воды.
  2. Для мебели, стоящей на улице, рекомендуется использовать более концентрированную смесь.
  3. Для обработки столбов или сооружений, вкопанных в землю, раствор готовят из 1-2 кг купороса на 10 л воды. Покрытие проводится более тщательно и в несколько этапов.
  4. Для контроля нанесения слабой жидкости следует добавить в нее немного марганцовки. Сразу будет видна обработанная область, а тонирование со временем исчезнет. Более концентрированные растворы приобретут оттенок за счет цвета солей.

Весь процесс заключается в добавлении в горячую воду купороса и перемешивания до полного растворения. После остывания раствор можно наносить кисточкой или пульверизатором. Хранится готовая смесь несколько дней, если использование сразу после приготовления невозможно ввиду погодных условий или других индивидуальных причин.

Изготовление солевых растворов на водной основе производится и в помещении. Главное – следить за тем, чтобы они не попадали на вещи или в труднодоступные места и щели.

Строительный рынок заполнен всевозможными пропитками для массива дерева или готовых изделий из него. Все они отличаются характеристиками, действием и сроком службы, могут стоить дешево или достигать высокого ценового диапазона.

При выборе необходимо руководствоваться исключительно необходимостью их применения и тем, какие воздействия должны быть реализованы после их нанесения.

Кроме того, следует избегать приобретения товаров неизвестных производителей, особенно если речь идет о пропитках, которые будут использоваться для внутренних работ.

Пропитка для дерева от влаги, описание пропитки для дерева от влаги и гниения

Древесина относится к лидерам среди материалов для строительства частных домов. Однако при всех своих преимуществах она имеет один недостаток – способность повреждаться и приходить в негодность под воздействием повышенной влажности. Предотвратить ее разрушение можно при помощи пропитки для дерева от влаги и гниения, которая позволяет сохранить первоначальные характеристики деревянных конструкций и значительно продлить срок их эксплуатации.

Для чего нужна пропитка для дерева от влаги?

Будучи натуральным материалом, дерево обладает природной гигроскопичностью и имеет свойство вбирать в себя влагу при контакте с талыми водами и атмосферными осадками. При повышении влажности древесины более чем на 15 % она начинает набухать, расслаиваться, терять свою форму. С течением времени на ней появляются плесень, грибки, развиваются процессы гниения, которые снижают долговечность и эстетику деревянных конструкций.

Современная пропитка для дерева от влаги наделяет изделия водоотталкивающими свойствами и помогает избежать их высокого увлажнения. Ее использование сводит к минимуму риски появления гнили, которая не просто портит внешний вид дерева, но и негативно сказывается на здоровье людей. Споры гнилостных образований способны попадать в лёгкие человека и провоцировать хронические болезни, поэтому защита древесины от чрезмерной влажности является важным этапом в создании благоприятного микроклимата в доме.

Причины ускоренного разрушения дерева

Деревья, произрастающие в природе, обладают надежной защитой в виде собственной древесной коры. При строительстве зданий или изготовлении различных изделий из дерева кора удаляется, что влечет за собой нарушение древесной структуры под негативным влиянием внешней среды. Если на конструкциях нет пропитки для дерева от влаги и гниения, то они разрушаются вследствие следующих факторов:

  • Грибки и плесень – часто поражают древесину в условиях влажности и ограниченного доступа воздуха. Дерево служит отличной питательной средой для вредных микроорганизмов, особенно если оно напитано влагой.
  • Насекомые – наиболее распространенными врагами дерева являются жук-долгоносик, короед, древоточец, которые способны не только навредить древесине, но и полностью ее разрушить. Характерными признаками появления насекомых служат небольшие дырочки и канавки, видимые на деревянной поверхности.
  • Влага – дожди, туманы, тающий снег, да и просто повышенная влажность внутри помещения приводят к разбуханию древесины и образованию трещин, а также благоприятствуют появлению гнили. Пропитка для дерева от воздействия влаги снижает водопоглощение материала, не влияя при этом на его способность «дышать».

В качестве дополнительных факторов, отрицательно воздействующих на дерево, стоит упомянуть ультрафиолетовые лучи, которые разрушают природное вещество лигнин, отвечающее за твердость и жесткость древесины. Под влиянием солнца деревянные изделия становятся более мягкими, теряют природный цвет и покрываются трещинами.

Виды средств для защиты дерева

Современный рынок предлагает потребителю качественные растворы, которые предотвращают процессы гниения и становятся надежной биологической защитой деревянных конструкций. Все пропитки для дерева от влаги и гниения могут различаться между собой в зависимости от состава и способов их применения:

  • по месту обработки;
  • по природе используемых растворителей;
  • по характеру активного компонента.

По месту нанесения

Исходя их локализации обработки, пропитки бывают внутренними и внешними. Первые используются для проведения внутренних работ и отличаются экологической чистотой. Они мягко воздействуют на микроорганизмы и не наносят вреда здоровью человека. Внешние средства применяются для наружных работ и обеспечивают лучшую защиту для дерева, но отличаются более высокой токсичностью.

По активному компоненту

Главным действующим компонентом в пропитках для дерева от влияния влаги могут быть вещества органического и неорганического происхождения. Чаще всего составы изготавливаются на масляной основе, акрилате или алкидных смолах, а также на летучих химических компонентах, которые не могут проникнуть глубоко в дерево, но формируют прочную защитную пленку на его поверхности.

По растворителю

В зависимости от растворителя для пропиток смеси бывают водными и неводными. В первом случае активный компонент смешивается с водой, которая обеспечивает древесине хорошую смачиваемость пор. Что касается неводных смесей, то их разводят при помощи спирта или химических растворителей, которые при нанесении на поверхность быстро улетучиваются в атмосферу.

Если вам нужна надежная пропитка для дерева от влаги и гниения, подобрать необходимый материал можно в магазине «ТБМ-Маркет». В нашем каталоге представлены средства как для наружных, так и для внутренних работ, позволяющие обеспечить хорошую защиту для дерева на долгие годы.

Как подобрать эффективную пропитку для дерева от влаги?

Чтобы пропитка дала максимальный эффект, рекомендуется ознакомиться с характеристиками предлагаемых средств и подобрать именно тот материал, который лучше всего подходит конкретному типу деревянных конструкций и условиям их эксплуатации. К главным аспектам, на которые следует обратить внимание, относятся:

  • глубина проникновения средства в древесину;
  • экологическая безопасность пропитки для дерева от негативного воздействия влаги, наличие/отсутствие резкого запаха;
  • место применения – для внешних или внутренних работ;
  • степень действия состава на разные виды грибка, плесени и насекомых;
  • расход материала – в среднем он должен составлять до 200–250 г/м²;
  • срок действия смеси.

При покупке следует учитывать климатические условия местности. Если дом находится в областях с частыми атмосферными осадками, лучше всего выбирать пропитки, которые эффективно защищают дерево при резких перепадах температур. Для мест с повышенной влажностью желательно брать водоотталкивающий состав, основной функцией которого является защита дерева от влаги.

Правила обработки пропиткой для дерева от влаги

Как правило, пропитка для дерева от влаги и гниения не вызывает трудностей в нанесении, однако при обработке древесины нужно придерживаться определенных рекомендаций, которые помогут правильно нанести состав с гарантией его долгосрочного действия:

  • Перед обработкой необходимо очистить древесину от пыли, жира или ранее нанесенных красок и лаков.
  • Если на дереве уже заметны следы грибка, его нужно обработать щеткой с металлическими щетинками.
  • Неотъемлемым этапом является тщательная сушка дерева, поскольку сухая древесина не так интенсивно впитывает влагу.
  • Пропитка наносится кистью или валиком, начиная со срезов доски, ее торцевых элементов и тех частей дерева, которые уже подверглись повреждению. При обработке необходимо надевать средства индивидуальной защиты.
  • Если пропитку для дерева от влаги нужно нанести в несколько слоев, то следует подождать высыхания каждого предыдущего слоя.

Когда использование пропиток особенно необходимо?

Поскольку древесина подвергается наибольшему повреждению в условиях повышенной влажности, применение антисептиков особенно важно в местах, где влага оказывает максимальное разрушительное воздействие. К таковым относятся подвальные помещения, бани и сауны, уличные беседки, садовая мебель, а также те части деревянных сооружений, которые имеют тесный контакт с землей.

Обработка такой поверхности может производиться как на этапе строительства, так и на готовых конструкциях. При помощи пропитки для дерева для защиты от влаги и гниения можно свести к минимуму появление грибка и плесневых пятен, избежать появления гнили и защитить деревянные материалы от разрушительной силы воды.

Как защитить дерево подручными средствами?

Существует немало подручных средств, которые вполне могут заменить магазинные растворы. Чаще всего для защиты дерева используют:

  • силикатный (столярный) клей;
  • раствор соды с уксусом;
  • смолу;
  • медный купорос;
  • отработанное машинное масло;
  • серную кислоту в сочетании с бихроматом калия;
  • составы из борной кислоты, воды и соли.

Указанные варианты не так эффективны, как пропитка для дерева от влаги и гниения, поскольку препятствуют воздействию влаги только на короткое время. Если вы хотите получить длительный и действительно качественный эффект, оптимальным решением станет обращение в интернет-магазин «ТБМ-Маркет» и покупка надежных пропиток для древесины от европейских производителей.

Защитное экологичное декоративное покрытие дерева

ЭКОЛОГИЧНОЕ ЗАЩИТНОЕ ДЕКОРАТИВНОЕ ПОКРЫТИЕ ДРЕВЕСИНЫ.


Требования к декоративным покрытиям в строительстве растут, естественный процесс эволюции в декоративной обработке древесины, как ни странно, возвращает нас к натуральной текстуре дерева. Тем не менее, в отличие от предков, мы знаем, какие недостатки таит в себе дерево, как строительный материал, и успешно научились бороться с ними. Даже враги у древесины очень экологичные: насекомые, влага, грибные поражения, выцветание на солнце, огонь. Деревянный дом все еще самый экологичный, а природные достоинства древесины побеждают при выборе материала для строительства.
Под экологичностью строительных составов для обработки древесины понимают не только безопасность для здоровья и отсутствие агрессивных химикатов. Также экологичные декоративные составы – это современные средства, которые позволяют подчеркнуть природную красоту дерева, оставить поверхность дерева естественной и приятной. При этом, мы не хотим поступаться и функциональными, защитными качествами даже в экологичных декоративных составах.
Основные функции любого декоративного покрытия для дерева – это защита и эстетичность.
  Современная химия способна создать декоративные составы для древесины, которые не только защищают и придают красивый ухоженный вид дереву, но и отвечают требованиям экологичности.
Защитная функция антисептиков, огнебиозащиты и инсектицидов очевидна. Эти защитные составы для древесины создают надежную базу и гарантируют, что материал прослужит долгое время, не теряя своих свойств и вида. Защитные пропитки для дерева могут быть использованы даже до начала строительства и механической шлифовки поверхности.
Защитная функция декоративного покрытия для древесины играет другую, не менее важную роль.
1. В первую очередь, декоративный слой защищает от вымывания из дерева того самого защитного состава. В условиях уличной эксплуатации деревянного изделия — это обязательно. Производитель указывает на защитных пропитках, когда необходимо покрыть их финиш слоем для соблюдения технологии и сохранения защитных свойств.
2. Во-вторых, декоративный слой защищает древесину от климатических негативных факторов. Особенно при наружном использовании материала. Перепады температуры, осадки, близость грунта, влажность воздуха, солнечный свет – все эти враги древесины ускоряют старение, изменяют цвет и структуру дерева. Поэтому декоративное покрытие, даже малозаметное глазу, выполняет роль, сохраняя естественную красоту древесины и продлевая ее текстуре жизнь.
3. В-третьих, многие современные декоративные составы для древесины и сами обладают биоцидным и антисептирующим действием. В формулу включены специальные компоненты, которые усиливают защиту от негативных воздействий.

Декоративное покрытие древесины — не менее важный этап обработки дерева, чем первичная защитная пропитка. Как выбрать состав для экологического декоративного покрытия, если задача – сохранить и подчеркнуть текстуру дерева?
Экология состава часто в приоритете при внутренней отделке дома. Когда материал находится в помещении, в непосредственной близости от людей, экологичность обработки древесины становится действительно важной. Однако еще один важный аспект экологичности состава – натуральный вид древесины и ее подчеркнутая богатая текстура, естественный цвет, делают экологичные декоративные пропитки популярными и для наружной отделки. Чем дороже и эстетичнее текстура древесины, тем чаще хочется выделить ее натуральной декоративной обработкой.

Рассмотрим и сравним декоративные защитные пропитки для наружных работ по дереву Неомид, которые отвечают современным стандартам экологичности.
 Поскольку наша задача сохранить древесину экологичной, оставить текстуру в первозданном виде, то рассмотрим два наиболее ярких продукта Неомид, которые отвечают этим требованиям: масло деревозащитное для террас и декоративный деревозащитный состав Bio color aqua.
Пропитки и масла для декоративного покрытия древесины бывают как бесцветными, так и тонирующими. В случае тонировки, цвет не будет ярким, скорее придаст легкий оттенок. Именно поэтому скрыть недостатки древесины пропитками и маслами не получится. Как масло для террас, так и пропитку био колор аква используйте, когда хотите сохранить естественный вид поверхности древесины. А для оценки изменения оттенка и совместимости с составом первичной обработки древесины, проведите испытание на небольшом участке.

Масло деревозащитное для террас

Пропитка Bio color aqua

Состав основной

Масло, уф-стабилизатор, фунгицид

Акриловая дисперсия, светостойкие пигменты, уф-фильтр, микровоск, биозащита

Экологичность состава

100%

100%

Эстетика

Выделяет естественную структуру дерева, придает контрастность, эффект бланширования

Создает эластичную дышащую поверхность с матовой, тактильной фактурой

Защита

От климатических, механических, бытовых моющих и грибковых воздействий

5-ступенчатая защита древесины от: биоповреждений, уф-лучей, от растрескивания, от выцветания, водонепроницаемость

Функциональность

Для наружного применения

Для внутренних и наружных работ

Пленка

Не создает пленочного покрытия

Тактильная «дышащая» пар- пропускающая пленка

Уход

Повышает износостойкость древесины и ее эстетику

В отличие от плотных лаков, создает доступ воздуха к дереву

Срок службы до обновления

3 года

5 лет

Технология обработки дерева

Рекомендуем обрабатывать строительный материал из дерева до монтажа конструкции, чтобы обеспечить полное покрытие и защиту, как с тыла. так и с торцов. Только в этом случае заявленные защитные свойства состава гарантированы.

Проведите контрольное испытание на небольшом участке дерева до полной обработки материала.

1.       Обработать древесину защитным составом без пленки

2.       Просушенный материал втирающими движениями жесткой кисти покрыть слоем масла. Дать впитаться по указанному расходу на площадь материала.

3.       Просушить первый слой. Втереть масло вторым слоем движениями вдоль волокон древесины. Повторить для третьего слоя после просушки, если необходимо.

4.       После полного пропитывания и высыхания можно монтировать конструкцию.

Рекомендуем обрабатывать строительный материал из дерева до монтажа конструкции, чтобы обеспечить полное покрытие и защиту, как с тыла. так и с торцов. Только в этом случае заявленные защитные свойства состава гарантированы.

Проведите контрольное испытание на небольшом участке дерева до полной обработки материала.

1.       Обработать древесину защитным составом

2.       Обработать древесину грунтом bio grunt, чтобы снизить расход декоративного слоя и выровнять поверхность

3.       После просушки нанести 1 слой Bio color aqua втирающими движениями кисти

4.       После полной просушки первого слоя, нанесите второй слой кистью, валиком или пульверизатором

5.       После полной просушки можно монтировать конструкцию

Сочетаемость с продуктами

Масло деревозащитное для террас сочетается со всеми составами кроме пленкообразующих. Обновляется и реставрируется масляными пропитками в течение эксплуатации. После окончания срока службы при правильной подготовке поверхности может быть укрыта любыми составами.

Пропитка Bio color aqua не наносится поверх алкидных составов. Может быть укрыта поверх любыми пленкообразующими составами.

Расход

1л на 10-20 метров

Масло деревозащитное для террас по расходу выгоднее, чем пропитка Bio color aqua

1 л на 5-10 метров

Палитра

4 оттенка

11 оттенков

Высыхание

До отлипания 6 часов

Полное высыхание 24 часа

До отлипания 1 час

Полное высыхание 6 часов

Преимущества

-Легкая реставрация и обновление покрытия в течение эксплуатации

-Простота работ

-Низкий расход

-Тактильное и визуальное ощущение естественной древесины

-Повышенная стойкость к негативным воздействиям

-Срок службы покрытия

-Широкая цветовая палитра

Недостатки

Качество древесины должно быть высоким. Текстура древесины станет контрастнее и ярче.

Возможность повреждения целостности декоративного слоя от динамических нагрузок, что повлечет снижение защитных функций

Выбор защитного декоративного покрытия для древесины всегда зависит от задач конструкции. Декоративное покрытие экологичным составом сохраняет и подчеркивает естественную красоту дерева. Беседка на фотографиях обработана маслом деревозащитным для террас от Неомид. Можно увидеть на примере этой работы, как текстура дерева подчеркнута декоративным слоем и обрела контрастность.


фотогалерея

Масло для террас Неомид, оттенок тик. Пример контрастного подчеркивания древесины.

Беседка покрыта маслом для террас Неомид

15 лучших пропиток для дерева

Обновлено: 12.03.2021 15:14:28

*Обзор лучших по мнению редакции expertology.ru. О критериях отбора. Данный материал носит субъективный характер, не является рекламой и не служит руководством к покупке. Перед покупкой необходима консультация со специалистом.

Дерево является популярным строительным материалом, который широко используется в России. Чтобы увеличить срок жизни древесине, за ней нужно бережно ухаживать. Оградить деревянные сооружения от негативных атмосферных воздействий, гниения, появления грибка, плесени и насекомых помогают специальные пропитки. Кроме того, некоторые составы снижают горючесть материала, делая его пожаробезопасным. На отечественном рынке представлена продукция разных производителей, каждый из них хвалит свой антисептик. Советы наших экспертов позволят не ошибиться при выборе состава.

Как выбрать пропитку для дерева


  1. Основа. Сегодня в магазинах встречается несколько типов пропиток. Самыми универсальными специалисты считают антисептики на водной основе. Они наносятся разными способами (кисть, краскопульт, валик), обеспечивая защиту от огня, влаги, солнца и биопоражения. Акриловые составы отличаются невысокой ценой, хорошими водоотталкивающими свойствами, экологичностью. Но работать с такой пропиткой при отрицательной температуре нельзя. Антисептики на основе органических растворителей хорошо защищают древесину от разрушающих факторов, но таят опасность для человека во время нанесения.
  2. Назначение. Использование пропитки может быть вызвано несколькими причинами. Антисептические свойства предотвращают развитие микроорганизмов. Такие пропитки нужны при отделке бань и саун. Введение в препарат антипиренов препятствует процессам горения. Это качество востребовано при обработке котельных. Водоотталкивающими и морозостойкими качествами обладают наружные пропитки. Кроме того, важным элементом рецептуры является УФ-фильтры, которые защищают дерево от выгорания. Набор атмосферостойких качеств понадобится при оформлении наружных оснований. Чтобы подчеркнуть природную красоту древесины, требуется декоративная пропитка. Она сделает внутреннее пространство особенно красивым.
  3. Расход. При выборе пропитки многие пользователи обращают внимание на цену, забывая о расходе. Чаще всего он указывается производителем, исходя из идеальных условий. Только на практике удается определить реальный расход. Если хорошая защита появляется после нанесения 1-2 слоев, то затраты на отделку будут ниже, чем при многослойной пропитке дерева дешевым составом.
  4. Экологичность. Когда выбирается антисептик для внутренних работ, определяющим фактором при покупке станет экологичность продукта. Это особенно актуально при отделке спальных и детских комнат. В этом случае самыми безопасными будут препараты на водной основе.

Мы включили в наш обзор 15 лучших пропиток для дерева. Все они продаются в российских магазинах и имеют положительные отзывы от экспертов и потребителей.

Рейтинг лучших пропиток для дерева

Лучшая пропитка для дерева для внутренних работ

Заботясь о защите дерева, важно помнить и о собственной безопасности. Поэтому пропитки для внутренних работ выбираются с учетом экологичности. Эксперты обратили внимание на несколько составов.

Pinotex Interior

Рейтинг: 4.9

Эффективную защитную пленку на древесине образует пропитка Pinotex Interior. Лакокрасочная продукция эстонского производителя хорошо зарекомендовала себя в суровом российском климате. Состав сделан на водной основе, у него отсутствует резкий запах. Эксперты отмечают легкость нанесения антисептика, во время работы не образуются потеки. Быстрое высыхание обработанной поверхности сочетается с равномерным впитыванием, что делает структуру дерева выразительной и красивой. На образуемом матовом слое не видны следы от пальцев рук, а также небольшие дефекты древесины.

Пользователи довольны внешним видом матового покрытия, надежной защитой дерева от влаги и грязи. Из минусов следует отметить появление подделок на отечественном рынке.

Достоинства
  • безопасность и экологичность;
  • широкая гамма оттенков;
  • быстрое высыхание;
  • отсутствие запаха.
Недостатки
  • встречается контрафактная продукция.

Читайте также: 10 лучших производителей массивной доски

Tikkurila Supi

Рейтинг: 4.8

На втором месте нашего рейтинга расположилась финская пропитка Tikkurila Supi. Защитный состав образует полуматовое акрилатное покрытие, которое допускается колеровать. Антисептик предназначен для обработки деревянных поверхностей в помещениях с разной влажностью, включая парные, душевые и другие комнаты бань и саун. С помощью обработки удается сохранить первоначальный цвет древесины, поддерживать отделку в чистоте. Эксперты отмечают надежную защиту от грязи и влаги, которую обеспечивает состав.

Пользователи хвалят финскую пропитку за долговечную защиту дерева от плесени и синевы, небольшой расход, быстроту высыхания. Любое помещение сразу приобретает индивидуальность и уникальность.

Достоинства
  • надежная защита от плесени и грибка;
  • экономный расход;
  • влаго- и грязестойкость;
  • возможность колеровки.

Акватекс Рогнеда Экстра

Рейтинг: 4.8

Российский состав для древесины Акватекс Рогнеда Экстра отличается комплексной защитой. При этом стоимость обработки получается ниже, чем после применения нескольких лакокрасочных продуктов. Пропитка предотвращает биопоражение дерева (грибок, плесень, синева), потемнение от УФ лучей и атмосферных воздействий. Антисептик отличается высокой декоративностью, позволяя делать отделку под элитные сорта дерева. Наносить состав можно не только на новые материалы (брус, фанера, ДВП, ДСП), но и старые основания.

К преимуществам состава пользователи относят хорошую комплексную защиту, высокие декоративные качества, простое нанесение, богатую палитру. Из недостатков можно упомянуть о неприятном запахе и большом времени высыхания. Пропитка попадает в призовую тройку рейтинга.

Достоинства
  • красивый внешний вид;
  • комплексная защита;
  • сохраняет рисунок дерева;
  • простота в нанесении.
Недостатки
  • неприятный запах;
  • долго сохнет.

NEOMID 430 ЕСО

Рейтинг: 4.7

Прочную химическую связь образует с древесиной водный раствор антисептика NEOMID 430 ЕСО. Этот консервирующий состав не вымывается водой, он может сохранять все качества дерева в самых тяжелых условиях. Эксперты рекомендуют использовать продукт для обработки досок и брусков, которые длительное время контактируют с водой или почвой (баня, парник, оформление грядок). Пропитанная антисептиком древесина не подвержена воздействию грибков, мха, водорослей, насекомых-древоточцев. Длительность защиты достигает 35 лет.

Пользователи довольны такими свойствами NEOMID 430 ЕСО, как длительный срок защиты, экологичность, широкая сфера применения. К минусам следует отнести окрашивание дерева в зеленовато-серый цвет, наличие специфического запаха. Поэтому 4 позиция рейтинга.

Достоинства
  • приемлемая цена;
  • длительная защита от биопоражения;
  • экологичность;
  • не вымывается.
Недостатки
  • окрашивание древесины;
  • неприятный запах.

Читайте также: 11 лучших яхтных лаков

Текс Биотекс Классик Универсал

Рейтинг: 4.7

Универсальными качествами может похвастаться отечественная пропитка Текс Биотекс Классик Универсал. Рецептура разработана российскими учеными, а выпуск антисептика происходит в цехах с современным импортным оборудованием. В составе пропитки имеется биоцид, который препятствует появлению гнили, грибка, плесени и т. д. Производитель рекомендует наносить антисептик на грунтованную поверхность. Для защиты дерева в помещениях с высокой влажностью и температурой (бани, сауны) состав не подходит.

Пользователи лестно отзываются о доступности препарата, красивых оттенках на дереве, простотой в применении. Эксперты поставили пропитку на пятое место рейтинга из-за въедливого запаха, недолговечность защитного покрытия.

Достоинства
  • доступная цена;
  • хорошая укрывистость;
  • простота в применении;
  • подчеркивает структуру дерева.
Недостатки
  • въедливый запах;
  • слабая влагостойкость.

Экстра Акватекс с воском

Рейтинг: 4.6

Красивый полуглянцевый вид придает древесине пропитка Экстра Акватекс с воском. Этот несмываемый состав обладает противогрибковым действием, он препятствует появлению плесени и синевы на деревянных изделиях. Наличие в препарате УФ фильтров и наночастиц надежно защищает поверхность от выгорания при попадании прямых солнечных лучей. В рецептуру введены такие натуральные компоненты, как воск и растительные масла. Они не только подчеркивают текстуру, но и делают древесину эластичной, защищая ее от растрескивания. Экспертам понравилась эффективность борьбы с насекомыми и несильный запах.

Пропитка не смогла подняться выше в нашем рейтинге из-за недолговечности. Пользователи обновляют покрытие каждые 3-4 года, к тому же состав долго сохнет.

Достоинства
  • защита от микроорганизмов и насекомых;
  • доступная цена;
  • не смывается водой;
  • хорошая палитра.
Недостатки
  • недолговечность;
  • долго сохнет.

Экодом

Рейтинг: 4.5

По самой привлекательной цене реализуется на российском рынке пропитка Экодом. Но не только за низкую стоимость она попадает в наш рейтинг. Эксперты высоко оценили экологичность состава, отсутствие в нем органических растворителей. Препарат не только препятствует появлению микроорганизмов, но и эффективно борется с уже поселившимися грибками и плесенью. После обработки древесина не меняет свой привлекательный вид, покрытие не затрудняет дыхание материала, не ухудшает адгезию к лакокрасочным и клеящим составам.

Отечественным потребителям нравится цена, эффективная борьба с биопоражением, сохранение структуры дерева. К минусам стоит отнести длительное высыхание, плохую укрывистость, неприятный запах.

Достоинства
  • низкая цена;
  • эффективная борьба с биопоражением;
  • сохранение текстуры дерева;
  • низкая коррозионная активность.
Недостатки
  • долго сохнет;
  • плохая укрывистость;
  • неприятный запах.

Лучшая пропитка для дерева для наружных работ

На деревянные конструкции, находящиеся на улице, негативно влияют дождь, солнце, мороз. Поэтому от пропитки требуется максимальная устойчивость к атмосферным воздействиям. Специалистам понравились следующие препараты.

Tikkurila Eko Wood

Рейтинг: 4.9

Сохранить природную красоту дерева удается с помощью лессирующего состава Tikkurila Eko Wood. Эксперты отдали пропитке первую строчку рейтинга за надежную защиту от атмосферных воздействий. Она нивелирует влияние на древесину воды, ультрафиолета и микроорганизмов. Антисептик хорошо проявил себя при обработке наружных стен домов, дверей, окон, заборов, террас и т. д. В каталоге производителя имеется 40 цветов, что позволяет подобрать наиболее подходящую колеровку.

Производится продукт в Санкт-Петербурге, что делает его доступным по цене для многих российских потребителей. Пользователям нравится хорошая проникающая способность антисептика, долговечная защита наружных поверхностей.

Достоинства
  • сохраняет природную красоту дерева;
  • хорошо защищает от биопоражения;
  • предотвращает выгорание древесины на солнце;
  • приемлемая цена.
Недостатки
  • не обнаружены.

Luxens

Рейтинг: 4.8

Известная компания Леруа Мерлен организовала на территории России производство пропитки Luxens. С конвейера предприятия выходят как бесцветные, так и окрашенные антисептики. Состав завоевал второе место в рейтинге за экономный расход, устойчивость к атмосферным воздействиям, простоту в нанесении. Долговечность защитного покрытия составляет 3-4 года, при этом сохраняется естественный вид деревянных оснований. Благодаря алкидной основе пропитка имеет умеренный запах, который не доставляет проблем при выполнении наружных работ. Кстати, сразу после высыхания слоя запах полностью исчезает.

Пользователи отмечают маленький расход пропитки, даже одного слоя хватает для защиты деревянных конструкций. Не все довольны запахом состава, не совсем удобно наносить препарат кистью.

Достоинства
  • подчеркивает красоту дерева;
  • длительная защита от биопоражения;
  • доступная цена;
  • экономный расход.
Недостатки
  • неприятный запах.

Pinotex Ultra

Рейтинг: 4.8

Атмосфероустойчивость и декоративность стали главными факторами для попадания пропитки Pinotex Ultra на третью строчку рейтинга. Производитель предлагает как бесцветные, так и окрашенные составы. Покрытие защищает древесину не только от воды и УФ лучей, но и предотвращает горение. В рецептуре имеется специальный фильтр, который препятствует проникновению солнечных лучей в структуру дерева. Благодаря ему сохраняется натуральная текстура древесины долгие годы. Для улучшения впитывания в основание производитель разработал особую технологию AWB.

Пользователям понравилась простота нанесения, отсутствие разбрызгивания и потеков, влагостойкость и грязеотталкивающие способности. К минусам можно отнести высокую цену и длительное высыхание.

Достоинства
  • хорошая защита от выгорания;
  • водо- и грязеотталкивающая способность;
  • красивый вид;
  • высокое качество.
Недостатки
  • высокая цена;
  • долго сохнет.

EXTREME CLIMATE

Рейтинг: 4.7

Любые породы дерева защитит от внешних воздействий пропитка EXTREME CLIMATE. Состав сделан на водной основе и предназначен для внутренних и наружных работ. Обработанная антисептиком древесина не боится дождя, снега, солнечного света. Глубокое проникновение в структуру предотвращает появление и размножение насекомых. Микропленка отличается способностью пропускать воздух, поэтому натуральный материал сможет «дышать».

В отзывах пользователи лестно высказываются по поводу быстрого высыхания пропитки, отсутствие запаха и хорошую укрывистость. Из недостатков отмечается высокая цена, а также дефицит продукта в торговой сети. Поэтому пропитка останавливается в шаге от призовой тройки рейтинга.

Достоинства
  • универсальность применения;
  • надежная защита от атмосферных воздействий;
  • отсутствие неприятного запаха;
  • дышащая структура пленки.
Недостатки
  • высокая цена;
  • дефицит в торговой сети.

Dufa Wood Protect

Рейтинг: 4.7

Широкую сферу применения находит пропитка Dufa Wood Protect. С помощью этого состава осуществляется долговечная защита наружных деревянных поверхностей. Обработке рекомендуется подвергать стены и фасады домов, беседки и заборы. Матовое покрытие полностью сохраняет привлекательность текстуры. Благодаря акрил-алкидной основе образуется надежный заслон для погодных воздействий. Наносить пропитку на деревянные конструкции можно любыми способами, время высыхания слоя при 20°С составляет всего 1 ч. Состав занимает пятую позицию в рейтинге.

Отечественным потребителям понравилась гладкая поверхность после нанесения, простоту нанесения, отсутствие запаха. Применять антисептик для большого объема работ мешает высокая цена.

Достоинства
  • нет запаха;
  • долговечная защита от погодных явлений;
  • легко смывается с рук;
  • гладкое покрытие.
Недостатки
  • высокая цена;
  • требуется наносить несколько слоев.

Нортекс-Дезинфектор

Рейтинг: 4.6

Антисептик Нортекс-Дезинфектор применяется для защиты не только деревянных оснований, но кирпичных, бетонных сооружений от плесени и грибка. Эксперты высоко оценили способность пропитки лечить «заболевший» материал. Действие препарата основано на глубоком проникновении в структуру и антисептическом воздействии на грибок и плесень. Производитель рекомендует использовать продукт в экстремальных условиях (повышенная сырость, контакт с почвой). После высыхания слой не осветляет и не тонирует дерево, сохраняя его природную красоту.

Состав попал в наш рейтинг благодаря соотношению цены и качества. Пользователи заметили несколько минусов, к которым можно отнести длительный срок высыхания (10-15 дней), неудобную фасовку и скромный ассортимент.

Достоинства
  • лечит болезни;
  • глубоко проникает в структуру;
  • сохраняет красоту природного материала;
  • приемлемая цена.
Недостатки
  • долго сохнет;
  • неудобная фасовка;
  • скромный ассортимент.

Лучшие огнезащитные пропитки для дерева

Если деревянная отделка находится вблизи от источника открытого огня, то ее необходимо обработать огнезащитной пропиткой. Она делает древесину трудно горючим материалом, расширяя его сферу применения. Вот лучшие составы с защитой от огня.

NEOMID 450

Рейтинг: 4.9

Высокоэффективным средством для огнезащиты деревянных конструкций является пропитка NEOMID 450. Состав может использоваться как внутри, так и снаружи зданий. При взаимодействии препарата с древесиной образуется плохо воспламеняемый и трудно горючий материал. Одновременно деревянная поверхность защищается от гниения и появления плесени. Отечественный производитель обещает до 7 лет огнезащиты и 10 летний срок защиты от биопоражения. Продукт предлагается потребителю в бесцветном и тонированном варианте. Эксперты отдали составу первое место в нашем рейтинге.

Пользователям нравится одновременная защита дерева от биопоражения и огня и простота применения. К недостаткам стоит отнести длительное время высыхания (12-14 дней) перед нанесением лакокрасочных материалов.

Достоинства
  • комплексная защита дерева;
  • универсальность применения;
  • длительный срок службы покрытия;
  • разные способы нанесения.

Сенеж Огнебио Проф

Рейтинг: 4.8

Комплексную защиту для дерева можно создать с помощью пропитки Сенеж Огнебио Проф. После обработки основание становится трудно горючим, оно не подвергается гниению, биопоражению, поселению жучков. Древесина приобретает стойкость к влаге и перепадам температуры. Только с грунтом не рекомендуется контактировать обработанным элементам. Пользователям следует учитывать, что после высыхания поверхность изменяет свой цвет, хотя природная структура древесины сохраняется. Препарат может применяться и при биопоражении дерева.

Взвесив все плюсы и минусы состава, эксперты отдали ему второе место в рейтинге. Пользователи отмечают отсутствие запаха, пожаробезопасность и простоту применения. Из недостатков часто упоминается про высокий расход антисептика.

Достоинства
  • комплексная защита дерева;
  • лечит зараженные микроорганизмами основания;
  • доступная цена.
Недостатки
  • не допускается контакт с почвой;
  • высокий расход.


Оцените статью
 

Всего голосов: 2, рейтинг: 5

Внимание! Данный рейтинг носит субъективный характер, не является рекламой и не служит руководством к покупке. Перед покупкой необходима консультация со специалистом.

Пропитки для дерева ➠ виды и отличительные особенности

Защита древесины от порчи и гниения —обязательное условие её нормальной эксплуатации в качестве строительного материала. Существуют разные способы защиты, но наиболее эффективным и востребованным оказался способ применения специальных пропиток для дерева. В этой статье мы расскажем всё, что необходимо знать об этой группе препаратов: от классификации и описания их действия, до советов по выбору конкретного товара для той или иной ситуации.

Какие бывают пропитки для дерева

Отметим, что пропитки для дерева бывают самые разные, и отнести к этой группе можно также самые разные вещества, так или иначе применяемые или теоретически пригодные для применения. Человечество знает древесину в качестве строительного материала с начала времен, поэтому опыт накоплен огромный.

Внимание! Мы не рассматриваем все антисептики и не претендуем на исчерпывающий их каталог, мы делаем обзор наиболее актуальных и представленных на сегодняшнем рынке препаратов.

Основные группы

Как было сказано, пропиток существует масса, поэтому мы разобьем их на группы, чтобы удобнее было ориентироваться во всем этом многообразии. Объединяющим критерием мы будем выбирать ту или иную отличительную черту товаров, принадлежащих к одной группе, будь то состав, сфера применения, основные свойства или что-то еще.

 

Пропитки для дерева:

  • декоративные, защитные и смешанные;
  • натуральные, синтетические и смешанные;
  • влагостойкие и водоотталкивающие;
  • на водной основе и на основе органических растворителей;
  • масляные и восковые;
  • придающие огнезащитные свойства;
  • антисептики от гниения и плесени;
  • огнебиозащитные составы;
  • тонирующие и бесцветные;
  • для наружных и внутренних работ;
  • на солевой основе и на основе органических соединений.
Если необходимо защитить деревянное изделие от влаги, необходимо ответить на ряд вопросов:
  1. Где будет эксплуатироваться изделие, внутри или снаружи?
  2. Как будет использоваться деталь, в каких целях?
  3. Кто и что будет контактировать с изделием, будут ли в этом списке дети или продукты питания?
  4. Какой режим влажности предполагается? Будет ли прямой контакт с водой?
  5. Как должна выглядеть деталь в конечном виде?

Посмотреть пропитки для дерева После ответов на эти вопросы у вас появится представление о требованиях, которым должен соответствовать препарат. Далее останется подобрать подходящий.

Пропитки-антисептики

Антисептические пропитки составляют, пожалуй, наиболее широкую и востребованную группу товаров данного класса. Это вызвано тем, что именно антисептическая обработка позволяет избавиться от самых пагубных вредителей – бактерий и плесневых грибов, древоядных насекомых и прочих биологических агентов, вызывающих коррозию материала.

Специалистам известно, что влага, как таковая, не особенно вредит древесине. Проблема в том, что она создает среду для развития различных микроорганизмов, таких как плесень и бактерии. А вот они уже начинают наносить серьезный вред: вызывать гниение, окрашивать в синий или серый цвета, употреблять целлюлозу в пищу, превращая изделие в труху.

Антисептики бывают:
  • транспортные, такие как GOODHIM T 151;
  • для бань и саун, например, GOODHIM S200;
  • гели с высоким проникающим действием GOODHIM 230 IMPREGNANT;
  • для внутренних и наружных работ;
  • трудновымываемые и невымываемые;
  • тонирующие и бесцветные;
  • от насекомых типа GOODHIM 100 «Стопжук»;
  • для защиты торцов наподобие GOODHIM TOR GBS.

Действие антисептических пропиток основано на содержании в составе биоцидных и фунгицидных компонентов. Транспортные или временные антисептики предназначены для защиты пиломатериала во время его хранения, доставки и периода строительства. Они недорогие и быстро вымываются дождями, поэтому служат лишь как временная мера.

Растворы могут содержать цветовые пигменты, которые помогут окрасить изделие в нужный цвет и выделить его натуральный рисунок. Для легкой тонировки хорошо подойдет GOODHIM N300. Если в этом необходимости нет, можно подобрать состав без цветовых пигментов. Яркий представитель такого средства – GOODHIM N 320, бесцветный трудновымываемый антисептик.

Препараты для внутренних работ должны соответствовать массе требований по безопасности, особенно при контакте с кожей или использовании в детских комнатах. Обычно здесь стараются применять натуральные компоненты или их аналоги.

Важно! Главная задача рабочего – обеспечить необходимый расход средства при нанесении, чтобы достичь определенной его концентрации и проникновения на нужную глубину.

Огнебиозащита

Данная группа пропиток появилась не так давно, как многие другие. Здесь, как можно предположить из названия, сочетаются два вида защиты древесины – от огня и от биологической коррозии. Другими словами, это средство является антисептиком с добавлением веществ, препятствующих горению.

Чтобы лучше представлять себе особенности подобных средств, рассмотрим препараты GOODHIM PROF 1-G и GOODHIM PROF 1-G RED. Оба средства представляют собой смесь биоцидов и антипиренов, это профессиональные препараты, которые обеспечивают высшую группу пожарной безопасности и антисептическую защиту повышенной интенсивности. Подходят для применения внутри и снаружи помещений в местах повышенной пожарной опасности.

Внимание! Как правило, раствор слегка тонирует древесину в желтоватый или красноватый оттенок, но это не краска-пропитка, это нужно для контроля качества обработки. При дальнейшей отделке данная тонировка легко закрашивается.

Огнебиозащитная обработка – залог вашей безопасности. Это касается владельцев срубов, деревянных домов из клееного или обычного бруса, хозяев, на чьих участках стоят сараи, курятники и свинарники из дерева. Не менее важна такая обработка для досок кровельных стропильных систем. Посмотреть товары группы огнебиозащита.

Декоративные и декоративно-защитные

К этой группе можно отнести различные морилки, пропитывающие краски, лаки-пропитки, масло-воски, олифы и прочее. Например, льняная пропитка с добавлением воска, сиккативов и натуральных смол – это одновременно влагозащитная, декоративная и лессирующая обработка, которая дает противопаразитный и декоративный эффекты.

Большинство морилок выпускается на спиртовой основе и на основе органических растворителей. Такие препараты хорошо проникают внутрь структуры материала, но повышают его воспламеняемость и горючесть. При этом есть тонирующий трудновымываемый антисептик GOODHIM N 350, который идет на водной основе, а значит, без запаха, которым отличается любая алкидная пропитка. Импрегнанты используют для глубокой пропитки деталей, которые будут подвергаться эксплуатации во влажных помещениях, а также на открытом воздухе. Ими можно обрабатывать мебель.

Средства для торцов

Средства для защиты торцов особенно актуальны при строительстве срубов, деревянных домов, при хранении бревен и бруса. Именно со стороны торца происходит наиболее быстрое и глубокое проникновение паразитов и влаги.

Минимум или максимум пропитки?

Для разной древесины нужна разная обработка пропитками. Здесь все зависит от породы дерева и от того, сколько времени прошло с того, как оно попало в обработку. Есть много экзотических пород деревьев с очень плотной древесиной, от природы содержащей в составе дубильные и антисептические вещества, охраняющие их от заражения плесенью и микробами. Свежесрубленную древесину секвойи, бразильской вишни, бразильского тика — кумару и некоторых других экзотических деревьев не любят ни микроорганизмы, ни насекомые. Природная защита остается надежной в течение 10-12 лет. В течение этого времени обработка пропитками требуется или профилактическая минимальная или не требуется вообще. На территории России подобными свойствами обладают такие породы, как кедр, дуб, лиственница, тис, акация.

Однако у плотной, защищенной от вредных биологических факторов древесины есть существенный недостаток — слишком высокая стоимость. Поэтому большинство домов, предметов мебели и прочих деревянных изделий производится из сосны, ели и прочих достаточно рыхлых пород. И уж тут нужно прикинуть, насколько надежной и долговечной должна быть защита изделия. В зависимости от плотности дерева, а также от того, в каких климатических условиях оно будет служить, и какое предполагается финишное покрытие, выбирают надежную антисептическую пропитку.

Самая серьезная обработка называется импрегнация и производится в промышленных условиях при полном погружении, повышенном давлении и прочих жестких методах воздействия. В частном строительстве, отделке или столярных работах применяют полное погружение мелких деталей в хозяйственные металлические емкости и подогрев. Для крупных брусьев в отсутствие специальных ванн делают ров нужных размеров, выкладывают его прочной пленкой, заливают пропиточный состав и выдерживают там материал положенное количество часов.

Процесс антисептической и защитной обработки значительно упрощается, если использовать современные инновационные пропиточные грунты с биоцидами глубокого проникновения. Такие, например, как GOODHIM IMPREGNANT 230. Состав наносится обычными способами очень легко, благодаря гелиевой консистенции, глубоко проникает, надежно и надолго защищает, не замутняет красивый внешний вид древесины и, в то же время является отличной грунтовкой практически под все виды финишных покрытий. С его помощью можно также отреставрировать поверхность дерева, когда все сроки природной защиты вышли, пора позаботиться о дорогой деревянной конструкции или изделии и обновить внешний вид.

Какие цвета пропиток для древесины встречаются на рынке

Пропитки для дерева, как правило, используют далеко не только ради защиты. Красивая благородная древесина определенной породы может стоить очень недешево, тогда как с помощью пропитки с пигментом под дуб или орех благородство и красота достигаются куда меньшими затратами. Сосна, пропитанная грамотно подобранным средством, может имитировать рябину или красное дерево, все зависит от вашего желания. Светлая древесина легко становится темной, а черная пропитка придает изделиям особый шарм и обаяние.

Не менее интересный эффект окажет белая или серая пропитки, цвета хаски и даже зеленого цвета. Разнообразие делает нашу жизнь ярче и богаче, а применение пропиток с разными пигментами поможет разнообразить уж слишком умеренные оттенки древесины, из которой сделаны ваши дом, забор, мебель или пол.

Важно! Пропитка для дерева – это не краска, и она не отличается ярким окрашивающим эффектом и огромным богатством оттенков в рамках колеровочных таблиц. Пропитка придает тон, подчеркивает волокна и выделяет натуральную естественную красоту материала.

Топ 10 пропиток для дерева для наружных работ

Наиболее востребованная сфера применения пропиток для дерева, особенно, защитных пропиток – это наружная обработка. Чаще всего их применяют для обработки фасадов деревянных строений, для вскрытия вагонки или заборной доски, обработки дверей и оконных рам, террасной доски и садовой мебели. Чтобы ответить на вопрос, какая лучше, а какая из них хуже подойдет под ваши требования, следует рассмотреть основные позиции, представленные на российском рынке. Мы составили свой рейтинг пропиток, который поможет вам выбрать достойный препарат.

Таблица. Пропитки для наружных работ

После обработки пропиткой может потребоваться силиконовая краска или лазурь для дополнительной защиты от атмосферного воздействия. Если продолжить наш ТОП 10, то следует упомянуть таких производителей:

  • Биотекс;
  • Верес;
  • Неомид;
  • Wood Protect;
  • Лазурит;
  • Текс.

В ассортименте обычно представлены как бесцветные составы, так и средства с самыми разными оттенками, например, махагон или палисандр. Если вам нужна огнеупорная пропитка, то можно купить и ее, только цена будет несколько выше.

 

Топ 10 пропиток для дерева для внутренних работ

Пропитки для интерьерных работ отличаются повышенными требованиями к безопасности, составу и запаху, с другой стороны, внутри помещений древесина подвергается куда меньшей нагрузке со стороны окружающей среды. Здесь нет прямых солнечных лучей, дождей, морозов и патогенной микрофлоры с насекомыми. Если вам нужна декоративная или декоративно-защитная пропитка для дома, мы составили специально для вас рейтинг. Он поможет понять, какая пропитка лучше подходит для ваших целей и купить именно то, что нужно.

Таблица. Пропитки для внутренних работ

Продолжая наш ТОП 10, хотелось бы упомянуть такие компании:

  • Тиккурила;
  • Veres;
  • Woodtex;
  • Pro-Deco;
  • Elkon;
  • Elkon-Bio.

Если цена является важным критерием выбора для вас, тогда вам лучше обратить внимание на российского производителя. Ряд компаний предлагает пропитки, которые сочетают достойное качество и невысокую стоимость. Примером может служить недорогая, но эффективная продукция компании Гудхим.

Важно! Внутри помещений желательно использовать только безопасные антисептики и пропитки, не содержащие ядовитых для человека и животных соединений в опасных концентрациях. Хорошим вариантом будет обработка импрегнантом и маслом для дерева.

Как и в случае со средствами для улицы, препараты для интерьерного использования могут быть представлены в виде бесцветных пропиток, а могут тонировать древесину в самые разные оттенки. Грамотное послойное нанесение пропиток с эффектом тонировки может превратить самую заурядную древесину в солидный и дорогой на вид материал.

Часто задаваемые вопросы (FAQ)

Где купить пропитку для дерева?

Покупать пропитки для древесины следует только в официальных торговых точках, имеющих лицензию на торговлю и документы на товар. Покупка с рук, через сайты-посредники, на стихийных рынках и в прочих сомнительных местах чревата получением просроченного, контрафактного или некондиционного товара.

Хорошим местом для покупки будет крупный строительный магазин, сетевой гипермаркет, монобрендовый салон-представительство компании. Кроме того, хорошей практикой стало узнавать контакты официальных дилеров интересующих вас фирм в вашем регионе с помощью сети, и покупать товар у них.

Еще один канал, который еще не вполне оценили российские покупатели – это интернет-торговля. Вы можете заказать продукцию прямо на сайте производителя, это будет не только дешевле и надежнее, это убережет вас от подделок, просроченного товара и прочих неприятностей. Производитель сможет легко предоставить любые документы на товар, сертификаты качества и соответствия стандартам.

Компания GOODHIM предлагает вам посетить обновленную версию своего сайта, где вы сможете легко разобраться в любых вопросах, касающихся пропиток для дерева и их покупки.

Чем разбавить пропитку для дерева?

Если вы столкнулись с проблемой разбавления пропитки для дерева, важно узнать состав средства. Далее, в зависимости от результата, можно действовать по-разному. Итак, если в составе указана вода, и не указаны органические растворители, такой препарат можно разбавлять водой.

Не следует полагать, что водой вы не испортите средство. Обязательно прочитайте инструкцию или поинтересуйтесь у производителя, как лучше разбавлять их продукт, в каких пропорциях это можно делать и стоит ли делать вообще. Зачастую проще поменять средство и подобрать наиболее подходящее, в том числе — по консистенции.

Если перед вами концентрат, который требует разбавления в обязательном порядке, тогда внимательно читайте инструкцию по применению средства. В ней обязательно будут указаны данные о растворителе, соотношении частей при разбавлении и порядке проведения процедуры. Как правило, препараты разбавляются в соотношении 1:2 – 1:16 в зависимости от концентрации.

Алкидные и прочие подобные пропитки имеют в составе органический растворитель. Желательно для разбавления использовать идентичный. Бывает так, что в составе не указано название или формула вещества, тогда можно применять универсальный органический растворитель (646, 647, 747 и т.д.), уайт-спирит или сольвент.

Спиртовые морилки и пропитки следует разбавлять спиртом. Подойдет как медицинский, так и технический этиловый спирт.

Важно! Не используйте метиловый спирт, это опасный яд, даже вдыхание его паров может привести к плачевным последствиям.

Помните, что, внося коррективы в оригинальный состав пропитки без необходимости, вы ухудшаете ее свойства. Как правило, допускается легкое разбавление в пределах 5 – 10% в случаях, когда требуется распыление с помощью пульверизатора или краскопульта.

Чем отмыть пропитку для дерева?

Никто не застрахован от ненамеренного попадания пропитки для дерева на одежду, инструмент, стены и пол, другие поверхности. В этом случае следует постараться смыть ее как можно быстрее, пока средство не застыло. После высыхания это будет сделать уже сложнее.

Если пропитка попала на деревянное изделие и высохла, то смыть ее будет трудно. Для этого используют специальные средства типа Тиккурила Техопесу, однако, можно использовать и более дешевые варианты. Опытные строители советуют использовать перкарбонат натрия, а точнее, 70% раствор пергидрата карбоната натрия.

Также может помочь гипохлорит натрия, который в народе называют просто хлоркой. В случае спиртовых морилок можно попробовать смыть пятно спиртом, но, скорее всего, понадобится механическая обработка (наждачная бумага и т.п.). То же касается средств на основе органических растворителей.

Вообще, перспективы удачно и бесследно смыть пропитку с древесины без механической обработки весьма туманны. Это трудноосуществимая задача, поэтому лучше принять меры по защите дерева от подобного загрязнения. Со стекла пропитка смывается горячей водой. Достаточно обильно смочить пятна кипятком и стереть тряпкой. Если средство было замешано на растворителе, тогда понадобиться аналогичный или универсальный растворитель.

При попадании на одежду должна помочь стирка в горячей воде, лучше предварительно подержать загрязненные участки в кипятке.

Важно! Применение растворителей чревато порчей одежды. При работе с пропитками для дерева используйте специальную малярную робу, малярные ленты и полиэтиленовую пленку для защиты поверхностей.

Обзор химических средств защиты древесины

Консерванты для древесины — это те продукты, которые контролируют проблемы разложения древесины из-за грибковой гнили или разложения, образования пятен, плесени или насекомых, разрушающих древесину. Как процесс обработки, так и использование обработанных продуктов могут представлять опасность для здоровья человека и окружающей среды. Обработанная древесина чаще всего используется на открытом воздухе.

Обычно свежепиленные бревна или пиломатериалы обрабатываются, а затем из них производятся такие продукты, как:

  • Приправленные строительные материалы.
  • Столбы, столбы и перила для заборов.
  • Конструкционные элементы.
  • Строения и жилища.
  • Транспортные средства (кузова и опорные конструкции).
  • Контейнеры для сельскохозяйственных культур.
  • Мебель для газонов и террасы.
  • Игровое оборудование.
  • Пиломатериалы для сада / ландшафта.
  • Бревенчатые дома.

На этой странице


Переоценка старых консервантов для древесины

Три мощных консерванта для древесины (хромированный мышьяк, креозот и пентахлорфенол) в настоящее время проходят регистрационный обзор, процесс, который EPA проводит для всех зарегистрированных пестицидов каждые 15 лет чтобы гарантировать, что продукты могут выполнять свои функции по назначению, не создавая необоснованных рисков для здоровья человека и окружающей среды.

В 2008 году EPA определило, что хромированные мышьяки, креозот и пентахлорфенол могут оставаться в употреблении до тех пор, пока будут реализованы определенные меры по смягчению последствий, указанные в Документах о разрешении на перерегистрацию (RED). Эти меры включали инженерные средства контроля, такие как вентиляция и автоматические двери для запирания и отпирания лечебных цилиндров.

В 2019 году EPA завершило предварительную оценку рисков для хромированных мышьяков, креозота и пентахлорфенола в рамках проверки регистрации.В каждом случае EPA обнаружило, что, хотя меры, требуемые RED, снижали воздействие на рабочих, эти продукты по-прежнему представляли опасность для здоровья рабочих, которые их применяли. Креозот и хромированные мышьяки также представляют опасность для окружающей среды.

В 2021 году EPA выпустило предлагаемые временные решения по хроматированным мышьякам, креозоту и пентахлорфенолу для устранения рисков для здоровья человека и окружающей среды, связанных с использованием этих химикатов. EPA определило, что риски пентахлорфенола перевешивают его преимущества, и предложило отменить его.В отношении креозота и хромированных мышьяков EPA предложило дополнительные меры по смягчению воздействия для защиты здоровья рабочих на предприятиях по обработке древесины.

Затем EPA примет промежуточные решения, завершающие меры, предложенные в предлагаемом промежуточном решении. Просмотрите графики проверки регистрации EPA.

Хромированные мышьяки

Консерванты для древесины, содержащие хромированные мышьяки, включают консерванты, содержащие хром, медь и мышьяк. С 1940-х годов древесину обрабатывают хромированными мышьяками под давлением, чтобы защитить древесину от гниения из-за нападения насекомых и микробов, а также морских беспозвоночных, сверлящих древесину.С 1970-х до начала 2000-х годов большая часть древесины, используемой в жилых помещениях на открытом воздухе, представляла собой хромированную древесину, обработанную мышьяком.

С 31 декабря 2003 г. производители хромированного мышьяка добровольно отказались от практически всех видов использования ХАК в жилых помещениях, а изделия из дерева, обработанные ХАК, больше не используются в большинстве жилых помещений, включая настилы и детские игровые площадки. EPA классифицирует хромированные мышьяки как продукты ограниченного использования, предназначенные только для сертифицированных специалистов по внесению пестицидов.Его можно использовать для производства коммерческих деревянных опор, столбов, вибраций, черепицы, опорных балок постоянного фундамента, свай и других изделий из дерева, допускаемых утвержденной маркировкой. Узнайте больше о CCA.

Креозот

Креозот используется с 1948 года в качестве сильнодействующего консерванта для древесины. Креозот получают путем высокотемпературной перегонки каменноугольной смолы. Пестицидные продукты, содержащие креозот в качестве активного ингредиента, используются для защиты древесины от термитов, грибов, клещей и других вредителей, которые могут ухудшить или угрожать целостности изделий из древесины.

В настоящее время креозот используется только в коммерческих целях; у него нет зарегистрированного использования в жилых помещениях. Креозот — это пестицид ограниченного использования, который можно использовать на открытом воздухе, например, в железнодорожных шпалах и опорах. Запрещается нанесение креозота внутри помещений, а также нанесение на древесину, предназначенную для использования в интерьере или для использования в контакте с пищевыми продуктами, кормами или питьевой водой. Подробнее о креозоте.

Пентахлорфенол

Пентахлорфенол (ПХФ) был зарегистрирован в качестве пестицида 1 декабря 1950 года.ПХФ был одним из наиболее широко используемых биоцидов в Соединенных Штатах до 1987 года, когда использование пентахлорфенола в качестве гербицида, дефолианта, мосицида и дезинфицирующего средства было снято с этикеток продуктов.

В настоящее время нет зарегистрированных жилых помещений. ПХФ — это пестицид ограниченного использования, который используется в коммерческих целях, в основном для обработки опор. Допускаются только прессовая и термическая обработка PCP. Узнайте больше о PCP.

Альтернативные консерванты для древесины

Пропиконазол

Пропиконазол — триазольный фунгицид, впервые зарегистрированный в 1981 году.Пропиконазол был одобрен Агентством по охране окружающей среды для защиты древесины, используемой в столярных изделиях, черепице и тряске, сайдинге, фанере, конструкционных пиломатериалах, а также древесине и композитах, которые используются только на поверхности земли. Сам по себе пропиконазол не защищает древесину от повреждений насекомыми.

Пропиконазол был одобрен для нанесения на поверхность или обработки давлением сайдинга, фанеры, столярных изделий, черепицы и тряпок, а также наземных строительных пиломатериалов и пиломатериалов.

Триадимефон

Триадимефон — триазольный фунгицид, который впервые был зарегистрирован в качестве консерванта древесины в 2009 году.Триадимефон был одобрен Агентством по охране окружающей среды для консервации изделий из композитных материалов на основе древесины и изделий из дерева, предназначенных для работы над землей и в контакте с землей, таких как деревянные настилы, садовая мебель, столярные изделия, ограждения, опоры, фундаментные сваи и заборы.

Кислотный хромат меди (ACC)

ACC — это консервант для древесины, зарегистрированный только для промышленного и коммерческого использования. Состав будет переоценен в рамках рассмотрения дела о регистрации хромированных мышьяков.

Изотиазолиноны

В качестве консервантов древесины можно использовать три химиката из класса, называемого изотиазолинонами.

Наиболее распространенным из них является DCOIT (3 (2H) -изотиазолон, 4,5-дихлор-2-октил), который впервые был зарегистрирован в 1996 году в качестве консерванта древесины для использования при обработке давлением, для защиты от образования пятен и в столярные изделия. В 2018 году он был также одобрен для использования в опорах электроснабжения. Дополнительная информация доступна в досье EPA-HQ-OPP-2014-0403.

ОИТ (2-н-октил-4-изотиазолин-3-он), еще один изотиазолон, используется в качестве консерванта древесины заболони. Информация о OIT доступна в досье EPA-HQ-OPP-2014-0160.

Наконец, смесь изотиазолонов MIT (2-метил-4-изотиазолин-3-он) и CMIT (5-хлор-2-метил-4-изотиазолин-3-он) используется при обработке древесины под давлением. Дополнительная информация доступна в досье EPA-HQ-OPP-2013-0605.

Новые консерванты для древесины для бытового использования

Совсем недавно EPA зарегистрировало несколько новых активных ингредиентов консервантов для древесины. Эти консерванты для древесины имеют более низкие профили токсичности по сравнению с более старыми консервантами для древесины. В соответствии с требованиями раздела 3 (g) FIFRA, эти новые консерванты для древесины будут повторно оценены в рамках процесса проверки регистрации EPA.

Следующие химические консерванты для древесины зарегистрированы для обработки пиломатериалов, которые будут использоваться на рынке пиломатериалов и пиломатериалов для жилищного строительства:

  • Щелочная четвертичная медь (ACQ).
  • Бораты.
  • Азол меди.
  • Нафтенат меди.
  • Медь-HDO (бис- (Nциклогексилдиазениумдиокси-медь)).
  • Полимерный бетаин.

Из этих химикатов ACQ в настоящее время является наиболее широко используемым консервантом для древесины в жилых помещениях.

ACQ

ACQ (щелочная четвертичная медь) — это консервант для древесины на водной основе, предотвращающий гниение от грибков и насекомых (т. Е. Фунгицид и инсектицид). Он также имеет относительно низкие риски из-за его компонентов оксида меди и соединений четвертичного аммония.

Консерванты на водной основе, такие как ACQ, оставляют сухую окрашиваемую поверхность. ACQ зарегистрирован для использования на: пиломатериалах, дереве, ландшафтных связях, столбах для ограждений, столбах зданий и инженерных сетей, наземных, пресноводных и морских сваях, морских стенах, настиле, деревянной черепице и других деревянных конструкциях.

Бораты

Тетрагидрат октабората динатрия (DOT) специально разработан для использования в качестве консерванта древесины на водной основе и зарегистрирован Агентством по охране окружающей среды, а также правительственными учреждениями в Азии, Северной Америке и Европе. Типичные области применения включают: мебель и внутренние конструкции, такие как обрамление, обшивка, подоконники, планки обрешетки, фермы и балки.

Азол меди

Азол меди представляет собой консервант древесины на водной основе, предотвращающий грибковое разложение и нападение насекомых; это фунгицид и инсектицид.Он широко используется в США и Канаде.

Консерванты на водной основе, такие как азол меди, придают древесине чистую окрашиваемую поверхность после высыхания. Азол меди зарегистрирован для обработки столярных изделий, черепицы, сайдинга, фанеры, конструкционных пиломатериалов, столбов для ограждений, столбов зданий и коммунальных служб, земляных и пресноводных свай, композитов и других изделий из древесины, которые используются в надземных, контактных и наземных работах. в пресной воде, а также для настилов, разбрызгиваемых соленой водой (морских).

Нафтенат меди

Нафтенат меди был впервые зарегистрирован в 1951 г. и используется для чистки, погружения, распыления и обработки древесины под давлением, которая будет использоваться при контакте с землей, при контакте с водой и над землей, например, в опорах, доках, столбах и т. Д. опоры, заборы и ландшафтный брус. Нафтенат меди эффективно защищает древесину от повреждений насекомыми.

Медь-HDO (бис- (Nциклогексилдиазениумдиоксимедь))

Медь-HDO была впервые зарегистрирована в 2005 году и используется для обработки древесины под давлением, которая будет использоваться в качестве настилов, направляющих, шпинделей, каркасов, подоконников, беседок и т. Д. ограждения и столбы.Его запрещено использовать в водных зонах, при строительстве ульев или в любом другом применении, связанном с упаковкой пищевых продуктов или кормов.

Полимерный бетаин

Полимерный бетаин был впервые зарегистрирован в качестве активного ингредиента в США в 2006 году. Это боратный эфир, который при нанесении на древесину распадается на DDAC (хлорид дидецилдиметиламмония) и борную кислоту. Полимерный бетаин наносится на лесные товары путем обработки давлением.

Дополнительная информация

Многие документы об этих пестицидах, такие как рабочие планы проверки регистрации или RED, доступны в базе данных химического поиска.

Натуральные соединения для защиты древесины от грибков — Обзор

Abstract

Древесина — это возобновляемый, универсальный материал, имеющий множество применений и самый большой на Земле запас секвестрированного углерода. Однако он подвержен разложению, в основном вызываемым древесными грибами. Поскольку некоторые традиционные консерванты для древесины были запрещены из-за их пагубного воздействия на человека и окружающую среду, продление срока службы изделий из древесины с использованием натуральных консервантов нового поколения является императивом с точки зрения здоровья человека и защиты окружающей среды.Некоторые природные соединения растительного и животного происхождения были протестированы на их фунгицидные свойства, включая эфирные масла, дубильные вещества, экстрактивные вещества древесины, алкалоиды, прополис или хитозан; и был продемонстрирован их огромный потенциал в защите древесины. Хотя они не лишены ограничений, потенциальные методы преодоления их недостатков и повышения их биологической активности уже существуют, такие как совместная пропитка различными полимерами, сшивающими агентами, хелаторами металлов или антиоксидантами. Однако наличие расхождений между лабораторными тестами и результатами полевых испытаний, а также проблемы, связанные с законодательством, возникающие из-за отсутствия стандартов, определяющих качество и эффективность натуральных защитных составов, создают острую необходимость в дальнейших тщательных исследованиях и мероприятиях.Сотрудничество с другими отраслями промышленности, заинтересованными в использовании природных активных соединений, снизит связанные с этим расходы, таким образом, будет способствовать успешному внедрению альтернативных противогрибковых агентов.

Ключевые слова: натуральные консерванты для древесины, противогрибковые свойства, эфирные масла, дубильные вещества, прополис, растительное масло, растительные экстракты

1. Введение

Древесина является широко используемым натуральным, возобновляемым и универсальным материалом с отличными характеристиками. человеком с незапамятных времен.Это также самый большой резервуар секвестрированного углерода в земной среде. Однако его химический состав и структура делают его склонным к биоразложению, а грибы являются основными разрушителями древесины [1,2].

Традиционно, что касается характера разложения, различают три группы древесно-гниющих грибов: бурая гниль, белая гниль и мягкая гниль (). Все они разрушают структурные полимеры ячеистой стенки дерева, что приводит к потере прочности древесины. Дерево также может подвергнуться воздействию плесени и синей морилки ().Хотя они не вызывают значительных структурных повреждений, они отрицательно влияют на эстетическую ценность древесины, поскольку их активность приводит к изменению цвета древесины [1,2].

Таблица 1

Основные типы грибов, которые могут колонизировать и разрушать древесину [1,2,3,4,5].

Тип грибов Вид и компоненты деградированной древесины Воздействие на древесину
Древесные грибы
бурая гниль (Basidiomycota) в основном хвойные породы; деградация гемицеллюлозы и целлюлозы, деметилирование лигнина усадка и растрескивание древесины на кусочки кубической формы, осталась коричневая окраска из-за присутствия лигнина, снижение механических свойств древесины
белая гниль (Basidiomycota) в основном древесина твердых пород, но также хвойные породы; деградация лигнина и гемицеллюлозы, а также целлюлозы древесный вид волокнистый и белый цвет древесины из-за наличия более светлых остатков целлюлозы, древесина становится мягкой, губчатой ​​или волокнистой, ее прочностные свойства снижаются по мере развития гниения
мягкая гниль (Ascomycota, грибки несовершенные) гемицеллюлоза и целлюлоза, реже лигнин образование полостей внутри клеточной стенки, изменение цвета и характер растрескивания, сходный с коричневой гнилью, ухудшение прочностных свойств древесины
Форма
плесень (Zygomycota или Ascomycetes) легкодоступные сахара, не структурные полимеры поверхностное изменение цвета древесины, незначительная деградация поверхности древесины
Синяя морилка
синяя окраска (Ascomycota и Deuteromycota) содержание белка в клетках паренхимы, легкодоступные сахара, не структурные полимеры изменение цвета заболони за счет темных гиф, разрушение мембран ямок, ведущее к повышенной водопроницаемости

Древесина становится восприимчивой к поражению грибами в определенных условиях окружающей среды, т.е.е. влажность более 20%, доступность кислорода и температура от 15 до 45 ° C. Грибковая порча поражает в основном наружные деревянные конструкции, снижая механические и эстетические свойства древесины и значительно ограничивая срок ее службы [5,6]. Для предотвращения этого был применен широкий спектр эффективных синтетических консервантов для древесины, включая агенты на основе меди (например, хромированный арсенат меди), триазолы (азаконазол, пропиконазол, тебуконазол), пентахлорфенол или фунгициды на основе бора [7,8,9] .Однако из-за проблем, связанных с окружающей средой и здоровьем, многие из них были запрещены к использованию, что привело к необходимости разработки альтернативных средств защиты древесины и методов, основанных на нетоксичных натуральных продуктах [9,10,11].

В настоящее время экологически безопасная защита древесины является объектом обширных исследований, охватывающих несколько различных подходов. Поскольку рост разрушающих древесину грибов зависит от наличия воды, одним из методов является контроль влажности с использованием природных гидрофобизаторов, таких как смолы и воски растительного или животного происхождения или растительные масла [12,13,14,15].Еще один способ продления срока службы древесины — использование природных соединений с биоцидными свойствами и их фиксация внутри структуры древесины [11,12,16]. Более инновационный метод включает использование агентов биологической борьбы, то есть таких микроорганизмов, как другие грибы и бактерии, которые действуют как антагонисты древесных грибов [12,17].

Целью обзора является представление информации о текущих исследованиях природных соединений с доказанной биоцидной активностью, которые могут быть потенциально полезными для защиты древесины от грибков.Он разделен на две основные части в зависимости от происхождения описываемых соединений (растение или животное), а затем на подразделы, касающиеся конкретного источника или типа вещества. В обзор включены как результаты исследований in vitro противогрибковой активности отдельных природных экстрактов или их отдельных компонентов в отношении древесных грибов, так и данные, полученные в результате микологических тестов с использованием древесины различных пород, обработанных натуральными защитными составами. Обсуждаются эффективность, преимущества и недостатки, а также проблемы, связанные с использованием натуральных продуктов для защиты древесины, показаны потенциальные перспективы их коммерческого применения.

2. Противогрибковые вещества растительного происхождения

Растения являются богатым источником различных химических соединений, включая алкалоиды, флавоны и флавоноиды, фенольные соединения, терпены, дубильные вещества или хиноны. Вырабатываемые как вторичные метаболиты, они могут составлять до 30% сухой массы растений, играя важную роль в их защите от патогенных микробов, травоядных животных и различных видов абиотического стресса. Из-за их специфических свойств, возникающих в результате присутствия определенных фитохимических веществ, многие растения с тех пор используются людьми в качестве лекарств или пищевых добавок.В настоящее время знание химической структуры и функций отдельных компонентов растений позволяет разрабатывать эффективные методы их извлечения из тканей растений и использовать их в коммерческих целях, например, в качестве ингредиентов фармацевтических препаратов, косметики, функциональных пищевых продуктов или красителей. Также существует большой интерес к их применению в качестве биопестицидов, инсектицидов и фунгицидов для защиты сельскохозяйственных культур и биоразлагаемых материалов [18,19,20,21].

Противогрибковые свойства различных растительных экстрактов делают их интересными еще и как потенциальный источник природных веществ, которые могут использоваться в качестве альтернативных консервантов древесины против гниения.Высокая доступность растительного материала в целом и перспективная возможность использования промышленных отходов от переработки различных культур могут повысить экономическую жизнеспособность всего процесса их получения, что позволит потенциально широко применять консерванты для растений в деревообрабатывающей промышленности.

2.1. Эфирные масла

Эфирные масла — это натуральные смеси летучих вторичных метаболитов различных растений, которые могут быть получены из растительного сырья путем дистилляции, механического прессования или экстракции с использованием различных растворителей.Они содержат множество химических соединений, которые отвечают за характерный аромат определенных растений, из которых они получены. Основными ингредиентами являются терпены, в том числе спирты, альдегиды, углеводороды, простые эфиры и кетоны, с доказанной биологической активностью, такие как антиоксидантное, антибактериальное и противогрибковое. Поэтому растения, содержащие эфирные масла, веками использовались в народной медицине и добавлялись в пищу как ароматизаторы и консерванты [22,23,24].

В настоящее время эфирные масла нашли применение в парфюмерии, ароматерапии, производстве продуктов питания и косметики.Их состав был тщательно изучен вместе с их потенциальной терапевтической активностью, включая противовоспалительную, противомикробную, противовирусную, противораковую, антидиабетическую или антиоксидантную [23,24,25]. Наблюдаемый растущий интерес к биологически чистым, нетоксичным натуральным веществам с антимикробными свойствами делает эфирные масла потенциально полезными в качестве консервантов для широкого спектра продуктов [26,27,28]. Из-за доказанных противогрибковых свойств против плесени и древесных грибов, были также предприняты некоторые попытки применить эфирные масла из обычных растений, трав и специй в качестве защитных средств для древесины [29,30,31,32,33,34,35] .

Эфирные масла в защите древесины

Было проведено несколько тестов in vitro против различных видов грибов с использованием различных эфирных масел, чтобы найти наиболее эффективные. Voda et al. [29] сообщили о высокой противогрибковой эффективности масел аниса, базилика, тмина, орегано и тимьяна против грибка бурой гнили Coniophora puteana и гриба белой гнили Trametes versicolor с использованием метода разбавления агара. Они показали, что наиболее эффективными соединениями, подавляющими рост обоих грибов, были тимол, карвакрол, транс-анетол, метилхавикол и куминальдегид.Их дальнейшие исследования подтвердили существование взаимосвязи между молекулярной структурой кислородсодержащих соединений ароматических эфирных масел и их противогрибковой активностью против дереворазрушающих грибов [36]. Тесты in vitro, проведенные Читтенденом и Сингхом [37], продемонстрировали противогрибковую эффективность 0,5% -ных концентраций масел корицы и герани против грибов бурой гнили Oligoporus placenta , C. puteana и Antrodia xantha , сапстаиновых грибов Ophiostum , Ophiostoma piceae , Sphaeropsis sapinea и Leptographium procerum и плесневый гриб Trichoderma harzianum .Они также показали противогрибковые свойства масел аниса, орегано и лемы (смесь 50% новозеландской мануки и 50% австралийского чайного дерева) против некоторых из упомянутых выше грибов. Zhang et al. [35] сообщили об противогрибковой эффективности чистых монотерпенов, таких как β-цитронеллол, карвакрол, цитраль, эвгенол, гераниол и тимол, против грибов древесной белой гнили Trametes hirsuta , Schizophyllum commune и Pycnoporus sanguineus. Xie et al. [34] подтвердили противогрибковые свойства Origanum vulgare , Cymbopogon citratus , Thymus vulgaris , Pelargonium graveolens , Cinnamomum zeylanicum и эфирных масел грибов Eugenia T.hirsuta и Laetiporus sulphurous , указывая на карвакрол, цитрон, цитронеллол, коричный альдегид, эвгенол и тимол как на наиболее активные соединения. Было показано, что некоторые из распространенных соединений натуральных эфирных масел, а именно коричный альдегид, α-метил-коричный альдегид, (E) -2-метилкоричная кислота, эвгенол и изоэвгенол, эффективно подавляют рост грибка белой гнили Lenzites betulina и коричневый -гнильный гриб L. sulphurous [38]. В свою очередь, результаты, полученные Reinprecht et al.[39] показывают, что среди пяти различных эфирных масел (базилика, корицы, гвоздики, орегано и тимьяна) самая высокая противогрибковая активность против грибка бурой гнили Serpula lacrymans и грибка белой гнили T. versicolor была показана для базилика. масло (содержащее преимущественно линалоол), а наименьшее — для гвоздичного масла (содержащего в основном эвгенол).

Указанные выше результаты были подтверждены на образцах древесины, обработанных отобранными эфирными маслами. Pánek et al. [33] исследовали противогрибковую эффективность и стабильность древесины бука, обработанной 10% -ными растворами десяти различных эфирных масел (березы, гвоздики, лаванды, орегано, сладкого флага, чабера, шалфея, чайного дерева, тимьяна и смеси эвкалипта, лаванды и т. масла лимона, шалфея и тимьяна) против грибка бурой гнили C.puteana и гриб белой гнили T. versicolor . Они обнаружили, что после сложной процедуры ускоренного старения наиболее эффективными против C. puteana оказались масла гвоздики, орегано, сладкого флага и тимьяна, которые содержат фенольные соединения, такие как карвакол, эвгенол, тимол и триметиловый эфир цис-изоазарола (химическая структура избранные соединения эфирных масел представлены в). Потери массы древесины березы составили 0,9%, 0,66%, 0,57% и 0,87% соответственно. Масла гвоздики, сладкого флага и тимьяна также были наиболее эффективными против плесени ( Aspergillus niger и Penicillium brevicompactum ) при тестировании с фильтровальной бумагой.Эти масла могут быть потенциально полезны для защиты древесины в интерьере. Интересно, что ни одно из протестированных масел не было эффективным против T. versicolor , что может быть результатом специфического ферментативного аппарата грибов белой гнили, способного разлагать как лигнин, так и другие фенольные соединения. Эффективность масла тимьяна против C. puteana и A. niger была также подтверждена Jones et al. [40]. Кроме того, они показали противогрибковую активность масел базилика, тысячелистника и календулы против C.puteana и P. placenta соответственно; однако два последних масла были эффективны только при использовании в чистом виде. Chittenden и Singh [37] сообщили о высокой устойчивости древесины сосны лучистой, обработанной 3% эвгенолом, с потерей массы <1% при воздействии C. puteana , O. placenta и A. xantha . Однако они обнаружили, что эвгенол легко выщелачивается из древесины, что предполагает его непригодность для защиты древесины, используемой на открытом воздухе.Kartal et al. [32] обрабатывали древесину суги составом, содержащим масло кассии, с получением высокой устойчивости древесины против коричневой гнили Tyromyces palustris (потеря массы 0,7%) и белой гнили грибов C. versicolor (потеря массы 3,6%).

Химическая структура и примерные растительные источники выбранных противогрибковых соединений эфирных масел.

Ян и Клаузен изучили свойства семи эфирных масел, включая аджован, укроп, герани (египетскую), лимонную траву, розмарин, чайное дерево и масло тимьяна, по подавлению плесени.Они обнаружили, что пары масла укропа и обработка окунанием образцов южной желтой сосны тимьяном или геранией эффективно защищали древесину от роста A. niger , Trichoderma viride и Penicillium chysogenum в течение как минимум 20 недель [ 41]. Результаты Bahmani et al. [31] подтвердили, что масла лаванды, лемонграсса и тимьяна, применяемые для пропитки древесины Fagus orientalis и Pinus tadea , могут обеспечить эффективную защиту от A.niger , Penicillium commune , C. puteana , T. versicolor и Chaetomium globosum . Салем и др. Продемонстрировали антиплесневую активность масел Pinus rigida и Eucalyptus camaldulensis , нанесенных на поверхность древесины Fagus sylvatica , P. rigida и P. sylvestris . [42] и аналогичные свойства гвоздичного масла, нанесенного на местную индийскую древесину, сообщили Hussain et al. [30].

Было доказано, что большое разнообразие эфирных масел, полученных из определенных местных растений со всего мира, обладает защитными свойствами против плесени и гниения древесины.Например, эфирное масло из листьев тайваньского коричного дерева Cinnamomum osmophloeum Kaneh., Содержащее коричный альдегид в качестве наиболее распространенного противогрибкового компонента, оказалось эффективным против различных грибов белой и коричневой гнили, включая Coriolus versicolor. и Laetiporus sulphureus [43]. Противогрибковые свойства коричного альдегида также подтвердили Kartal et al. [32] при применении для обработки древесины суги, эффективно повышая устойчивость древесины против коричневой гнили T.palustris (потеря массы 0,6%) и грибы белой гнили C. versicolor (потеря массы 3,8%). Хорошие результаты были также получены Читтенденом и Сингхом [37] для древесины сосны лучистой, обработанной 3% раствором коричного альдегида, где потеря массы составила <1% против C. puteana и A. xantha и около 3% против О. плацента .

Масла листьев и плодов другого тайваньского дерева, Juniperus formosana Hayata, были протестированы in vitro Su et al.[44] за их противогрибковые свойства против семи плесневых грибов ( Aspergillus clavatus , A. niger , Ch. Globosum , Cladosporium cladosporioides , Myrothecium virrucaria , T. , два гриба белой гнили ( T. versicolor , Phanerochaete chrysosporium ) и два гриба бурой гнили ( Phaeolus schweinitzii , Lenzites sulphureum ). Они сообщили о превосходной противогрибковой эффективности листового масла с α-кадинолом и элемолом в качестве наиболее активных соединений.Высокая противогрибковая активность против плесени и древесных грибов была также показана для тайваньского масла листьев Eucalyptus citriodora из-за присутствия цитронеллаля и цитронеллола в качестве основных активных компонентов [45].

Cheng et al. [46] сообщили о высокой противогрибковой активности эфирного масла, полученного из листьев флорина Calocedrus formosana . C. formosana — это эндемичный вид деревьев из Тайваня, отличающийся естественной устойчивостью к гниению. Самая сильная противогрибковая активность против L.betulina , Pycnoporus coccineus , T. versicolor и L. sulphurous были показаны для двух масляных соединений: α-кадинола и Т-мууролола.

Mohareb et al. [47] изучали противогрибковую активность эфирных масел восемнадцати различных египетских растений против дереворазрушающих грибов Hexagonia apiaria и Ganoderma lucidum . Наилучшая устойчивость была получена для заболони сосны обыкновенной, обработанной маслами Artemisia monosperma , Citrus limon , Cupressus sempervirens , Pelargonium graveolens , Schinus molle и Thuja occidentalis .В свою очередь, эффективность масла нима, содержащего азадирахтин в качестве основного противогрибкового соединения, против грибов S. commune , Fusarium oxysporum , Fusarium proliferatum , C. puteana и Alternaria alternate et al. al. [48]. Аналогичные результаты были получены Hussain et al. [30], которые показали устойчивость местной индийской древесины, обработанной маслом нима, к различным формам.

Здесь стоит упомянуть некоторые новые подходы, направленные на усиление противогрибковой активности эфирных масел как консервантов древесины.Один из них — использование комплексов эфирных масел с метил-β-циклодекстрином. Cai et al. [49] обрабатывали древесину южной сосны комплексами эвгенола, транс-коричного альдегида, тимола и карвакрола с метил-β-циклодекстрином и подвергали ее воздействию грибов бурой гнили Gloeophyllum trabeum и P. placenta . Результаты показали улучшенную стойкость к гниению древесины, обработанной определенными комплексами, даже после выщелачивания, по сравнению с контрольными образцами или образцами древесины, пропитанными эфирными маслами по отдельности.Таким образом, кажется, что использование определенных комплексов, содержащих природные соединения, такие как эфирные масла, имеет большой потенциал для увеличения срока службы изделий из дерева.

2.2. Танины

Танины — это природные соединения, вырабатываемые большинством высших растений для защиты их от патогенных бактерий, грибов и насекомых. Их можно найти практически во всех частях растения, от корней, древесины и коры до листьев и семян [50,51].

Разные по цвету танины представляют собой вяжущие, очень разнообразные полифенольные биомолекулы, разделенные на два класса: гидролизуемые танины (такие как галлотаннины и эллагитаннины) и конденсированные полифлавоноидные танины.Гидролизуемые дубильные вещества можно найти только в двудольных. Среди конденсированных танинов наиболее распространены процианидины в форме катехина и эпикатехина, затем танин продельфинидина в форме галлокатехина и эпигаллокатехина и танин пропеларгонидина в форме афзелехина и эпиафзелехина. Хвойные деревья считаются наиболее богатым источником танинов [19,50,52].

Специфическая химическая структура и результирующая реакционная способность позволяют танинам необратимо связываться с металлами и другими молекулами, включая белки, создавая прочные комплексы [19,50,52].Эти свойства делают их полезными для множества приложений. Например, они традиционно используются в производстве кожи и применяются в качестве добавок к пиву, вину и фруктовым сокам в качестве антиоксидантов и ароматизаторов [50,51,53,54,55,56]. Их можно использовать для очистки сточных вод, производства изоляционных и огнестойких пен, гидропонных пен для садоводства, термореактивных пластмасс, смол и гибких пластиковых пленок [50,57,58,59]. Они могут служить в качестве клея и отделки поверхностей для древесины и изделий из древесины, цементных суперпластификаторов, антикоррозионных покрытий для металла, высокотемпературной отделки поверхностей металлов и тефлона, упаковочных материалов, добавок для буровых растворов, и это лишь некоторые из них [50 , 60,61,62,63].

Уже опубликованные результаты исследований потенциального фармацевтического и медицинского применения дубильных веществ указывают на их положительное влияние на функциональность кишечника, а также на противораковую, противовоспалительную, противоаллергическую или противовирусную активность [43,50,51, 56,64,65,66,67,68,69]. Особые свойства дубильных веществ, которые делают возможным их необратимое связывание с белками, также делают их полезным оружием против микроорганизмов. Несколько исследований подтвердили их антибактериальную активность; существует также лекарство на основе танинов для лечения кишечных инфекций [50,69,70,71,72,73].Аналогичным образом сообщалось об эффективной активности дубильных веществ против различных видов патогенных грибов, то есть дерматофитов, плесени и дрожжей [74,75,76,77]. Отсюда и идея попробовать дубильные вещества в качестве противогрибковых консервантов для древесины. Поскольку большинство разрушающих древесину грибов используют внеклеточные ферменты для разложения компонентов древесины, присутствие дубильных веществ приводит к их неактивным комплексам с грибковыми ферментами, таким образом защищая древесину от биоразложения [78,79].

2.2.1. Танины в защите древесины

Противогрибковые свойства восьми различных фракций танинов, экстрагированных из коры и шишек ели европейской и шишек сосны обыкновенной, против восьми различных грибов бурой гнили, трех грибов белой гнили и четырех видов грибов мягкой гнили на солодовой агаризованной среде на Чашки Петри были изучены Anttila et al.[76]. Танины конуса были более эффективными в подавлении роста грибов, чем дубильные вещества коры. Однако экстракты танинов показали лучший ингибирующий эффект против коричневой гнили, чем виды белой или мягкой гнили, они рассматривались как потенциальные вещества для защиты древесины. Подобные эксперименты были выполнены Озгенч и др. [80] с использованием приморской ( Pinus pinaster L.), железа ( Casuarina equisetifolia L.), мимозы ( Acacia mollissima L.), сосны калабрийской ( Pinus brutia Ten.) и экстрактов коры деревьев пихты ( Abies nordmanniana ) против T. versicolor и C. puteana . Экстракты коры морской сосны и пихты показали лучшую устойчивость против T. versicolor , тогда как экстракты коры железа и мимозы были более эффективны против C. puteana . В результате исследования был сделан вывод о том, что наиболее важным фактором противогрибковой активности является концентрация экстракта. К сожалению, в этом исследовании не было указано, какие соединения экстрактов являются наиболее эффективными ингибиторами роста грибов.

Было проведено несколько исследований для оценки устойчивости различных древесных пород, обработанных дубильными веществами, к плесени и дереворазрушающим грибам.

Обильные дубильные вещества, водные экстракты листьев сицилийского сумаха и дуба валония и кора турецкой сосны были использованы Sen et al. [81] для обработки древесины сосны обыкновенной и бука. Затем образцы бука подвергали воздействию грибка белой гнили T. versicolor, , а образцы сосны обыкновенной — грибку коричневой гнили G. trabeum .Наиболее устойчивыми оказались образцы, обработанные экстрактами дуба валония. Однако противогрибковая эффективность применяемой обработки значительно снизилась после выщелачивания, что свидетельствует о плохой фиксации дубильных веществ в структуре древесины.

Tascioglu et al. [82] изучали противогрибковые свойства богатых танинами экстрактов коры мимозы ( Acacia mollissima ), квебрахо ( Schinopsis lorentzii ) и сосны ( Pinus brutia ), применяемых для пропитки древесины сосны обыкновенной, бука и тополя.Результаты микологических тестов против двух грибов белой гнили ( T. versicolor и Pleurotus ostreatus ) и двух грибов бурой гнили ( Fomitopsis palustris и G. trabeum ) выявили высокую противогрибковую эффективность экстрактов мимозы и квебрахо. особенно при нанесении на древесину сосны обыкновенной. Экстракты сосновой коры (даже в концентрации 12%) оказались малоэффективными. Результаты показали, что экстракты мимозы и квебрахо можно использовать в качестве экологически чистых консервантов для древесины, используемой в помещении.Ямагучи и Окуда [83] сообщили о повышении активности танина мимозы против T. palustris и C. versicolor после его химической модификации и удаления низкомолекулярных соединений диализом. Экстракты танинов из Acacia mearnsii были описаны Da Silveira et al. [84] в качестве эффективного консерванта древесины против грибка белой гнили P. sanguineus. В свою очередь, Mansour и Salem [85] продемонстрировали полное подавление роста T. harzianum (плесень) с помощью экстрактов коры Maclura pomifera , Callistemon viminalis и Dalbergia sissoo .

Танины валония, каштана, тары и сульфатного дуба использовали Томак и Гонултас [86] для пропитки древесины сосны обыкновенной. Была оценена их противогрибковая эффективность против коричневой гнили C. puteana и P. placenta и грибов белой гнили T. versicolor и P. ostreatus . Результаты показали, что дубильные вещества эффективно подавляли атаку коричневых грибов, но не были эффективны против белой гнили. Лучшая противогрибковая активность наблюдалась у дубильных веществ валония и каштана, предположительно из-за более высокого содержания эллагитаннинов.Однако выщелачивание значительно снизило эффективность применяемой обработки танином. Эллагитаннины были также указаны Харт и Хиллис [79] как соединения, ответственные за устойчивость сердцевины белого дуба к Poria monticola .

2.2.2. Танины в сочетании с другими веществами

Также были предприняты некоторые попытки применить дубильные вещества в сочетании с другими соединениями с доказанной противогрибковой активностью, такими как ионы бора или меди, для повышения их характеристик и усиления их фиксации в структуре древесины.

Ямагути и Окуда [83] использовали танин-медь-аммиачные комплексы мимозы для пропитки древесины Cryptomeria Japonica D. Don. В результате проведенной обработки повысилась устойчивость к вымыванию и грибковому распаду. Повышенная противогрибковая эффективность конденсированных танинсодержащих экстрактов коры сосны лоблоловой ( Pinus taeda ) в комплексе с ионами меди (II), нанесенных на образцы березы, против C. versicolor по сравнению с самими экстрактами коры была подтверждена Лаксом [78,87 ].Аналогичный эффект был получен Ramirez et al. [88] для Cocos nucifera танинно-медных комплексных растворов, нанесенных на образцы ольхи, а также для Bernardis и Popoff [89], которые сообщили о высокой устойчивости образцов древесины Pinus elliottii , обработанных экстрактом танина «quebracho colorado» в комплексе с раствором соли CCA. против белой гнили P. sanguineus и гриба бурой гнили Gloeophyllum sepiarium .

Исследование Thevenon et al. [90] показали повышенную эффективность систем консервантов на основе конденсированных танинов мимозы, гексамина и борной кислоты против очень агрессивного тропического гриба белой гнили P.sanguineus по сравнению с экстрактами танинов, применяемыми отдельно. Результаты показали пониженную выщелачиваемость бора, когда он образует комплекс в сети дубильных веществ и гексамина. Дальнейшие исследования подобных комплексных составов показали их высокую эффективность против C. versicolor и C. puteana при нанесении на буковую фанеру и древесину сосны обыкновенной, соответственно [91,92]. Они также указали, что повышенная устойчивость бора к выщелачиванию является результатом его ковалентной фиксации в танин-гексаминовой сети [91].

В свою очередь, Salem et al. [93] сообщили о высокой эффективности против плесени композиции экстрактов коры сахарного клена ( Acer saccharum ) с лимонной кислотой при нанесении на древесину Leucaena leucocephala . В качестве основных компонентов биологической активности были указаны п-гидроксибензойная кислота, галловая кислота и салициловая кислота.

Многокомпонентные консерванты для древесины на основе танинов, описанные выше, кажутся многообещающей альтернативой искусственным фунгицидам для наружного применения.

2.3. Экстрактивные вещества для древесины

Некоторые породы древесины обладают высокой естественной устойчивостью к гниению из-за присутствия различных экстрагируемых химических соединений, вместе называемых экстрактивными веществами. Экстрактивные вещества — это разнообразные неструктурные компоненты древесины, производимые деревьями в качестве защитных агентов от воздействия окружающей среды, и в основном они находятся в сердцевине древесины. Как правило, их можно разделить на две разные группы: алифатические и алициклические соединения (т.е. терпеноиды и терпены) и фенольные соединения (т.е.е., флавоноиды и дубильные вещества). Их противогрибковая эффективность, в зависимости от типа активной молекулы, может быть основана на различных механизмах, включая прямое взаимодействие с грибковыми ферментами, нарушение клеточных стенок и структуры клеточных мембран, приводящее к утечке содержимого клетки или нарушению ионного гомеостаза, или антиоксидантному действию. активность [11,94,95].

Естественно прочная древесина — ценный материал на рынке и экологически чистая альтернатива древесине, обработанной традиционными химикатами.Потенциально промышленные отходы от обработки прочных пород древесины могут служить источником природных, коммерчески жизнеспособных биоцидов, которые можно использовать для обработки менее прочной древесины. Поэтому во всем мире проводились обширные исследования экстрактивных веществ из древесины [96,97,98].

Тик ( Tectona grandis L.f) — одна из известных высокопрочных пород древесины. Однако его устойчивость к грибковому разложению значительно различается между деревьями из разных географических зон, плантаций или разных возрастов.Некоторые результаты исследований противогрибковых свойств древесины лиственных пород тика предполагают, что они могут быть результатом синергетического эффекта различных экстрактивных соединений, например антрахинины и тектохиноны [99,100,101], в то время как другие данные указывают на роль одного конкретного соединения, а не общего количества экстрактивных веществ в определении устойчивости древесины к гниению [102,103]. Haupt et al. [102], изучавшие устойчивость тикового дерева из Панамы к гниению, идентифицировали тектохинон как биоактивное соединение, подавляющее рост C.puteana . Исследования Туласидаса и Бхата [103] показали высокую устойчивость сердцевины тика из Кералы (Индия) к коричневой гнили ( Polypomus palustris и G. trabeum ) и белой гнили ( P. sanguineus , T. hirsuta и T. versicolor ), определяя нафтохинон как наиболее важное действующее вещество. Anda et al. [100] показали высокую естественную устойчивость тикового дерева из Мексики к белой ( P. chrysosporium ) и коричневой гнили ( G.trabeum ), тогда как его устойчивость к грибку белой гнили T. versicolor была умеренной. Они определили тектохинон, дезоксилапахол, изолапахол и дегидротектол как предполагаемые компоненты, ответственные за долговечность древесины. Микологические тесты, проведенные Kokutse et al. [99] показали, что древесина тикового дерева из Того была очень устойчива к P. sanguineus и G. trabeum , в то время как потеря массы древесины составляла <20% после воздействия Antrodia sp.и C. versicolor . Brocco et al. [98] показали эффективность этанольных экстрактов из отходов, полученных при механической обработке сердцевины тикового дерева из Бразилии, в защите обработанной заболони тика и сосны от грибов белой и бурой гнили. Противогрибковой активности против мягкой гнили не наблюдалось.

Киркер и др. [97] изучили естественную устойчивость нескольких пород древесины, полученных от различных производителей пиломатериалов в Северной Америке, к отобранным грибам коричневой и белой гнили.Их результаты показали высокую стойкость хвойных пород, таких как красный кедр восточный, можжевельник западный, красный кедр западный и желтый кедр Аляски, а также листопадная акация, медовый мескит и катальпа. Древесина южной сосны и павловнии оказалась менее устойчивой к гниению. Экстракты древесины павловнии не оказывали или оказывали незначительное ингибирующее действие на T. palustris и G. trabeum , а экстракты медового мескита не были эффективны против I. lacteus . Füchtner et al.[104] показали, что устойчивость недолговечной сердцевины ели европейской к грибку бурой гнили R. placenta является результатом присутствия фунгитоксической гидрофобной смолы, тогда как в случае умеренно прочной сердцевины курильской лиственницы устойчивость обусловлена ​​большим количество различных антиоксидантных флавоноидов.

Sablík et al. [96] сообщили об эффективности экстрактов сердцевины черной акации ( Robinia pseudoacacia L.) для повышения устойчивости к гниению недолговечного бука европейского ( Fagus sylvatica L.)) древесина от 5 класса (непрочная, потеря массы около 44%) до 3 класса (умеренно прочная, потеря массы около 13%). В то время как экстрактивные вещества из сердцевины Dicorynia guianensis Amsh из Французской Гайаны были показаны Anouhe et al. [105], чтобы иметь противогрибковую активность против P. sanguineus и T. versicolor в основном за счет присутствия алкалоидных соединений.

Экстракты из ксилемы Cinnamomum camphora (Ness et Eberm.), Китайской лиственной породы, были протестированы Li et al.[106] против двух грибов древесной гнили: G. trabeum и Coriolus (Trametes) versicolor . Наилучшие результаты были получены для экстрактов хлороформа и метанола, где эффективная доза для 50% ингибирования роста составляла 7,8 мг / мл экстракта хлороформа против C. versicolor и 0,3 мг / мл экстракта метанола против G. trabeum . Наиболее распространенными компонентами обоих экстрактов с доказанной противогрибковой активностью были камфора и α-терпинеол. C. camphora в таком случае можно рассматривать как источник природных противогрибковых консервантов для защиты древесины.

Также изучалась антиплесневая активность экстрактов сердцевины древесины. Маоз и др. [107] показали, что, однако, экстракты древесины кедра Аляски, можжевельника западного, кедра ладана и кедра Порт-Орфорд могут уменьшить рост плесени ( Paecilomyces , Trichoderma , Penicillium , Aspergillus , Graphium и Graphium ). Sporothrix видов) на заболони пихты дугласовой, они не способны полностью защитить древесину от грибков. Таким образом, только многокомпонентные экстракты могут рассматриваться как потенциальные альтернативы традиционным системам защиты древесины.Эффективность экстрактов древесины против плесени также изучали Мансур и Салем [85]. Они сообщили о полном подавлении роста T. harzianum древесными экстрактами Cupressus sempervirens L. и Morus alba L. -плесень биоцид. Результаты другого исследования Salem et al. [108] указали на хорошую устойчивость сосны обыкновенной ( P. sylvestris L.), сосны смоляной ( P.rigida Mill.) и европейского бука ( Fagus sylvatica L.), обработанные экстрактами сердцевины Pinus rigida против нескольких плесневых грибов ( Alternaria alternata , Fusarium subglutinans , Ch. globosum , A. globosum , niger и T. viride ). Однако примененный метанольный экстракт сердцевины древесины P. rigida не уменьшал полностью рост грибков. Его основные составляющие были идентифицированы как α-терпинеол, борнеол, терпин гидрат, D-фенхиловый спирт и лимоненгликоль.

Наиболее распространенными проблемами, связанными с экстрактами древесины, применяемыми для противогрибковой обработки древесины с низкой прочностью, являются их разнообразие и непостоянство в их биологической активности, а также проблемы с выщелачиванием древесины. Чтобы преодолеть последние, их фиксация на поверхности древесины с помощью ферментно-опосредованной реакции была предложена в качестве зеленой альтернативы традиционно используемым химическим веществам [109].

2.4. Другие экстракты растений

Помимо эфирных масел, дубильных веществ и экстрактов древесины, существует несколько других веществ растительного происхождения, полученных из разных частей растения с использованием различных методов, с доказанными противогрибковыми свойствами, которые потенциально могут быть применены для повышения устойчивости древесины к поражению грибами. .

Чай и кофе — одни из самых экономически ценных культур во всем мире. Их польза для здоровья была известна человеку на протяжении веков. Среди других биологически активных вторичных метаболитов, играющих важную роль в защите растений от патогенов, они содержат кофеин — алкалоид, который проявляет антиоксидантные, противомикробные, иммунологические, противораковые, а также противогрибковые свойства [110,111,112]. Экстракты чая и кофе были протестированы против древесных грибов, чтобы оценить их потенциальную эффективность в защите древесины.В целом, экстракты зеленого чая проявляли более сильное ингибирующее действие на отдельные грибы белой, коричневой и мягкой гнили, чем кофе, традиционный черный чай и коммерческие экстракты черного чая. Однако фильтрация удалила из экстрактов большую часть биологически активных соединений. Грибы белой гнили оказались наиболее чувствительными среди всех исследованных видов. Основной компонент экстрактов чая и кофе, кофеин, оказал сильное ингибирующее действие на большинство исследованных грибов [113]. Аналогичные результаты были получены при использовании экстрактов чая и кофеина против грибковых патогенов чайного растения, что подтверждает фунгицидную эффективность последних [114].Было показано, что механизм фунгистатической активности кофеина заключается в его повреждающем действии на клеточную стенку и клеточную мембрану грибов [112]. Другое исследование было сосредоточено на потенциальной противогрибковой эффективности кофейной шкурки, которая является отходом промышленного процесса обжарки кофе. Оказалось, что экстракты горячей воды кофейного серебра содержат хлорогеновую кислоту и производные кофеина, способные подавлять рост Rhodonia placenta , G. trabeum и T.разноцветный . Более того, их экотоксичность была значительно ниже по сравнению с коммерческими консервантами для древесины на основе меди, что делало их потенциальным сырьем для получения химических веществ, полезных для консервирования древесины [115]. Растворы чистого кофеина, нанесенные на образцы сосны обыкновенной, эффективно снижали восприимчивость древесины к плесени ( A. niger , A. terreus , Ch. Globosum , Cladosporium herbarum , Paecilomyces variotii , Penicillium , Penicillium , .funiculosum , T. viride ), грибы бурой гнили C. puteana и P. placenta и гриб белой гнили T. versicolor . Несмотря на перспективность защиты древесины от грибков, кофеин оказался легко вымываемым из древесины, что является его основным недостатком, препятствующим его применению для древесины, используемой на открытом воздухе [116]. Поэтому было предпринято несколько попыток стабилизировать кофеин внутри структуры древесины с использованием кремнийорганических соединений [117] или смеси силанов и прополиса [118].

Низкие концентрации экстрактов ядовитого Nerium Oleander L. показали Goktas et al. [119] как эффективные в защите образцов древесины бука восточного турецкого и сосны обыкновенной против грибов бурой и белой гнили P. placenta и T. versicolor соответственно. Об аналогичных свойствах сообщалось также у экстрактов другого ядовитого растения Gynadriris sisyrinchium (L.) Parl [120]. Кроме того, экстракты листьев лишайника ( Usnea filipendula ) и омелы ( Viscum album ), нанесенные на заболонь сосны обыкновенной, снижают восприимчивость древесины к поражению грибком C.puteana [121].

Компоненты пиролизного дистиллята были изучены Барберо-Лопесом [122] как потенциальный альтернативный ресурс для консервантов древесины. Дистилляты конопли, березы и ели в концентрации 1% подавляли рост C. puteana , R. placenta и G. trabeum . Пропионовая кислота была определена как наиболее эффективное противогрибковое соединение. В свою очередь, Sunarta et al. [123] сообщили о высокой противогрибковой эффективности биомасла, полученного в результате пиролиза скорлупы плодов пальмы, против грибка с синей окраской Ceratocystis spp.

Умеренные антиплесневые свойства 3% водных экстрактов Acacia saligna (Labill.) H. L. Wendl. о цветках сообщили Al-Huqail et al. [124] при нанесении на образцы древесины Melia azedarach , демонстрируя его потенциал для сохранения древесины. Среди основных активных соединений с доказанными противогрибковыми свойствами были бензойная кислота, кофеин, нарингенин и кверцетин. Экстракты плодов Withania somnifera значительно ограничивали рост мицелия A. alternata , Bipolaris oryzae , Colletotrichum capsici , C.lindemuthianum , Curvularia lunata , Fusarium culmorum , F. oxysporum , F. moniliforme , Macrophomina phaseolina , Rhizoctonia soltifungalina и Rhizoctonia soltifungalza , демонстрируя их потенциал защиты и Rhizoctonia solani , а также их потенциал защиты растений и Rhizoctonia solani , а также дерево [125,126,127]. Противогрибковую активность этих экстрактов приписывали однократному или синергетическому эффекту нескольких соединений, включая алкалоиды, флавоноиды, гликозиды, сапонины или дубильные вещества.Bi et al. [128] в свою очередь изучали устойчивость к гниению древесины тополя, обработанной этанольным экстрактом порошка коньяка ( Amorphophallus konjac K. Koch). Экстракты были более эффективны против коричневой гнили G. trabeum , чем против белой гнили T. versicolor . Салициловая кислота, ванилин, 2,4,6-трихлорфенол и коричный альдегид были определены как наиболее активные соединения.

Сообщалось также, что экстракты некоторых листьев обладают противогрибковой активностью против древесных грибов.Они могут быть экономически жизнеспособным потенциальным источником биологически чистых консервантов для древесины благодаря тому факту, что их можно легко получить непосредственно из деревьев или в качестве побочного продукта во время лесозаготовки. Маоз и др. [107] показали эффективность экстрактов листьев кедра Аляски, пихты Дугласа, западного красного кедра и листьев пихты тихоокеанской в ​​защите обработанной заболони пихты Дугласа от поражения плесенью видов Trichoderma и Graphium . Коллективные экстракты этанола из корней, стеблей и листьев Lantana camara , богатые алкалоидами, терпеноидами и фенолами, полностью подавляли рост белой гнили T.versicolor и бурая гниль Oligopous placentus [129]. Метанольные экстракты Magnolia grandiflora L., как показали Мансур и Салем [85], влияли на рост распространенного возбудителя древесной плесени Ta harzianum , тогда как экстракты листьев Robinia pseudoacacia эффективно подавляли рост разрушающих древесину грибов. T. versicolor [130].

3. Противогрибковые вещества животного происхождения

Некоторые соединения животного происхождения уже использовались для защиты древесины.Воски (пчелиный воск) применялись в основном для повышения водостойкости и защиты древесины от фотохимической деградации. Биополимеры, такие как желатин, зеин или другие белки, использовались в качестве компонентов защитных покрытий и клеев для древесины, повышая влагостойкость и стабильность размеров, а также предотвращая вымывание биоцидов из древесины [16,131,132,133,134,135]. Однако оказалось, что некоторые из них также обладают прямыми противогрибковыми свойствами и потенциально могут использоваться вместо традиционных фунгицидов.

3.1. Прополис

Прополис, также известный как пчелиный клей, представляет собой природное смолистое вещество, которое медоносные пчелы синтезируют из продуктов, собранных из почек деревьев и других растений, в смеси с их слюной, пчелиными ферментами, пчелиным воском и пыльцой. Восковая природа и хорошие механические свойства делают прополис идеальным изоляционным материалом, позволяющим поддерживать постоянную температуру и влажность внутри улья в течение всего года. Он используется для усиления структурной устойчивости и сглаживания внутренних стенок гнезда, а также для заделки небольших отверстий и трещин в улье или сотах.Прополис обеспечивает антибактериальную и противогрибковую защиту гнезда и служит для прикрытия трупов злоумышленников, которые попадают в улей и умирают внутри, и слишком велики для пчел, чтобы их можно было унести, чтобы избежать их гниения внутри. В целом, прополис используется для защиты ульев, поэтому его название происходит от греческого языка и происходит от слов «про», что означает «у входа» или «в обороне», и «полис», что означает «город» [ 136 137 138 139 140 141].

При температуре выше 20 ° C прополис представляет собой мягкое, податливое и липкое вещество.При охлаждении становится твердым и ломким. Его цвет обычно темно-коричневый, но он также может иметь черный, красный, желтый, зеленый или белый оттенки, в зависимости от ботанического источника [137, 142, 143, 144]. Как правило, это сложная смесь, содержащая 50% смол и бальзамов, 30% воска, 10% эфирных и ароматических масел, 5% пыльцы и 5% примесей [138, 140, 144]. Химический состав прополиса значительно различается между конкретными ульями, видами пчел, регионами и сезонами в основном из-за разнообразия видов растений, произрастающих вокруг и являющихся источником выделений, собираемых пчелами [137,138,140,141].К настоящему времени идентифицировано более трех сотен химических компонентов, в основном включая полифенолы (флавоноиды, фенольные кислоты и их сложные эфиры), терпеноиды, стероиды, аминокислоты, ароматические соединения, летучие масла и пчелиный воск [140, 141, 144].

С давних времен прополис применяли в самых разных целях. Некоторые цивилизации использовали его в традиционной медицине, например, для лечения простуды или заживления ран. Древние греки применяли его в качестве антисептика при кожных и буккальных инфекциях, а египтяне использовали его для бальзамирования мертвых тел [137,138].Благодаря антимикробной, антиоксидантной, противовирусной, противовоспалительной, противоопухолевой и иммуномодулирующей активности, обеспечиваемой в основном фенольными соединениями, он до сих пор используется в народной и дополнительной медицине как почти универсальное лекарство [137, 140, 145, 146].

В последнее время состав и свойства прополиса были тщательно изучены во всем мире, подтвердив его полезность в различных терапевтических целях, а также в качестве ингредиента в суперпродуктах и ​​биокосметике. Хотя стандартизация его химического состава остается сложной задачей, наличие множества молекул со многими полезными свойствами неоспоримо [137, 138, 139, 140, 147, 148].Антибактериальные свойства были приписаны кофейной кислоте, дитерпеновой кислоте, феруловой кислоте, p -кумариновой кислоте, галангину, лигнанам, пиноцембрину и шприцевому альдегиду. Противовирусная активность была приписана кофейной кислоте и ее производным, кемпферолу, p, -кумаровой кислоте и кверцетину. Противогрибковая активность показана для (+) — агатадиола, бензойной кислоты, кофейной кислоты и ее эфира, феруловой кислоты, p -кумаровой кислоты, бензилового эфира, эпи-13-торулозола, галангина, изокупрессиновой кислоты, пинобанксина, пиноцембрина, сакуранетина. и птеростильбен [141, 148, 149, 150, 151, 152, 153, 154, 155].

3.1.1. Прополис для защиты древесины

Хотя прополис использовался в течение тысячелетий для различных целей, его применение для обработки древесины малоизвестно. Единственное исключение — информация о скрипичных мастерах высшего класса, в том числе о Страдивари и мастерах из Кремоны в Италии. Они использовали изобретенный ими лак на основе прополиса для полировки своих инструментов с целью улучшения их акустических свойств или использовали его в смеси с другими ингредиентами в качестве красителя или финишного покрытия [149,156].В настоящее время прополис пробуют для отделки дерева индивидуально или в смеси с силанами. Результаты показывают, что, хотя его влияние на свойства древесины было посредственным, оно могло быть долгожданным дополнением к отделке древесины на основе натуральных ингредиентов [149,157,158]. Однако из-за доказанных противогрибковых свойств прополис также был задуман как потенциальный природный и экологически чистый консервант древесины против плесени и разрушающих древесину грибов [150, 159, 160, 161, 162].

3.1.2. Активность прополиса против плесени

Противогрибковая активность прополиса из Аргентины против нескольких фитопатогенных плесневых грибов, в том числе встречающихся в древесине, таких как A. niger , Trichoderma spp., Penicillium notatum или Fusarium sp. был оценен Quiroga et al. [150]. Они исследовали частично очищенный этанольный экстракт прополиса, а также два его флавоноидных компонента, выделенных с помощью ВЭЖХ — пиноцембрин и галангин. Их результаты ясно показывают, что как прополис, так и его изолированные компоненты были эффективны против тестируемых грибов и характеризовались низкой цитотоксичностью.Это означает, что прополис безопасен для окружающей среды и может применяться в качестве противогрибкового средства для защиты других натуральных продуктов, в том числе древесины, от плесени. Также была отмечена эффективность прополиса из США и Китая против P. notatum с такими основными компонентами, как пиноцембрин, пинобанксин-3- O -ацетат, галангин, хризин, пинобанксин и пинобанксин-метиловый эфир. подтверждено Xu et al. [163].

3.1.3. Активность прополиса против дереворазрушающих грибов

Экстракты прополиса со всего мира или их отдельные ингредиенты использовались для пропитки древесины различных пород с целью изучения их потенциала в защите древесины от дереворазрушающих грибов.

Woźniak et al. показали, что этанольные экстракты польского прополиса с концентрацией более 12% эффективно ограничивают гниение древесины сосны обыкновенной C. puteana [161]. Чем выше было содержание прополиса в растворе, тем лучше был достигнут противогрибковый эффект, достигая потери массы древесины 5,9%, 3,3%, 2,3% и 2,7% для концентрации прополиса 7,5%, 12%, 18,9% и 30%. соответственно. Более того, в польских экстрактах прополиса были выявлены высокие концентрации трех флавоноидов, известных своей противогрибковой активностью: пиноцембрина, галангина и хризина (около 47, 29 и 23 мг / г соответственно).

Древесина сосны обыкновенной и павловнии, обработанные 7% метанольным экстрактом турецкого прополиса, были более устойчивы к Neolentinus lepideus (коричневая гниль) и T. versicolor (белая гниль) по сравнению с необработанными образцами. Для сосны обыкновенной потеря массы составила 29,7% и 2,5% для необработанной и обработанной древесины, подвергшейся воздействию N. lepideus , и 28,4% и 4,2% для необработанной и обработанной древесины, подвергшейся воздействию T. versicolor , соответственно. Однако в случае древесины павловнии с низкой прочностью результаты были не такими хорошими, с потерей массы 39.2% для необработанной и 12,3% для обработанной древесины, подвергшейся воздействию T. versicolor , и 47,2% для необработанных и 11,6% для обработанных образцов, подвергшихся воздействию N. lepideus [159].

Budija et al. [158] продемонстрировали, что этанольный экстракт прополиса 29% из Восточной Словении эффективно защищает древесину ели европейской от грибов бурой гнили Antrodia vaillantii и G. trabeum и грибка белой гнили T. versicolor , в результате чего потеря массы древесины 5.3%, 7,2% и 4,6% соответственно. Кроме того, древесина тополя, обработанная раствором прополиса 40 мг / мл, была более устойчивой к T. versicolor , чем необработанная древесина (потеря массы около 11% против 20%, соответственно, после восьми недель воздействия) [162]. Однако в этом случае наблюдалось постепенное уменьшение противогрибкового действия прополиса с течением времени при воздействии грибов. Это может быть результатом биоразлагаемости определенных ингредиентов прополиса или низкого удерживания раствора прополиса в древесине, что является широко распространенным недостатком природных биоцидов.

Этаноловый экстракт прополиса из Аргентины, а также его изолированные соединения пиноцембрин и галангин, как было доказано, эффективно ингибируют радиальный рост гифа грибов белой гнили P. sanguineus и S. commune и несколько менее эффективны против Ganoderma applanatum и Lenzites elegans , демонстрируя их потенциал в защите древесины от гниения [150].

Jones et al. [40] обрабатывали образцы различных пород древесины метанолом или водными содовыми растворами прополиса, имеющимися в продаже в магазинах здоровья в Великобритании.Они подвергли их воздействию древесных грибов C. puteana и P. placenta . Их результаты доказали превосходную устойчивость обработанной древесины к C. puteana и несколько более низкую защиту от P. placenta. Однако защитный эффект был более выражен для сосны обыкновенной, ясеня и лиственницы, чем для древесины красного кедра западного или ели ситкинской. К сожалению, эксперименты также показали высокую чувствительность прополисовой обработки к выщелачиванию, поэтому ее нельзя применять на открытом воздухе без дополнительной фиксации в древесине.

3.1.4. Прополис в сочетании с полимерами

Обнаруженные недостатки экстрактов прополиса, применяемых в качестве консервантов для древесины, такие как вымываемость древесины и постепенное снижение противогрибковой активности с течением времени [40,162], побудили исследователей искать стабилизаторы, которые бы повысили эффективность прополиса. При консервации древесины применение некоторых полимеров, таких как протеины или кремнийорганические соединения, оказалось эффективным для удержания фунгицидов в древесине [14]. Аналогичный подход был успешно применен для прополиса.Возняк и др. показали, что смесь экстракта прополиса с кремнийорганическими соединениями метилтриметоксисиланом и винилтриметоксисиланом была более эффективной в защите древесины сосны обыкновенной против C. puteana , чем экстракт прополиса, использованный отдельно. Вместо этого Ратайчак и др. доказали, что древесина сосны обыкновенной, обработанная составом на основе прополиса, кофеина, метилтриметоксисилана и октилтриэтоксисилана, устойчива к C. puteana даже после процедуры ускоренного старения, включающей выщелачивание [118].

Представленные здесь результаты показывают потенциал прополиса в защите древесины от грибков. Однако из-за проблем, таких как высокая изменчивость состава прополиса и проблемы с его устойчивостью при нанесении на древесину, его раннее внедрение на рынок в качестве готового к использованию продукта кажется невозможным без улучшения его характеристик. Тогда необходимы дальнейшие исследования,

3.2. Хитин и хитозан

Хитин — это природный белый твердый неэластичный мукополисахарид, состоящий из 2-ацетамидо-2-дезокси-β-d-глюкоз, связанных β (1 → 4) связями.Распространенный в природе, он является основным компонентом экзоскелетов членистоногих, включая морских ракообразных, таких как креветки и крабы, клеточные стенки грибов, колючки диатомовых водорослей или чешую рыб. Он структурно сравним с целлюлозой, с такой же низкой растворимостью и низкой химической реакционной способностью [164,165,166]. Хитозан представляет собой N -деацетилированное производное хитина. Его производство экономически целесообразно, поскольку его основным источником является панцирь ракообразных, полученный как отходы пищевой промышленности. Возобновляемые, биоразлагаемые, биосовместимые и нетоксичные хитин и хитозан в последнее время привлекли особое внимание как потенциальный природный полисахаридный ресурс, полезный для производства многих продуктов с добавленной стоимостью.Благодаря своим противораковым, антиоксидантным, антикоагулянтным и противомикробным свойствам они используются для производства носителей лекарств, искусственной кожи и костей, перевязочных материалов, контактных линз, твердотельных батарей. Они также используются в качестве хелатирующих агентов для очистки сточных вод и в качестве добавок для пищевых продуктов, косметики и производства бумаги [164,165,166,167,168,169].

Хитозан обладает фунгицидной и фунгистатической активностью [164,170,171]. Однако его большое разнообразие с точки зрения химической структуры затрудняет точное определение его антимикробных свойств.Наиболее важными факторами, играющими роль в биоцидном действии, являются молекулярная масса, степень деацетилирования и полимеризации хитозана, а также тип микроорганизма [168, 170, 172]. Было доказано, что хитозан взаимодействует с клеточной стенкой грибов и изменяет ее структуру, и уже были обнаружены два типа механизмов, лежащих в основе антимикробной активности хитозана [14, 173, 174]. Один из них включает проницаемость плазматических мембран бактерий или грибов за счет электростатических взаимодействий между аминогруппами в цепи хитозана и молекулами на поверхности клетки, что приводит к утечке внутриклеточного материала и гибели клетки [171, 172, 174, 175, 176, 177].Второй относится к изменениям в экспрессии генов за счет взаимодействий между хитозаном и нуклеиновыми кислотами [171, 178, 179, 180].

Противогрибковые свойства хитина и хитозана успешно используются не только в пищевой и косметической промышленности, но также имеют высокий потенциал в сельском хозяйстве, поскольку они полезны для защиты растений от грибковых патогенов и продления срока годности фруктов [166, 181, 182, 183, 184]. ]. Отсюда возникла идея применить это вещество для защиты другого природного материала — дерева — от плесени и гниения.

Хитозан в защите древесины

Было предпринято много попыток оценить эффективность хитозана в защите древесины от грибков. Эксперименты, проведенные на чашках с агаром, показали, что скорость роста грибов снижалась с увеличением концентрации хитозана и молекулярной массы, при этом не наблюдалось явной разницы между плесневыми грибами, грибами белой и коричневой гнили [185, 186, 187, 188, 189]. Как правило, 1% раствор хитозана полностью подавлял рост грибков [188,190].

Применение хитозана в деревянных брусках выявило его потенциал как противогрибкового агента.Кобаяши и др. показали, что древесина Суги, обработанная хитозаном (поглощение 11,6 кг · м -3 ), была более устойчивой к грибам коричневой гнили T. palustris и белой гнили T. versicolor (потеря массы 15,9% и 4,9% соответственно. ), чем необработанная древесина (потеря массы 34,8% и 19,7%) [191]. Также древесина Fagus crenata , Pinus densiflora и Cryptomeria japonica , обработанная хитозаном, оказалась более устойчивой к почвенным микроорганизмам и грибкам гниения ( C.versicolor , T. palustris , S. lacrymans ) по сравнению с необработанной древесиной [192].

Schmidt et al. сообщили о повышенной устойчивости древесины сосны обыкновенной, обработанной раствором хитозана с поглощением 5,6–6,8 кг × м –3 , к коричневой гнили C. puteana и G. trabeum со средней потерей массы 1,6–3,2% и 3,7–6,0% по сравнению с 18,2% и 35,6% для необработанного контроля соответственно [193]. Eikenes et al. получили аналогичные результаты для мини-блоков из сосны обыкновенной, обработанных 4.8% ( w / v ) раствор высокомолекулярного хитозана, подвергнутый воздействию C. puteana и P. placenta . Сообщенная потеря массы составила 1,6% и 0,1% для обработанной древесины по сравнению с 60% и 35% для необработанных образцов, соответственно [188]. Однако некоторое вымывание хитозана наблюдалось после ускоренного выщелачивания обработанных образцов в воде. Он был тем более выраженным, чем ниже была молекулярная масса хитозана. Тем не менее 5% раствор хитозана оказался эффективным против грибков гниения, несмотря на выщелачивание [188].Альфредсен и др. и Gorgij et al. подтвердили более высокую эффективность хитозана с высокой молекулярной массой против плесени и синевы по сравнению с хитозаном с низким молекулярным весом [190,194].

В свою очередь, Larnøy et al. сообщили о противогрибковой эффективности 5% раствора низкомолекулярного хитозана, используемого для обработки сосны обыкновенной и бука [195]. Средняя потеря массы обработанной сосны обыкновенной, подвергшейся воздействию C. puteana и P. placenta , составила 4,9% и 1,6% по сравнению с 37,7% и 42,7% для необработанных образцов, соответственно.Потеря массы обработанной древесины бука, подвергшейся воздействию T. versicolor , составила 2,8% по сравнению с 30,2% для необработанной древесины после восьми недель испытания на ускоренное разложение.

Результаты применения хитозана на исторических образцах древесины, проведенные El-Gamal et al. продемонстрировали эффективность обработки против плесени и подтвердили, что она может быть рекомендована для защиты археологических деревянных предметов [196].

Хитозан может образовывать мембрану внутри структуры древесины, которая не только действует как барьер против влаги и воздуха, но также может удерживать другие частицы и предотвращать их вымывание из древесины [195,197].Поэтому была предпринята попытка применять его в сочетании с металлами с противогрибковыми свойствами или фунгицидами. Он успешно использовался с консервантами на основе меди, цинка, серебра, хромированного арсената меди или тебуконазолом, обеспечивая эффективную защиту древесины от плесени и гниения [191,198,199,200].

4. Выводы

Как видно, природные соединения обладают огромным потенциалом в защите древесины, поскольку они обладают широким спектром антимикробной активности. Они являются возобновляемыми, легкодоступными или экономически выгодными из отходов, нетоксичны или обладают гораздо меньшей экологической токсичностью, чем традиционные химические биоциды, и экологически безопасны.Однако у них также есть некоторые ограничения, в том числе высокая неоднородность в зависимости от источника, из которого они получены (например, прополис, эфирные масла, экстрактивные вещества древесины), отсутствие надлежащего удерживания внутри пропитанной древесной ткани, легкая выщелачиваемость, избирательная или неравномерная активность против отдельные виды грибов, высокая подверженность биоразложению. Некоторые из этих проблемных вопросов кажутся решаемыми путем комбинирования органических биоцидов с:

  • различными биологическими соединениями, способными разрушать мембраны ямок, тем самым увеличивая их проницаемость в древесные ткани;

  • различные природные полимеры и сшивающие агенты для фиксации природных соединений внутри структуры древесины и предотвращения их выщелачивания;

  • другие вещества, такие как антиоксиданты, агенты биологической борьбы или хелаторы для повышения их антимикробной активности и стойкости.

Вывод на рынок природных биоцидов дополнительно затруднен из-за некоторых несоответствий между лабораторными испытаниями и отчетными полевыми показателями, а также из-за проблем, связанных с законодательством, из-за необходимости соблюдения требований различных директив (касающихся строительных материалов и применения биоцидов). ) и отсутствие стандартов, определяющих качество, состав, характеристики и применение конкретных защитных составов на натуральной основе. Следовательно, необходимы дальнейшие исследования в этой области.

Поскольку решение всех проблем, с которыми сталкивается разработка природных консервантов, специально ориентированных на защиту древесины и изделий из древесины, может оказаться слишком дорогостоящим, чтобы быть прибыльным, объединение усилий с другими отраслями промышленности, заинтересованными в использовании конкретные природные активные соединения (например, для защиты растений, борьбы с вредителями, пищевых продуктов и фармацевтики) могут оказаться хорошим решением.

В настоящее время, когда продление срока службы изделий из дерева представляет большой интерес и важность, разработка натуральных консервантов нового поколения с минимальным воздействием в конце срока службы обработанной древесины является императивом с точки зрения здоровья человека и защиты окружающей среды.Хотя представленный обзор не исчерпывает тему, поскольку существуют сотни научных данных о противогрибковой активности природных веществ, он дает исчерпывающее представление о текущем состоянии исследований в этой области и показывает перспективы развития экологически безопасных альтернативных древесных материалов. защита на основе натуральных составов.

Природные составы для защиты древесины от грибков — обзор

Abstract

Древесина — это возобновляемый, универсальный материал, имеющий множество применений и самый большой на Земле запас секвестрированного углерода.Однако он подвержен разложению, в основном вызываемым древесными грибами. Поскольку некоторые традиционные консерванты для древесины были запрещены из-за их пагубного воздействия на человека и окружающую среду, продление срока службы изделий из древесины с использованием натуральных консервантов нового поколения является императивом с точки зрения здоровья человека и защиты окружающей среды. Некоторые природные соединения растительного и животного происхождения были протестированы на их фунгицидные свойства, включая эфирные масла, дубильные вещества, экстрактивные вещества древесины, алкалоиды, прополис или хитозан; и был продемонстрирован их огромный потенциал в защите древесины.Хотя они не лишены ограничений, потенциальные методы преодоления их недостатков и повышения их биологической активности уже существуют, такие как совместная пропитка различными полимерами, сшивающими агентами, хелаторами металлов или антиоксидантами. Однако наличие расхождений между лабораторными тестами и результатами полевых испытаний, а также проблемы, связанные с законодательством, возникающие из-за отсутствия стандартов, определяющих качество и эффективность натуральных защитных составов, создают острую необходимость в дальнейших тщательных исследованиях и мероприятиях.Сотрудничество с другими отраслями промышленности, заинтересованными в использовании природных активных соединений, снизит связанные с этим расходы, таким образом, будет способствовать успешному внедрению альтернативных противогрибковых агентов.

Ключевые слова: натуральные консерванты для древесины, противогрибковые свойства, эфирные масла, дубильные вещества, прополис, растительное масло, растительные экстракты

1. Введение

Древесина является широко используемым натуральным, возобновляемым и универсальным материалом с отличными характеристиками. человеком с незапамятных времен.Это также самый большой резервуар секвестрированного углерода в земной среде. Однако его химический состав и структура делают его склонным к биоразложению, а грибы являются основными разрушителями древесины [1,2].

Традиционно, что касается характера разложения, различают три группы древесно-гниющих грибов: бурая гниль, белая гниль и мягкая гниль (). Все они разрушают структурные полимеры ячеистой стенки дерева, что приводит к потере прочности древесины. Дерево также может подвергнуться воздействию плесени и синей морилки ().Хотя они не вызывают значительных структурных повреждений, они отрицательно влияют на эстетическую ценность древесины, поскольку их активность приводит к изменению цвета древесины [1,2].

Таблица 1

Основные типы грибов, которые могут колонизировать и разрушать древесину [1,2,3,4,5].

Тип грибов Вид и компоненты деградированной древесины Воздействие на древесину
Древесные грибы
бурая гниль (Basidiomycota) в основном хвойные породы; деградация гемицеллюлозы и целлюлозы, деметилирование лигнина усадка и растрескивание древесины на кусочки кубической формы, осталась коричневая окраска из-за присутствия лигнина, снижение механических свойств древесины
белая гниль (Basidiomycota) в основном древесина твердых пород, но также хвойные породы; деградация лигнина и гемицеллюлозы, а также целлюлозы древесный вид волокнистый и белый цвет древесины из-за наличия более светлых остатков целлюлозы, древесина становится мягкой, губчатой ​​или волокнистой, ее прочностные свойства снижаются по мере развития гниения
мягкая гниль (Ascomycota, грибки несовершенные) гемицеллюлоза и целлюлоза, реже лигнин образование полостей внутри клеточной стенки, изменение цвета и характер растрескивания, сходный с коричневой гнилью, ухудшение прочностных свойств древесины
Форма
плесень (Zygomycota или Ascomycetes) легкодоступные сахара, не структурные полимеры поверхностное изменение цвета древесины, незначительная деградация поверхности древесины
Синяя морилка
синяя окраска (Ascomycota и Deuteromycota) содержание белка в клетках паренхимы, легкодоступные сахара, не структурные полимеры изменение цвета заболони за счет темных гиф, разрушение мембран ямок, ведущее к повышенной водопроницаемости

Древесина становится восприимчивой к поражению грибами в определенных условиях окружающей среды, т.е.е. влажность более 20%, доступность кислорода и температура от 15 до 45 ° C. Грибковая порча поражает в основном наружные деревянные конструкции, снижая механические и эстетические свойства древесины и значительно ограничивая срок ее службы [5,6]. Для предотвращения этого был применен широкий спектр эффективных синтетических консервантов для древесины, включая агенты на основе меди (например, хромированный арсенат меди), триазолы (азаконазол, пропиконазол, тебуконазол), пентахлорфенол или фунгициды на основе бора [7,8,9] .Однако из-за проблем, связанных с окружающей средой и здоровьем, многие из них были запрещены к использованию, что привело к необходимости разработки альтернативных средств защиты древесины и методов, основанных на нетоксичных натуральных продуктах [9,10,11].

В настоящее время экологически безопасная защита древесины является объектом обширных исследований, охватывающих несколько различных подходов. Поскольку рост разрушающих древесину грибов зависит от наличия воды, одним из методов является контроль влажности с использованием природных гидрофобизаторов, таких как смолы и воски растительного или животного происхождения или растительные масла [12,13,14,15].Еще один способ продления срока службы древесины — использование природных соединений с биоцидными свойствами и их фиксация внутри структуры древесины [11,12,16]. Более инновационный метод включает использование агентов биологической борьбы, то есть таких микроорганизмов, как другие грибы и бактерии, которые действуют как антагонисты древесных грибов [12,17].

Целью обзора является представление информации о текущих исследованиях природных соединений с доказанной биоцидной активностью, которые могут быть потенциально полезными для защиты древесины от грибков.Он разделен на две основные части в зависимости от происхождения описываемых соединений (растение или животное), а затем на подразделы, касающиеся конкретного источника или типа вещества. В обзор включены как результаты исследований in vitro противогрибковой активности отдельных природных экстрактов или их отдельных компонентов в отношении древесных грибов, так и данные, полученные в результате микологических тестов с использованием древесины различных пород, обработанных натуральными защитными составами. Обсуждаются эффективность, преимущества и недостатки, а также проблемы, связанные с использованием натуральных продуктов для защиты древесины, показаны потенциальные перспективы их коммерческого применения.

2. Противогрибковые вещества растительного происхождения

Растения являются богатым источником различных химических соединений, включая алкалоиды, флавоны и флавоноиды, фенольные соединения, терпены, дубильные вещества или хиноны. Вырабатываемые как вторичные метаболиты, они могут составлять до 30% сухой массы растений, играя важную роль в их защите от патогенных микробов, травоядных животных и различных видов абиотического стресса. Из-за их специфических свойств, возникающих в результате присутствия определенных фитохимических веществ, многие растения с тех пор используются людьми в качестве лекарств или пищевых добавок.В настоящее время знание химической структуры и функций отдельных компонентов растений позволяет разрабатывать эффективные методы их извлечения из тканей растений и использовать их в коммерческих целях, например, в качестве ингредиентов фармацевтических препаратов, косметики, функциональных пищевых продуктов или красителей. Также существует большой интерес к их применению в качестве биопестицидов, инсектицидов и фунгицидов для защиты сельскохозяйственных культур и биоразлагаемых материалов [18,19,20,21].

Противогрибковые свойства различных растительных экстрактов делают их интересными еще и как потенциальный источник природных веществ, которые могут использоваться в качестве альтернативных консервантов древесины против гниения.Высокая доступность растительного материала в целом и перспективная возможность использования промышленных отходов от переработки различных культур могут повысить экономическую жизнеспособность всего процесса их получения, что позволит потенциально широко применять консерванты для растений в деревообрабатывающей промышленности.

2.1. Эфирные масла

Эфирные масла — это натуральные смеси летучих вторичных метаболитов различных растений, которые могут быть получены из растительного сырья путем дистилляции, механического прессования или экстракции с использованием различных растворителей.Они содержат множество химических соединений, которые отвечают за характерный аромат определенных растений, из которых они получены. Основными ингредиентами являются терпены, в том числе спирты, альдегиды, углеводороды, простые эфиры и кетоны, с доказанной биологической активностью, такие как антиоксидантное, антибактериальное и противогрибковое. Поэтому растения, содержащие эфирные масла, веками использовались в народной медицине и добавлялись в пищу как ароматизаторы и консерванты [22,23,24].

В настоящее время эфирные масла нашли применение в парфюмерии, ароматерапии, производстве продуктов питания и косметики.Их состав был тщательно изучен вместе с их потенциальной терапевтической активностью, включая противовоспалительную, противомикробную, противовирусную, противораковую, антидиабетическую или антиоксидантную [23,24,25]. Наблюдаемый растущий интерес к биологически чистым, нетоксичным натуральным веществам с антимикробными свойствами делает эфирные масла потенциально полезными в качестве консервантов для широкого спектра продуктов [26,27,28]. Из-за доказанных противогрибковых свойств против плесени и древесных грибов, были также предприняты некоторые попытки применить эфирные масла из обычных растений, трав и специй в качестве защитных средств для древесины [29,30,31,32,33,34,35] .

Эфирные масла в защите древесины

Было проведено несколько тестов in vitro против различных видов грибов с использованием различных эфирных масел, чтобы найти наиболее эффективные. Voda et al. [29] сообщили о высокой противогрибковой эффективности масел аниса, базилика, тмина, орегано и тимьяна против грибка бурой гнили Coniophora puteana и гриба белой гнили Trametes versicolor с использованием метода разбавления агара. Они показали, что наиболее эффективными соединениями, подавляющими рост обоих грибов, были тимол, карвакрол, транс-анетол, метилхавикол и куминальдегид.Их дальнейшие исследования подтвердили существование взаимосвязи между молекулярной структурой кислородсодержащих соединений ароматических эфирных масел и их противогрибковой активностью против дереворазрушающих грибов [36]. Тесты in vitro, проведенные Читтенденом и Сингхом [37], продемонстрировали противогрибковую эффективность 0,5% -ных концентраций масел корицы и герани против грибов бурой гнили Oligoporus placenta , C. puteana и Antrodia xantha , сапстаиновых грибов Ophiostum , Ophiostoma piceae , Sphaeropsis sapinea и Leptographium procerum и плесневый гриб Trichoderma harzianum .Они также показали противогрибковые свойства масел аниса, орегано и лемы (смесь 50% новозеландской мануки и 50% австралийского чайного дерева) против некоторых из упомянутых выше грибов. Zhang et al. [35] сообщили об противогрибковой эффективности чистых монотерпенов, таких как β-цитронеллол, карвакрол, цитраль, эвгенол, гераниол и тимол, против грибов древесной белой гнили Trametes hirsuta , Schizophyllum commune и Pycnoporus sanguineus. Xie et al. [34] подтвердили противогрибковые свойства Origanum vulgare , Cymbopogon citratus , Thymus vulgaris , Pelargonium graveolens , Cinnamomum zeylanicum и эфирных масел грибов Eugenia T.hirsuta и Laetiporus sulphurous , указывая на карвакрол, цитрон, цитронеллол, коричный альдегид, эвгенол и тимол как на наиболее активные соединения. Было показано, что некоторые из распространенных соединений натуральных эфирных масел, а именно коричный альдегид, α-метил-коричный альдегид, (E) -2-метилкоричная кислота, эвгенол и изоэвгенол, эффективно подавляют рост грибка белой гнили Lenzites betulina и коричневый -гнильный гриб L. sulphurous [38]. В свою очередь, результаты, полученные Reinprecht et al.[39] показывают, что среди пяти различных эфирных масел (базилика, корицы, гвоздики, орегано и тимьяна) самая высокая противогрибковая активность против грибка бурой гнили Serpula lacrymans и грибка белой гнили T. versicolor была показана для базилика. масло (содержащее преимущественно линалоол), а наименьшее — для гвоздичного масла (содержащего в основном эвгенол).

Указанные выше результаты были подтверждены на образцах древесины, обработанных отобранными эфирными маслами. Pánek et al. [33] исследовали противогрибковую эффективность и стабильность древесины бука, обработанной 10% -ными растворами десяти различных эфирных масел (березы, гвоздики, лаванды, орегано, сладкого флага, чабера, шалфея, чайного дерева, тимьяна и смеси эвкалипта, лаванды и т. масла лимона, шалфея и тимьяна) против грибка бурой гнили C.puteana и гриб белой гнили T. versicolor . Они обнаружили, что после сложной процедуры ускоренного старения наиболее эффективными против C. puteana оказались масла гвоздики, орегано, сладкого флага и тимьяна, которые содержат фенольные соединения, такие как карвакол, эвгенол, тимол и триметиловый эфир цис-изоазарола (химическая структура избранные соединения эфирных масел представлены в). Потери массы древесины березы составили 0,9%, 0,66%, 0,57% и 0,87% соответственно. Масла гвоздики, сладкого флага и тимьяна также были наиболее эффективными против плесени ( Aspergillus niger и Penicillium brevicompactum ) при тестировании с фильтровальной бумагой.Эти масла могут быть потенциально полезны для защиты древесины в интерьере. Интересно, что ни одно из протестированных масел не было эффективным против T. versicolor , что может быть результатом специфического ферментативного аппарата грибов белой гнили, способного разлагать как лигнин, так и другие фенольные соединения. Эффективность масла тимьяна против C. puteana и A. niger была также подтверждена Jones et al. [40]. Кроме того, они показали противогрибковую активность масел базилика, тысячелистника и календулы против C.puteana и P. placenta соответственно; однако два последних масла были эффективны только при использовании в чистом виде. Chittenden и Singh [37] сообщили о высокой устойчивости древесины сосны лучистой, обработанной 3% эвгенолом, с потерей массы <1% при воздействии C. puteana , O. placenta и A. xantha . Однако они обнаружили, что эвгенол легко выщелачивается из древесины, что предполагает его непригодность для защиты древесины, используемой на открытом воздухе.Kartal et al. [32] обрабатывали древесину суги составом, содержащим масло кассии, с получением высокой устойчивости древесины против коричневой гнили Tyromyces palustris (потеря массы 0,7%) и белой гнили грибов C. versicolor (потеря массы 3,6%).

Химическая структура и примерные растительные источники выбранных противогрибковых соединений эфирных масел.

Ян и Клаузен изучили свойства семи эфирных масел, включая аджован, укроп, герани (египетскую), лимонную траву, розмарин, чайное дерево и масло тимьяна, по подавлению плесени.Они обнаружили, что пары масла укропа и обработка окунанием образцов южной желтой сосны тимьяном или геранией эффективно защищали древесину от роста A. niger , Trichoderma viride и Penicillium chysogenum в течение как минимум 20 недель [ 41]. Результаты Bahmani et al. [31] подтвердили, что масла лаванды, лемонграсса и тимьяна, применяемые для пропитки древесины Fagus orientalis и Pinus tadea , могут обеспечить эффективную защиту от A.niger , Penicillium commune , C. puteana , T. versicolor и Chaetomium globosum . Салем и др. Продемонстрировали антиплесневую активность масел Pinus rigida и Eucalyptus camaldulensis , нанесенных на поверхность древесины Fagus sylvatica , P. rigida и P. sylvestris . [42] и аналогичные свойства гвоздичного масла, нанесенного на местную индийскую древесину, сообщили Hussain et al. [30].

Было доказано, что большое разнообразие эфирных масел, полученных из определенных местных растений со всего мира, обладает защитными свойствами против плесени и гниения древесины.Например, эфирное масло из листьев тайваньского коричного дерева Cinnamomum osmophloeum Kaneh., Содержащее коричный альдегид в качестве наиболее распространенного противогрибкового компонента, оказалось эффективным против различных грибов белой и коричневой гнили, включая Coriolus versicolor. и Laetiporus sulphureus [43]. Противогрибковые свойства коричного альдегида также подтвердили Kartal et al. [32] при применении для обработки древесины суги, эффективно повышая устойчивость древесины против коричневой гнили T.palustris (потеря массы 0,6%) и грибы белой гнили C. versicolor (потеря массы 3,8%). Хорошие результаты были также получены Читтенденом и Сингхом [37] для древесины сосны лучистой, обработанной 3% раствором коричного альдегида, где потеря массы составила <1% против C. puteana и A. xantha и около 3% против О. плацента .

Масла листьев и плодов другого тайваньского дерева, Juniperus formosana Hayata, были протестированы in vitro Su et al.[44] за их противогрибковые свойства против семи плесневых грибов ( Aspergillus clavatus , A. niger , Ch. Globosum , Cladosporium cladosporioides , Myrothecium virrucaria , T. , два гриба белой гнили ( T. versicolor , Phanerochaete chrysosporium ) и два гриба бурой гнили ( Phaeolus schweinitzii , Lenzites sulphureum ). Они сообщили о превосходной противогрибковой эффективности листового масла с α-кадинолом и элемолом в качестве наиболее активных соединений.Высокая противогрибковая активность против плесени и древесных грибов была также показана для тайваньского масла листьев Eucalyptus citriodora из-за присутствия цитронеллаля и цитронеллола в качестве основных активных компонентов [45].

Cheng et al. [46] сообщили о высокой противогрибковой активности эфирного масла, полученного из листьев флорина Calocedrus formosana . C. formosana — это эндемичный вид деревьев из Тайваня, отличающийся естественной устойчивостью к гниению. Самая сильная противогрибковая активность против L.betulina , Pycnoporus coccineus , T. versicolor и L. sulphurous были показаны для двух масляных соединений: α-кадинола и Т-мууролола.

Mohareb et al. [47] изучали противогрибковую активность эфирных масел восемнадцати различных египетских растений против дереворазрушающих грибов Hexagonia apiaria и Ganoderma lucidum . Наилучшая устойчивость была получена для заболони сосны обыкновенной, обработанной маслами Artemisia monosperma , Citrus limon , Cupressus sempervirens , Pelargonium graveolens , Schinus molle и Thuja occidentalis .В свою очередь, эффективность масла нима, содержащего азадирахтин в качестве основного противогрибкового соединения, против грибов S. commune , Fusarium oxysporum , Fusarium proliferatum , C. puteana и Alternaria alternate et al. al. [48]. Аналогичные результаты были получены Hussain et al. [30], которые показали устойчивость местной индийской древесины, обработанной маслом нима, к различным формам.

Здесь стоит упомянуть некоторые новые подходы, направленные на усиление противогрибковой активности эфирных масел как консервантов древесины.Один из них — использование комплексов эфирных масел с метил-β-циклодекстрином. Cai et al. [49] обрабатывали древесину южной сосны комплексами эвгенола, транс-коричного альдегида, тимола и карвакрола с метил-β-циклодекстрином и подвергали ее воздействию грибов бурой гнили Gloeophyllum trabeum и P. placenta . Результаты показали улучшенную стойкость к гниению древесины, обработанной определенными комплексами, даже после выщелачивания, по сравнению с контрольными образцами или образцами древесины, пропитанными эфирными маслами по отдельности.Таким образом, кажется, что использование определенных комплексов, содержащих природные соединения, такие как эфирные масла, имеет большой потенциал для увеличения срока службы изделий из дерева.

2.2. Танины

Танины — это природные соединения, вырабатываемые большинством высших растений для защиты их от патогенных бактерий, грибов и насекомых. Их можно найти практически во всех частях растения, от корней, древесины и коры до листьев и семян [50,51].

Разные по цвету танины представляют собой вяжущие, очень разнообразные полифенольные биомолекулы, разделенные на два класса: гидролизуемые танины (такие как галлотаннины и эллагитаннины) и конденсированные полифлавоноидные танины.Гидролизуемые дубильные вещества можно найти только в двудольных. Среди конденсированных танинов наиболее распространены процианидины в форме катехина и эпикатехина, затем танин продельфинидина в форме галлокатехина и эпигаллокатехина и танин пропеларгонидина в форме афзелехина и эпиафзелехина. Хвойные деревья считаются наиболее богатым источником танинов [19,50,52].

Специфическая химическая структура и результирующая реакционная способность позволяют танинам необратимо связываться с металлами и другими молекулами, включая белки, создавая прочные комплексы [19,50,52].Эти свойства делают их полезными для множества приложений. Например, они традиционно используются в производстве кожи и применяются в качестве добавок к пиву, вину и фруктовым сокам в качестве антиоксидантов и ароматизаторов [50,51,53,54,55,56]. Их можно использовать для очистки сточных вод, производства изоляционных и огнестойких пен, гидропонных пен для садоводства, термореактивных пластмасс, смол и гибких пластиковых пленок [50,57,58,59]. Они могут служить в качестве клея и отделки поверхностей для древесины и изделий из древесины, цементных суперпластификаторов, антикоррозионных покрытий для металла, высокотемпературной отделки поверхностей металлов и тефлона, упаковочных материалов, добавок для буровых растворов, и это лишь некоторые из них [50 , 60,61,62,63].

Уже опубликованные результаты исследований потенциального фармацевтического и медицинского применения дубильных веществ указывают на их положительное влияние на функциональность кишечника, а также на противораковую, противовоспалительную, противоаллергическую или противовирусную активность [43,50,51, 56,64,65,66,67,68,69]. Особые свойства дубильных веществ, которые делают возможным их необратимое связывание с белками, также делают их полезным оружием против микроорганизмов. Несколько исследований подтвердили их антибактериальную активность; существует также лекарство на основе танинов для лечения кишечных инфекций [50,69,70,71,72,73].Аналогичным образом сообщалось об эффективной активности дубильных веществ против различных видов патогенных грибов, то есть дерматофитов, плесени и дрожжей [74,75,76,77]. Отсюда и идея попробовать дубильные вещества в качестве противогрибковых консервантов для древесины. Поскольку большинство разрушающих древесину грибов используют внеклеточные ферменты для разложения компонентов древесины, присутствие дубильных веществ приводит к их неактивным комплексам с грибковыми ферментами, таким образом защищая древесину от биоразложения [78,79].

2.2.1. Танины в защите древесины

Противогрибковые свойства восьми различных фракций танинов, экстрагированных из коры и шишек ели европейской и шишек сосны обыкновенной, против восьми различных грибов бурой гнили, трех грибов белой гнили и четырех видов грибов мягкой гнили на солодовой агаризованной среде на Чашки Петри были изучены Anttila et al.[76]. Танины конуса были более эффективными в подавлении роста грибов, чем дубильные вещества коры. Однако экстракты танинов показали лучший ингибирующий эффект против коричневой гнили, чем виды белой или мягкой гнили, они рассматривались как потенциальные вещества для защиты древесины. Подобные эксперименты были выполнены Озгенч и др. [80] с использованием приморской ( Pinus pinaster L.), железа ( Casuarina equisetifolia L.), мимозы ( Acacia mollissima L.), сосны калабрийской ( Pinus brutia Ten.) и экстрактов коры деревьев пихты ( Abies nordmanniana ) против T. versicolor и C. puteana . Экстракты коры морской сосны и пихты показали лучшую устойчивость против T. versicolor , тогда как экстракты коры железа и мимозы были более эффективны против C. puteana . В результате исследования был сделан вывод о том, что наиболее важным фактором противогрибковой активности является концентрация экстракта. К сожалению, в этом исследовании не было указано, какие соединения экстрактов являются наиболее эффективными ингибиторами роста грибов.

Было проведено несколько исследований для оценки устойчивости различных древесных пород, обработанных дубильными веществами, к плесени и дереворазрушающим грибам.

Обильные дубильные вещества, водные экстракты листьев сицилийского сумаха и дуба валония и кора турецкой сосны были использованы Sen et al. [81] для обработки древесины сосны обыкновенной и бука. Затем образцы бука подвергали воздействию грибка белой гнили T. versicolor, , а образцы сосны обыкновенной — грибку коричневой гнили G. trabeum .Наиболее устойчивыми оказались образцы, обработанные экстрактами дуба валония. Однако противогрибковая эффективность применяемой обработки значительно снизилась после выщелачивания, что свидетельствует о плохой фиксации дубильных веществ в структуре древесины.

Tascioglu et al. [82] изучали противогрибковые свойства богатых танинами экстрактов коры мимозы ( Acacia mollissima ), квебрахо ( Schinopsis lorentzii ) и сосны ( Pinus brutia ), применяемых для пропитки древесины сосны обыкновенной, бука и тополя.Результаты микологических тестов против двух грибов белой гнили ( T. versicolor и Pleurotus ostreatus ) и двух грибов бурой гнили ( Fomitopsis palustris и G. trabeum ) выявили высокую противогрибковую эффективность экстрактов мимозы и квебрахо. особенно при нанесении на древесину сосны обыкновенной. Экстракты сосновой коры (даже в концентрации 12%) оказались малоэффективными. Результаты показали, что экстракты мимозы и квебрахо можно использовать в качестве экологически чистых консервантов для древесины, используемой в помещении.Ямагучи и Окуда [83] сообщили о повышении активности танина мимозы против T. palustris и C. versicolor после его химической модификации и удаления низкомолекулярных соединений диализом. Экстракты танинов из Acacia mearnsii были описаны Da Silveira et al. [84] в качестве эффективного консерванта древесины против грибка белой гнили P. sanguineus. В свою очередь, Mansour и Salem [85] продемонстрировали полное подавление роста T. harzianum (плесень) с помощью экстрактов коры Maclura pomifera , Callistemon viminalis и Dalbergia sissoo .

Танины валония, каштана, тары и сульфатного дуба использовали Томак и Гонултас [86] для пропитки древесины сосны обыкновенной. Была оценена их противогрибковая эффективность против коричневой гнили C. puteana и P. placenta и грибов белой гнили T. versicolor и P. ostreatus . Результаты показали, что дубильные вещества эффективно подавляли атаку коричневых грибов, но не были эффективны против белой гнили. Лучшая противогрибковая активность наблюдалась у дубильных веществ валония и каштана, предположительно из-за более высокого содержания эллагитаннинов.Однако выщелачивание значительно снизило эффективность применяемой обработки танином. Эллагитаннины были также указаны Харт и Хиллис [79] как соединения, ответственные за устойчивость сердцевины белого дуба к Poria monticola .

2.2.2. Танины в сочетании с другими веществами

Также были предприняты некоторые попытки применить дубильные вещества в сочетании с другими соединениями с доказанной противогрибковой активностью, такими как ионы бора или меди, для повышения их характеристик и усиления их фиксации в структуре древесины.

Ямагути и Окуда [83] использовали танин-медь-аммиачные комплексы мимозы для пропитки древесины Cryptomeria Japonica D. Don. В результате проведенной обработки повысилась устойчивость к вымыванию и грибковому распаду. Повышенная противогрибковая эффективность конденсированных танинсодержащих экстрактов коры сосны лоблоловой ( Pinus taeda ) в комплексе с ионами меди (II), нанесенных на образцы березы, против C. versicolor по сравнению с самими экстрактами коры была подтверждена Лаксом [78,87 ].Аналогичный эффект был получен Ramirez et al. [88] для Cocos nucifera танинно-медных комплексных растворов, нанесенных на образцы ольхи, а также для Bernardis и Popoff [89], которые сообщили о высокой устойчивости образцов древесины Pinus elliottii , обработанных экстрактом танина «quebracho colorado» в комплексе с раствором соли CCA. против белой гнили P. sanguineus и гриба бурой гнили Gloeophyllum sepiarium .

Исследование Thevenon et al. [90] показали повышенную эффективность систем консервантов на основе конденсированных танинов мимозы, гексамина и борной кислоты против очень агрессивного тропического гриба белой гнили P.sanguineus по сравнению с экстрактами танинов, применяемыми отдельно. Результаты показали пониженную выщелачиваемость бора, когда он образует комплекс в сети дубильных веществ и гексамина. Дальнейшие исследования подобных комплексных составов показали их высокую эффективность против C. versicolor и C. puteana при нанесении на буковую фанеру и древесину сосны обыкновенной, соответственно [91,92]. Они также указали, что повышенная устойчивость бора к выщелачиванию является результатом его ковалентной фиксации в танин-гексаминовой сети [91].

В свою очередь, Salem et al. [93] сообщили о высокой эффективности против плесени композиции экстрактов коры сахарного клена ( Acer saccharum ) с лимонной кислотой при нанесении на древесину Leucaena leucocephala . В качестве основных компонентов биологической активности были указаны п-гидроксибензойная кислота, галловая кислота и салициловая кислота.

Многокомпонентные консерванты для древесины на основе танинов, описанные выше, кажутся многообещающей альтернативой искусственным фунгицидам для наружного применения.

2.3. Экстрактивные вещества для древесины

Некоторые породы древесины обладают высокой естественной устойчивостью к гниению из-за присутствия различных экстрагируемых химических соединений, вместе называемых экстрактивными веществами. Экстрактивные вещества — это разнообразные неструктурные компоненты древесины, производимые деревьями в качестве защитных агентов от воздействия окружающей среды, и в основном они находятся в сердцевине древесины. Как правило, их можно разделить на две разные группы: алифатические и алициклические соединения (т.е. терпеноиды и терпены) и фенольные соединения (т.е.е., флавоноиды и дубильные вещества). Их противогрибковая эффективность, в зависимости от типа активной молекулы, может быть основана на различных механизмах, включая прямое взаимодействие с грибковыми ферментами, нарушение клеточных стенок и структуры клеточных мембран, приводящее к утечке содержимого клетки или нарушению ионного гомеостаза, или антиоксидантному действию. активность [11,94,95].

Естественно прочная древесина — ценный материал на рынке и экологически чистая альтернатива древесине, обработанной традиционными химикатами.Потенциально промышленные отходы от обработки прочных пород древесины могут служить источником природных, коммерчески жизнеспособных биоцидов, которые можно использовать для обработки менее прочной древесины. Поэтому во всем мире проводились обширные исследования экстрактивных веществ из древесины [96,97,98].

Тик ( Tectona grandis L.f) — одна из известных высокопрочных пород древесины. Однако его устойчивость к грибковому разложению значительно различается между деревьями из разных географических зон, плантаций или разных возрастов.Некоторые результаты исследований противогрибковых свойств древесины лиственных пород тика предполагают, что они могут быть результатом синергетического эффекта различных экстрактивных соединений, например антрахинины и тектохиноны [99,100,101], в то время как другие данные указывают на роль одного конкретного соединения, а не общего количества экстрактивных веществ в определении устойчивости древесины к гниению [102,103]. Haupt et al. [102], изучавшие устойчивость тикового дерева из Панамы к гниению, идентифицировали тектохинон как биоактивное соединение, подавляющее рост C.puteana . Исследования Туласидаса и Бхата [103] показали высокую устойчивость сердцевины тика из Кералы (Индия) к коричневой гнили ( Polypomus palustris и G. trabeum ) и белой гнили ( P. sanguineus , T. hirsuta и T. versicolor ), определяя нафтохинон как наиболее важное действующее вещество. Anda et al. [100] показали высокую естественную устойчивость тикового дерева из Мексики к белой ( P. chrysosporium ) и коричневой гнили ( G.trabeum ), тогда как его устойчивость к грибку белой гнили T. versicolor была умеренной. Они определили тектохинон, дезоксилапахол, изолапахол и дегидротектол как предполагаемые компоненты, ответственные за долговечность древесины. Микологические тесты, проведенные Kokutse et al. [99] показали, что древесина тикового дерева из Того была очень устойчива к P. sanguineus и G. trabeum , в то время как потеря массы древесины составляла <20% после воздействия Antrodia sp.и C. versicolor . Brocco et al. [98] показали эффективность этанольных экстрактов из отходов, полученных при механической обработке сердцевины тикового дерева из Бразилии, в защите обработанной заболони тика и сосны от грибов белой и бурой гнили. Противогрибковой активности против мягкой гнили не наблюдалось.

Киркер и др. [97] изучили естественную устойчивость нескольких пород древесины, полученных от различных производителей пиломатериалов в Северной Америке, к отобранным грибам коричневой и белой гнили.Их результаты показали высокую стойкость хвойных пород, таких как красный кедр восточный, можжевельник западный, красный кедр западный и желтый кедр Аляски, а также листопадная акация, медовый мескит и катальпа. Древесина южной сосны и павловнии оказалась менее устойчивой к гниению. Экстракты древесины павловнии не оказывали или оказывали незначительное ингибирующее действие на T. palustris и G. trabeum , а экстракты медового мескита не были эффективны против I. lacteus . Füchtner et al.[104] показали, что устойчивость недолговечной сердцевины ели европейской к грибку бурой гнили R. placenta является результатом присутствия фунгитоксической гидрофобной смолы, тогда как в случае умеренно прочной сердцевины курильской лиственницы устойчивость обусловлена ​​большим количество различных антиоксидантных флавоноидов.

Sablík et al. [96] сообщили об эффективности экстрактов сердцевины черной акации ( Robinia pseudoacacia L.) для повышения устойчивости к гниению недолговечного бука европейского ( Fagus sylvatica L.)) древесина от 5 класса (непрочная, потеря массы около 44%) до 3 класса (умеренно прочная, потеря массы около 13%). В то время как экстрактивные вещества из сердцевины Dicorynia guianensis Amsh из Французской Гайаны были показаны Anouhe et al. [105], чтобы иметь противогрибковую активность против P. sanguineus и T. versicolor в основном за счет присутствия алкалоидных соединений.

Экстракты из ксилемы Cinnamomum camphora (Ness et Eberm.), Китайской лиственной породы, были протестированы Li et al.[106] против двух грибов древесной гнили: G. trabeum и Coriolus (Trametes) versicolor . Наилучшие результаты были получены для экстрактов хлороформа и метанола, где эффективная доза для 50% ингибирования роста составляла 7,8 мг / мл экстракта хлороформа против C. versicolor и 0,3 мг / мл экстракта метанола против G. trabeum . Наиболее распространенными компонентами обоих экстрактов с доказанной противогрибковой активностью были камфора и α-терпинеол. C. camphora в таком случае можно рассматривать как источник природных противогрибковых консервантов для защиты древесины.

Также изучалась антиплесневая активность экстрактов сердцевины древесины. Маоз и др. [107] показали, что, однако, экстракты древесины кедра Аляски, можжевельника западного, кедра ладана и кедра Порт-Орфорд могут уменьшить рост плесени ( Paecilomyces , Trichoderma , Penicillium , Aspergillus , Graphium и Graphium ). Sporothrix видов) на заболони пихты дугласовой, они не способны полностью защитить древесину от грибков. Таким образом, только многокомпонентные экстракты могут рассматриваться как потенциальные альтернативы традиционным системам защиты древесины.Эффективность экстрактов древесины против плесени также изучали Мансур и Салем [85]. Они сообщили о полном подавлении роста T. harzianum древесными экстрактами Cupressus sempervirens L. и Morus alba L. -плесень биоцид. Результаты другого исследования Salem et al. [108] указали на хорошую устойчивость сосны обыкновенной ( P. sylvestris L.), сосны смоляной ( P.rigida Mill.) и европейского бука ( Fagus sylvatica L.), обработанные экстрактами сердцевины Pinus rigida против нескольких плесневых грибов ( Alternaria alternata , Fusarium subglutinans , Ch. globosum , A. globosum , niger и T. viride ). Однако примененный метанольный экстракт сердцевины древесины P. rigida не уменьшал полностью рост грибков. Его основные составляющие были идентифицированы как α-терпинеол, борнеол, терпин гидрат, D-фенхиловый спирт и лимоненгликоль.

Наиболее распространенными проблемами, связанными с экстрактами древесины, применяемыми для противогрибковой обработки древесины с низкой прочностью, являются их разнообразие и непостоянство в их биологической активности, а также проблемы с выщелачиванием древесины. Чтобы преодолеть последние, их фиксация на поверхности древесины с помощью ферментно-опосредованной реакции была предложена в качестве зеленой альтернативы традиционно используемым химическим веществам [109].

2.4. Другие экстракты растений

Помимо эфирных масел, дубильных веществ и экстрактов древесины, существует несколько других веществ растительного происхождения, полученных из разных частей растения с использованием различных методов, с доказанными противогрибковыми свойствами, которые потенциально могут быть применены для повышения устойчивости древесины к поражению грибами. .

Чай и кофе — одни из самых экономически ценных культур во всем мире. Их польза для здоровья была известна человеку на протяжении веков. Среди других биологически активных вторичных метаболитов, играющих важную роль в защите растений от патогенов, они содержат кофеин — алкалоид, который проявляет антиоксидантные, противомикробные, иммунологические, противораковые, а также противогрибковые свойства [110,111,112]. Экстракты чая и кофе были протестированы против древесных грибов, чтобы оценить их потенциальную эффективность в защите древесины.В целом, экстракты зеленого чая проявляли более сильное ингибирующее действие на отдельные грибы белой, коричневой и мягкой гнили, чем кофе, традиционный черный чай и коммерческие экстракты черного чая. Однако фильтрация удалила из экстрактов большую часть биологически активных соединений. Грибы белой гнили оказались наиболее чувствительными среди всех исследованных видов. Основной компонент экстрактов чая и кофе, кофеин, оказал сильное ингибирующее действие на большинство исследованных грибов [113]. Аналогичные результаты были получены при использовании экстрактов чая и кофеина против грибковых патогенов чайного растения, что подтверждает фунгицидную эффективность последних [114].Было показано, что механизм фунгистатической активности кофеина заключается в его повреждающем действии на клеточную стенку и клеточную мембрану грибов [112]. Другое исследование было сосредоточено на потенциальной противогрибковой эффективности кофейной шкурки, которая является отходом промышленного процесса обжарки кофе. Оказалось, что экстракты горячей воды кофейного серебра содержат хлорогеновую кислоту и производные кофеина, способные подавлять рост Rhodonia placenta , G. trabeum и T.разноцветный . Более того, их экотоксичность была значительно ниже по сравнению с коммерческими консервантами для древесины на основе меди, что делало их потенциальным сырьем для получения химических веществ, полезных для консервирования древесины [115]. Растворы чистого кофеина, нанесенные на образцы сосны обыкновенной, эффективно снижали восприимчивость древесины к плесени ( A. niger , A. terreus , Ch. Globosum , Cladosporium herbarum , Paecilomyces variotii , Penicillium , Penicillium , .funiculosum , T. viride ), грибы бурой гнили C. puteana и P. placenta и гриб белой гнили T. versicolor . Несмотря на перспективность защиты древесины от грибков, кофеин оказался легко вымываемым из древесины, что является его основным недостатком, препятствующим его применению для древесины, используемой на открытом воздухе [116]. Поэтому было предпринято несколько попыток стабилизировать кофеин внутри структуры древесины с использованием кремнийорганических соединений [117] или смеси силанов и прополиса [118].

Низкие концентрации экстрактов ядовитого Nerium Oleander L. показали Goktas et al. [119] как эффективные в защите образцов древесины бука восточного турецкого и сосны обыкновенной против грибов бурой и белой гнили P. placenta и T. versicolor соответственно. Об аналогичных свойствах сообщалось также у экстрактов другого ядовитого растения Gynadriris sisyrinchium (L.) Parl [120]. Кроме того, экстракты листьев лишайника ( Usnea filipendula ) и омелы ( Viscum album ), нанесенные на заболонь сосны обыкновенной, снижают восприимчивость древесины к поражению грибком C.puteana [121].

Компоненты пиролизного дистиллята были изучены Барберо-Лопесом [122] как потенциальный альтернативный ресурс для консервантов древесины. Дистилляты конопли, березы и ели в концентрации 1% подавляли рост C. puteana , R. placenta и G. trabeum . Пропионовая кислота была определена как наиболее эффективное противогрибковое соединение. В свою очередь, Sunarta et al. [123] сообщили о высокой противогрибковой эффективности биомасла, полученного в результате пиролиза скорлупы плодов пальмы, против грибка с синей окраской Ceratocystis spp.

Умеренные антиплесневые свойства 3% водных экстрактов Acacia saligna (Labill.) H. L. Wendl. о цветках сообщили Al-Huqail et al. [124] при нанесении на образцы древесины Melia azedarach , демонстрируя его потенциал для сохранения древесины. Среди основных активных соединений с доказанными противогрибковыми свойствами были бензойная кислота, кофеин, нарингенин и кверцетин. Экстракты плодов Withania somnifera значительно ограничивали рост мицелия A. alternata , Bipolaris oryzae , Colletotrichum capsici , C.lindemuthianum , Curvularia lunata , Fusarium culmorum , F. oxysporum , F. moniliforme , Macrophomina phaseolina , Rhizoctonia soltifungalina и Rhizoctonia soltifungalza , демонстрируя их потенциал защиты и Rhizoctonia solani , а также их потенциал защиты растений и Rhizoctonia solani , а также дерево [125,126,127]. Противогрибковую активность этих экстрактов приписывали однократному или синергетическому эффекту нескольких соединений, включая алкалоиды, флавоноиды, гликозиды, сапонины или дубильные вещества.Bi et al. [128] в свою очередь изучали устойчивость к гниению древесины тополя, обработанной этанольным экстрактом порошка коньяка ( Amorphophallus konjac K. Koch). Экстракты были более эффективны против коричневой гнили G. trabeum , чем против белой гнили T. versicolor . Салициловая кислота, ванилин, 2,4,6-трихлорфенол и коричный альдегид были определены как наиболее активные соединения.

Сообщалось также, что экстракты некоторых листьев обладают противогрибковой активностью против древесных грибов.Они могут быть экономически жизнеспособным потенциальным источником биологически чистых консервантов для древесины благодаря тому факту, что их можно легко получить непосредственно из деревьев или в качестве побочного продукта во время лесозаготовки. Маоз и др. [107] показали эффективность экстрактов листьев кедра Аляски, пихты Дугласа, западного красного кедра и листьев пихты тихоокеанской в ​​защите обработанной заболони пихты Дугласа от поражения плесенью видов Trichoderma и Graphium . Коллективные экстракты этанола из корней, стеблей и листьев Lantana camara , богатые алкалоидами, терпеноидами и фенолами, полностью подавляли рост белой гнили T.versicolor и бурая гниль Oligopous placentus [129]. Метанольные экстракты Magnolia grandiflora L., как показали Мансур и Салем [85], влияли на рост распространенного возбудителя древесной плесени Ta harzianum , тогда как экстракты листьев Robinia pseudoacacia эффективно подавляли рост разрушающих древесину грибов. T. versicolor [130].

3. Противогрибковые вещества животного происхождения

Некоторые соединения животного происхождения уже использовались для защиты древесины.Воски (пчелиный воск) применялись в основном для повышения водостойкости и защиты древесины от фотохимической деградации. Биополимеры, такие как желатин, зеин или другие белки, использовались в качестве компонентов защитных покрытий и клеев для древесины, повышая влагостойкость и стабильность размеров, а также предотвращая вымывание биоцидов из древесины [16,131,132,133,134,135]. Однако оказалось, что некоторые из них также обладают прямыми противогрибковыми свойствами и потенциально могут использоваться вместо традиционных фунгицидов.

3.1. Прополис

Прополис, также известный как пчелиный клей, представляет собой природное смолистое вещество, которое медоносные пчелы синтезируют из продуктов, собранных из почек деревьев и других растений, в смеси с их слюной, пчелиными ферментами, пчелиным воском и пыльцой. Восковая природа и хорошие механические свойства делают прополис идеальным изоляционным материалом, позволяющим поддерживать постоянную температуру и влажность внутри улья в течение всего года. Он используется для усиления структурной устойчивости и сглаживания внутренних стенок гнезда, а также для заделки небольших отверстий и трещин в улье или сотах.Прополис обеспечивает антибактериальную и противогрибковую защиту гнезда и служит для прикрытия трупов злоумышленников, которые попадают в улей и умирают внутри, и слишком велики для пчел, чтобы их можно было унести, чтобы избежать их гниения внутри. В целом, прополис используется для защиты ульев, поэтому его название происходит от греческого языка и происходит от слов «про», что означает «у входа» или «в обороне», и «полис», что означает «город» [ 136 137 138 139 140 141].

При температуре выше 20 ° C прополис представляет собой мягкое, податливое и липкое вещество.При охлаждении становится твердым и ломким. Его цвет обычно темно-коричневый, но он также может иметь черный, красный, желтый, зеленый или белый оттенки, в зависимости от ботанического источника [137, 142, 143, 144]. Как правило, это сложная смесь, содержащая 50% смол и бальзамов, 30% воска, 10% эфирных и ароматических масел, 5% пыльцы и 5% примесей [138, 140, 144]. Химический состав прополиса значительно различается между конкретными ульями, видами пчел, регионами и сезонами в основном из-за разнообразия видов растений, произрастающих вокруг и являющихся источником выделений, собираемых пчелами [137,138,140,141].К настоящему времени идентифицировано более трех сотен химических компонентов, в основном включая полифенолы (флавоноиды, фенольные кислоты и их сложные эфиры), терпеноиды, стероиды, аминокислоты, ароматические соединения, летучие масла и пчелиный воск [140, 141, 144].

С давних времен прополис применяли в самых разных целях. Некоторые цивилизации использовали его в традиционной медицине, например, для лечения простуды или заживления ран. Древние греки применяли его в качестве антисептика при кожных и буккальных инфекциях, а египтяне использовали его для бальзамирования мертвых тел [137,138].Благодаря антимикробной, антиоксидантной, противовирусной, противовоспалительной, противоопухолевой и иммуномодулирующей активности, обеспечиваемой в основном фенольными соединениями, он до сих пор используется в народной и дополнительной медицине как почти универсальное лекарство [137, 140, 145, 146].

В последнее время состав и свойства прополиса были тщательно изучены во всем мире, подтвердив его полезность в различных терапевтических целях, а также в качестве ингредиента в суперпродуктах и ​​биокосметике. Хотя стандартизация его химического состава остается сложной задачей, наличие множества молекул со многими полезными свойствами неоспоримо [137, 138, 139, 140, 147, 148].Антибактериальные свойства были приписаны кофейной кислоте, дитерпеновой кислоте, феруловой кислоте, p -кумариновой кислоте, галангину, лигнанам, пиноцембрину и шприцевому альдегиду. Противовирусная активность была приписана кофейной кислоте и ее производным, кемпферолу, p, -кумаровой кислоте и кверцетину. Противогрибковая активность показана для (+) — агатадиола, бензойной кислоты, кофейной кислоты и ее эфира, феруловой кислоты, p -кумаровой кислоты, бензилового эфира, эпи-13-торулозола, галангина, изокупрессиновой кислоты, пинобанксина, пиноцембрина, сакуранетина. и птеростильбен [141, 148, 149, 150, 151, 152, 153, 154, 155].

3.1.1. Прополис для защиты древесины

Хотя прополис использовался в течение тысячелетий для различных целей, его применение для обработки древесины малоизвестно. Единственное исключение — информация о скрипичных мастерах высшего класса, в том числе о Страдивари и мастерах из Кремоны в Италии. Они использовали изобретенный ими лак на основе прополиса для полировки своих инструментов с целью улучшения их акустических свойств или использовали его в смеси с другими ингредиентами в качестве красителя или финишного покрытия [149,156].В настоящее время прополис пробуют для отделки дерева индивидуально или в смеси с силанами. Результаты показывают, что, хотя его влияние на свойства древесины было посредственным, оно могло быть долгожданным дополнением к отделке древесины на основе натуральных ингредиентов [149,157,158]. Однако из-за доказанных противогрибковых свойств прополис также был задуман как потенциальный природный и экологически чистый консервант древесины против плесени и разрушающих древесину грибов [150, 159, 160, 161, 162].

3.1.2. Активность прополиса против плесени

Противогрибковая активность прополиса из Аргентины против нескольких фитопатогенных плесневых грибов, в том числе встречающихся в древесине, таких как A. niger , Trichoderma spp., Penicillium notatum или Fusarium sp. был оценен Quiroga et al. [150]. Они исследовали частично очищенный этанольный экстракт прополиса, а также два его флавоноидных компонента, выделенных с помощью ВЭЖХ — пиноцембрин и галангин. Их результаты ясно показывают, что как прополис, так и его изолированные компоненты были эффективны против тестируемых грибов и характеризовались низкой цитотоксичностью.Это означает, что прополис безопасен для окружающей среды и может применяться в качестве противогрибкового средства для защиты других натуральных продуктов, в том числе древесины, от плесени. Также была отмечена эффективность прополиса из США и Китая против P. notatum с такими основными компонентами, как пиноцембрин, пинобанксин-3- O -ацетат, галангин, хризин, пинобанксин и пинобанксин-метиловый эфир. подтверждено Xu et al. [163].

3.1.3. Активность прополиса против дереворазрушающих грибов

Экстракты прополиса со всего мира или их отдельные ингредиенты использовались для пропитки древесины различных пород с целью изучения их потенциала в защите древесины от дереворазрушающих грибов.

Woźniak et al. показали, что этанольные экстракты польского прополиса с концентрацией более 12% эффективно ограничивают гниение древесины сосны обыкновенной C. puteana [161]. Чем выше было содержание прополиса в растворе, тем лучше был достигнут противогрибковый эффект, достигая потери массы древесины 5,9%, 3,3%, 2,3% и 2,7% для концентрации прополиса 7,5%, 12%, 18,9% и 30%. соответственно. Более того, в польских экстрактах прополиса были выявлены высокие концентрации трех флавоноидов, известных своей противогрибковой активностью: пиноцембрина, галангина и хризина (около 47, 29 и 23 мг / г соответственно).

Древесина сосны обыкновенной и павловнии, обработанные 7% метанольным экстрактом турецкого прополиса, были более устойчивы к Neolentinus lepideus (коричневая гниль) и T. versicolor (белая гниль) по сравнению с необработанными образцами. Для сосны обыкновенной потеря массы составила 29,7% и 2,5% для необработанной и обработанной древесины, подвергшейся воздействию N. lepideus , и 28,4% и 4,2% для необработанной и обработанной древесины, подвергшейся воздействию T. versicolor , соответственно. Однако в случае древесины павловнии с низкой прочностью результаты были не такими хорошими, с потерей массы 39.2% для необработанной и 12,3% для обработанной древесины, подвергшейся воздействию T. versicolor , и 47,2% для необработанных и 11,6% для обработанных образцов, подвергшихся воздействию N. lepideus [159].

Budija et al. [158] продемонстрировали, что этанольный экстракт прополиса 29% из Восточной Словении эффективно защищает древесину ели европейской от грибов бурой гнили Antrodia vaillantii и G. trabeum и грибка белой гнили T. versicolor , в результате чего потеря массы древесины 5.3%, 7,2% и 4,6% соответственно. Кроме того, древесина тополя, обработанная раствором прополиса 40 мг / мл, была более устойчивой к T. versicolor , чем необработанная древесина (потеря массы около 11% против 20%, соответственно, после восьми недель воздействия) [162]. Однако в этом случае наблюдалось постепенное уменьшение противогрибкового действия прополиса с течением времени при воздействии грибов. Это может быть результатом биоразлагаемости определенных ингредиентов прополиса или низкого удерживания раствора прополиса в древесине, что является широко распространенным недостатком природных биоцидов.

Этаноловый экстракт прополиса из Аргентины, а также его изолированные соединения пиноцембрин и галангин, как было доказано, эффективно ингибируют радиальный рост гифа грибов белой гнили P. sanguineus и S. commune и несколько менее эффективны против Ganoderma applanatum и Lenzites elegans , демонстрируя их потенциал в защите древесины от гниения [150].

Jones et al. [40] обрабатывали образцы различных пород древесины метанолом или водными содовыми растворами прополиса, имеющимися в продаже в магазинах здоровья в Великобритании.Они подвергли их воздействию древесных грибов C. puteana и P. placenta . Их результаты доказали превосходную устойчивость обработанной древесины к C. puteana и несколько более низкую защиту от P. placenta. Однако защитный эффект был более выражен для сосны обыкновенной, ясеня и лиственницы, чем для древесины красного кедра западного или ели ситкинской. К сожалению, эксперименты также показали высокую чувствительность прополисовой обработки к выщелачиванию, поэтому ее нельзя применять на открытом воздухе без дополнительной фиксации в древесине.

3.1.4. Прополис в сочетании с полимерами

Обнаруженные недостатки экстрактов прополиса, применяемых в качестве консервантов для древесины, такие как вымываемость древесины и постепенное снижение противогрибковой активности с течением времени [40,162], побудили исследователей искать стабилизаторы, которые бы повысили эффективность прополиса. При консервации древесины применение некоторых полимеров, таких как протеины или кремнийорганические соединения, оказалось эффективным для удержания фунгицидов в древесине [14]. Аналогичный подход был успешно применен для прополиса.Возняк и др. показали, что смесь экстракта прополиса с кремнийорганическими соединениями метилтриметоксисиланом и винилтриметоксисиланом была более эффективной в защите древесины сосны обыкновенной против C. puteana , чем экстракт прополиса, использованный отдельно. Вместо этого Ратайчак и др. доказали, что древесина сосны обыкновенной, обработанная составом на основе прополиса, кофеина, метилтриметоксисилана и октилтриэтоксисилана, устойчива к C. puteana даже после процедуры ускоренного старения, включающей выщелачивание [118].

Представленные здесь результаты показывают потенциал прополиса в защите древесины от грибков. Однако из-за проблем, таких как высокая изменчивость состава прополиса и проблемы с его устойчивостью при нанесении на древесину, его раннее внедрение на рынок в качестве готового к использованию продукта кажется невозможным без улучшения его характеристик. Тогда необходимы дальнейшие исследования,

3.2. Хитин и хитозан

Хитин — это природный белый твердый неэластичный мукополисахарид, состоящий из 2-ацетамидо-2-дезокси-β-d-глюкоз, связанных β (1 → 4) связями.Распространенный в природе, он является основным компонентом экзоскелетов членистоногих, включая морских ракообразных, таких как креветки и крабы, клеточные стенки грибов, колючки диатомовых водорослей или чешую рыб. Он структурно сравним с целлюлозой, с такой же низкой растворимостью и низкой химической реакционной способностью [164,165,166]. Хитозан представляет собой N -деацетилированное производное хитина. Его производство экономически целесообразно, поскольку его основным источником является панцирь ракообразных, полученный как отходы пищевой промышленности. Возобновляемые, биоразлагаемые, биосовместимые и нетоксичные хитин и хитозан в последнее время привлекли особое внимание как потенциальный природный полисахаридный ресурс, полезный для производства многих продуктов с добавленной стоимостью.Благодаря своим противораковым, антиоксидантным, антикоагулянтным и противомикробным свойствам они используются для производства носителей лекарств, искусственной кожи и костей, перевязочных материалов, контактных линз, твердотельных батарей. Они также используются в качестве хелатирующих агентов для очистки сточных вод и в качестве добавок для пищевых продуктов, косметики и производства бумаги [164,165,166,167,168,169].

Хитозан обладает фунгицидной и фунгистатической активностью [164,170,171]. Однако его большое разнообразие с точки зрения химической структуры затрудняет точное определение его антимикробных свойств.Наиболее важными факторами, играющими роль в биоцидном действии, являются молекулярная масса, степень деацетилирования и полимеризации хитозана, а также тип микроорганизма [168, 170, 172]. Было доказано, что хитозан взаимодействует с клеточной стенкой грибов и изменяет ее структуру, и уже были обнаружены два типа механизмов, лежащих в основе антимикробной активности хитозана [14, 173, 174]. Один из них включает проницаемость плазматических мембран бактерий или грибов за счет электростатических взаимодействий между аминогруппами в цепи хитозана и молекулами на поверхности клетки, что приводит к утечке внутриклеточного материала и гибели клетки [171, 172, 174, 175, 176, 177].Второй относится к изменениям в экспрессии генов за счет взаимодействий между хитозаном и нуклеиновыми кислотами [171, 178, 179, 180].

Противогрибковые свойства хитина и хитозана успешно используются не только в пищевой и косметической промышленности, но также имеют высокий потенциал в сельском хозяйстве, поскольку они полезны для защиты растений от грибковых патогенов и продления срока годности фруктов [166, 181, 182, 183, 184]. ]. Отсюда возникла идея применить это вещество для защиты другого природного материала — дерева — от плесени и гниения.

Хитозан в защите древесины

Было предпринято много попыток оценить эффективность хитозана в защите древесины от грибков. Эксперименты, проведенные на чашках с агаром, показали, что скорость роста грибов снижалась с увеличением концентрации хитозана и молекулярной массы, при этом не наблюдалось явной разницы между плесневыми грибами, грибами белой и коричневой гнили [185, 186, 187, 188, 189]. Как правило, 1% раствор хитозана полностью подавлял рост грибков [188,190].

Применение хитозана в деревянных брусках выявило его потенциал как противогрибкового агента.Кобаяши и др. показали, что древесина Суги, обработанная хитозаном (поглощение 11,6 кг · м -3 ), была более устойчивой к грибам коричневой гнили T. palustris и белой гнили T. versicolor (потеря массы 15,9% и 4,9% соответственно. ), чем необработанная древесина (потеря массы 34,8% и 19,7%) [191]. Также древесина Fagus crenata , Pinus densiflora и Cryptomeria japonica , обработанная хитозаном, оказалась более устойчивой к почвенным микроорганизмам и грибкам гниения ( C.versicolor , T. palustris , S. lacrymans ) по сравнению с необработанной древесиной [192].

Schmidt et al. сообщили о повышенной устойчивости древесины сосны обыкновенной, обработанной раствором хитозана с поглощением 5,6–6,8 кг × м –3 , к коричневой гнили C. puteana и G. trabeum со средней потерей массы 1,6–3,2% и 3,7–6,0% по сравнению с 18,2% и 35,6% для необработанного контроля соответственно [193]. Eikenes et al. получили аналогичные результаты для мини-блоков из сосны обыкновенной, обработанных 4.8% ( w / v ) раствор высокомолекулярного хитозана, подвергнутый воздействию C. puteana и P. placenta . Сообщенная потеря массы составила 1,6% и 0,1% для обработанной древесины по сравнению с 60% и 35% для необработанных образцов, соответственно [188]. Однако некоторое вымывание хитозана наблюдалось после ускоренного выщелачивания обработанных образцов в воде. Он был тем более выраженным, чем ниже была молекулярная масса хитозана. Тем не менее 5% раствор хитозана оказался эффективным против грибков гниения, несмотря на выщелачивание [188].Альфредсен и др. и Gorgij et al. подтвердили более высокую эффективность хитозана с высокой молекулярной массой против плесени и синевы по сравнению с хитозаном с низким молекулярным весом [190,194].

В свою очередь, Larnøy et al. сообщили о противогрибковой эффективности 5% раствора низкомолекулярного хитозана, используемого для обработки сосны обыкновенной и бука [195]. Средняя потеря массы обработанной сосны обыкновенной, подвергшейся воздействию C. puteana и P. placenta , составила 4,9% и 1,6% по сравнению с 37,7% и 42,7% для необработанных образцов, соответственно.Потеря массы обработанной древесины бука, подвергшейся воздействию T. versicolor , составила 2,8% по сравнению с 30,2% для необработанной древесины после восьми недель испытания на ускоренное разложение.

Результаты применения хитозана на исторических образцах древесины, проведенные El-Gamal et al. продемонстрировали эффективность обработки против плесени и подтвердили, что она может быть рекомендована для защиты археологических деревянных предметов [196].

Хитозан может образовывать мембрану внутри структуры древесины, которая не только действует как барьер против влаги и воздуха, но также может удерживать другие частицы и предотвращать их вымывание из древесины [195,197].Поэтому была предпринята попытка применять его в сочетании с металлами с противогрибковыми свойствами или фунгицидами. Он успешно использовался с консервантами на основе меди, цинка, серебра, хромированного арсената меди или тебуконазолом, обеспечивая эффективную защиту древесины от плесени и гниения [191,198,199,200].

4. Выводы

Как видно, природные соединения обладают огромным потенциалом в защите древесины, поскольку они обладают широким спектром антимикробной активности. Они являются возобновляемыми, легкодоступными или экономически выгодными из отходов, нетоксичны или обладают гораздо меньшей экологической токсичностью, чем традиционные химические биоциды, и экологически безопасны.Однако у них также есть некоторые ограничения, в том числе высокая неоднородность в зависимости от источника, из которого они получены (например, прополис, эфирные масла, экстрактивные вещества древесины), отсутствие надлежащего удерживания внутри пропитанной древесной ткани, легкая выщелачиваемость, избирательная или неравномерная активность против отдельные виды грибов, высокая подверженность биоразложению. Некоторые из этих проблемных вопросов кажутся решаемыми путем комбинирования органических биоцидов с:

  • различными биологическими соединениями, способными разрушать мембраны ямок, тем самым увеличивая их проницаемость в древесные ткани;

  • различные природные полимеры и сшивающие агенты для фиксации природных соединений внутри структуры древесины и предотвращения их выщелачивания;

  • другие вещества, такие как антиоксиданты, агенты биологической борьбы или хелаторы для повышения их антимикробной активности и стойкости.

Вывод на рынок природных биоцидов дополнительно затруднен из-за некоторых несоответствий между лабораторными испытаниями и отчетными полевыми показателями, а также из-за проблем, связанных с законодательством, из-за необходимости соблюдения требований различных директив (касающихся строительных материалов и применения биоцидов). ) и отсутствие стандартов, определяющих качество, состав, характеристики и применение конкретных защитных составов на натуральной основе. Следовательно, необходимы дальнейшие исследования в этой области.

Поскольку решение всех проблем, с которыми сталкивается разработка природных консервантов, специально ориентированных на защиту древесины и изделий из древесины, может оказаться слишком дорогостоящим, чтобы быть прибыльным, объединение усилий с другими отраслями промышленности, заинтересованными в использовании конкретные природные активные соединения (например, для защиты растений, борьбы с вредителями, пищевых продуктов и фармацевтики) могут оказаться хорошим решением.

В настоящее время, когда продление срока службы изделий из дерева представляет большой интерес и важность, разработка натуральных консервантов нового поколения с минимальным воздействием в конце срока службы обработанной древесины является императивом с точки зрения здоровья человека и защиты окружающей среды.Хотя представленный обзор не исчерпывает тему, поскольку существуют сотни научных данных о противогрибковой активности природных веществ, он дает исчерпывающее представление о текущем состоянии исследований в этой области и показывает перспективы развития экологически безопасных альтернативных древесных материалов. защита на основе натуральных составов.

Природные составы для защиты древесины от грибков — обзор

Abstract

Древесина — это возобновляемый, универсальный материал, имеющий множество применений и самый большой на Земле запас секвестрированного углерода.Однако он подвержен разложению, в основном вызываемым древесными грибами. Поскольку некоторые традиционные консерванты для древесины были запрещены из-за их пагубного воздействия на человека и окружающую среду, продление срока службы изделий из древесины с использованием натуральных консервантов нового поколения является императивом с точки зрения здоровья человека и защиты окружающей среды. Некоторые природные соединения растительного и животного происхождения были протестированы на их фунгицидные свойства, включая эфирные масла, дубильные вещества, экстрактивные вещества древесины, алкалоиды, прополис или хитозан; и был продемонстрирован их огромный потенциал в защите древесины.Хотя они не лишены ограничений, потенциальные методы преодоления их недостатков и повышения их биологической активности уже существуют, такие как совместная пропитка различными полимерами, сшивающими агентами, хелаторами металлов или антиоксидантами. Однако наличие расхождений между лабораторными тестами и результатами полевых испытаний, а также проблемы, связанные с законодательством, возникающие из-за отсутствия стандартов, определяющих качество и эффективность натуральных защитных составов, создают острую необходимость в дальнейших тщательных исследованиях и мероприятиях.Сотрудничество с другими отраслями промышленности, заинтересованными в использовании природных активных соединений, снизит связанные с этим расходы, таким образом, будет способствовать успешному внедрению альтернативных противогрибковых агентов.

Ключевые слова: натуральные консерванты для древесины, противогрибковые свойства, эфирные масла, дубильные вещества, прополис, растительное масло, растительные экстракты

1. Введение

Древесина является широко используемым натуральным, возобновляемым и универсальным материалом с отличными характеристиками. человеком с незапамятных времен.Это также самый большой резервуар секвестрированного углерода в земной среде. Однако его химический состав и структура делают его склонным к биоразложению, а грибы являются основными разрушителями древесины [1,2].

Традиционно, что касается характера разложения, различают три группы древесно-гниющих грибов: бурая гниль, белая гниль и мягкая гниль (). Все они разрушают структурные полимеры ячеистой стенки дерева, что приводит к потере прочности древесины. Дерево также может подвергнуться воздействию плесени и синей морилки ().Хотя они не вызывают значительных структурных повреждений, они отрицательно влияют на эстетическую ценность древесины, поскольку их активность приводит к изменению цвета древесины [1,2].

Таблица 1

Основные типы грибов, которые могут колонизировать и разрушать древесину [1,2,3,4,5].

Тип грибов Вид и компоненты деградированной древесины Воздействие на древесину
Древесные грибы
бурая гниль (Basidiomycota) в основном хвойные породы; деградация гемицеллюлозы и целлюлозы, деметилирование лигнина усадка и растрескивание древесины на кусочки кубической формы, осталась коричневая окраска из-за присутствия лигнина, снижение механических свойств древесины
белая гниль (Basidiomycota) в основном древесина твердых пород, но также хвойные породы; деградация лигнина и гемицеллюлозы, а также целлюлозы древесный вид волокнистый и белый цвет древесины из-за наличия более светлых остатков целлюлозы, древесина становится мягкой, губчатой ​​или волокнистой, ее прочностные свойства снижаются по мере развития гниения
мягкая гниль (Ascomycota, грибки несовершенные) гемицеллюлоза и целлюлоза, реже лигнин образование полостей внутри клеточной стенки, изменение цвета и характер растрескивания, сходный с коричневой гнилью, ухудшение прочностных свойств древесины
Форма
плесень (Zygomycota или Ascomycetes) легкодоступные сахара, не структурные полимеры поверхностное изменение цвета древесины, незначительная деградация поверхности древесины
Синяя морилка
синяя окраска (Ascomycota и Deuteromycota) содержание белка в клетках паренхимы, легкодоступные сахара, не структурные полимеры изменение цвета заболони за счет темных гиф, разрушение мембран ямок, ведущее к повышенной водопроницаемости

Древесина становится восприимчивой к поражению грибами в определенных условиях окружающей среды, т.е.е. влажность более 20%, доступность кислорода и температура от 15 до 45 ° C. Грибковая порча поражает в основном наружные деревянные конструкции, снижая механические и эстетические свойства древесины и значительно ограничивая срок ее службы [5,6]. Для предотвращения этого был применен широкий спектр эффективных синтетических консервантов для древесины, включая агенты на основе меди (например, хромированный арсенат меди), триазолы (азаконазол, пропиконазол, тебуконазол), пентахлорфенол или фунгициды на основе бора [7,8,9] .Однако из-за проблем, связанных с окружающей средой и здоровьем, многие из них были запрещены к использованию, что привело к необходимости разработки альтернативных средств защиты древесины и методов, основанных на нетоксичных натуральных продуктах [9,10,11].

В настоящее время экологически безопасная защита древесины является объектом обширных исследований, охватывающих несколько различных подходов. Поскольку рост разрушающих древесину грибов зависит от наличия воды, одним из методов является контроль влажности с использованием природных гидрофобизаторов, таких как смолы и воски растительного или животного происхождения или растительные масла [12,13,14,15].Еще один способ продления срока службы древесины — использование природных соединений с биоцидными свойствами и их фиксация внутри структуры древесины [11,12,16]. Более инновационный метод включает использование агентов биологической борьбы, то есть таких микроорганизмов, как другие грибы и бактерии, которые действуют как антагонисты древесных грибов [12,17].

Целью обзора является представление информации о текущих исследованиях природных соединений с доказанной биоцидной активностью, которые могут быть потенциально полезными для защиты древесины от грибков.Он разделен на две основные части в зависимости от происхождения описываемых соединений (растение или животное), а затем на подразделы, касающиеся конкретного источника или типа вещества. В обзор включены как результаты исследований in vitro противогрибковой активности отдельных природных экстрактов или их отдельных компонентов в отношении древесных грибов, так и данные, полученные в результате микологических тестов с использованием древесины различных пород, обработанных натуральными защитными составами. Обсуждаются эффективность, преимущества и недостатки, а также проблемы, связанные с использованием натуральных продуктов для защиты древесины, показаны потенциальные перспективы их коммерческого применения.

2. Противогрибковые вещества растительного происхождения

Растения являются богатым источником различных химических соединений, включая алкалоиды, флавоны и флавоноиды, фенольные соединения, терпены, дубильные вещества или хиноны. Вырабатываемые как вторичные метаболиты, они могут составлять до 30% сухой массы растений, играя важную роль в их защите от патогенных микробов, травоядных животных и различных видов абиотического стресса. Из-за их специфических свойств, возникающих в результате присутствия определенных фитохимических веществ, многие растения с тех пор используются людьми в качестве лекарств или пищевых добавок.В настоящее время знание химической структуры и функций отдельных компонентов растений позволяет разрабатывать эффективные методы их извлечения из тканей растений и использовать их в коммерческих целях, например, в качестве ингредиентов фармацевтических препаратов, косметики, функциональных пищевых продуктов или красителей. Также существует большой интерес к их применению в качестве биопестицидов, инсектицидов и фунгицидов для защиты сельскохозяйственных культур и биоразлагаемых материалов [18,19,20,21].

Противогрибковые свойства различных растительных экстрактов делают их интересными еще и как потенциальный источник природных веществ, которые могут использоваться в качестве альтернативных консервантов древесины против гниения.Высокая доступность растительного материала в целом и перспективная возможность использования промышленных отходов от переработки различных культур могут повысить экономическую жизнеспособность всего процесса их получения, что позволит потенциально широко применять консерванты для растений в деревообрабатывающей промышленности.

2.1. Эфирные масла

Эфирные масла — это натуральные смеси летучих вторичных метаболитов различных растений, которые могут быть получены из растительного сырья путем дистилляции, механического прессования или экстракции с использованием различных растворителей.Они содержат множество химических соединений, которые отвечают за характерный аромат определенных растений, из которых они получены. Основными ингредиентами являются терпены, в том числе спирты, альдегиды, углеводороды, простые эфиры и кетоны, с доказанной биологической активностью, такие как антиоксидантное, антибактериальное и противогрибковое. Поэтому растения, содержащие эфирные масла, веками использовались в народной медицине и добавлялись в пищу как ароматизаторы и консерванты [22,23,24].

В настоящее время эфирные масла нашли применение в парфюмерии, ароматерапии, производстве продуктов питания и косметики.Их состав был тщательно изучен вместе с их потенциальной терапевтической активностью, включая противовоспалительную, противомикробную, противовирусную, противораковую, антидиабетическую или антиоксидантную [23,24,25]. Наблюдаемый растущий интерес к биологически чистым, нетоксичным натуральным веществам с антимикробными свойствами делает эфирные масла потенциально полезными в качестве консервантов для широкого спектра продуктов [26,27,28]. Из-за доказанных противогрибковых свойств против плесени и древесных грибов, были также предприняты некоторые попытки применить эфирные масла из обычных растений, трав и специй в качестве защитных средств для древесины [29,30,31,32,33,34,35] .

Эфирные масла в защите древесины

Было проведено несколько тестов in vitro против различных видов грибов с использованием различных эфирных масел, чтобы найти наиболее эффективные. Voda et al. [29] сообщили о высокой противогрибковой эффективности масел аниса, базилика, тмина, орегано и тимьяна против грибка бурой гнили Coniophora puteana и гриба белой гнили Trametes versicolor с использованием метода разбавления агара. Они показали, что наиболее эффективными соединениями, подавляющими рост обоих грибов, были тимол, карвакрол, транс-анетол, метилхавикол и куминальдегид.Их дальнейшие исследования подтвердили существование взаимосвязи между молекулярной структурой кислородсодержащих соединений ароматических эфирных масел и их противогрибковой активностью против дереворазрушающих грибов [36]. Тесты in vitro, проведенные Читтенденом и Сингхом [37], продемонстрировали противогрибковую эффективность 0,5% -ных концентраций масел корицы и герани против грибов бурой гнили Oligoporus placenta , C. puteana и Antrodia xantha , сапстаиновых грибов Ophiostum , Ophiostoma piceae , Sphaeropsis sapinea и Leptographium procerum и плесневый гриб Trichoderma harzianum .Они также показали противогрибковые свойства масел аниса, орегано и лемы (смесь 50% новозеландской мануки и 50% австралийского чайного дерева) против некоторых из упомянутых выше грибов. Zhang et al. [35] сообщили об противогрибковой эффективности чистых монотерпенов, таких как β-цитронеллол, карвакрол, цитраль, эвгенол, гераниол и тимол, против грибов древесной белой гнили Trametes hirsuta , Schizophyllum commune и Pycnoporus sanguineus. Xie et al. [34] подтвердили противогрибковые свойства Origanum vulgare , Cymbopogon citratus , Thymus vulgaris , Pelargonium graveolens , Cinnamomum zeylanicum и эфирных масел грибов Eugenia T.hirsuta и Laetiporus sulphurous , указывая на карвакрол, цитрон, цитронеллол, коричный альдегид, эвгенол и тимол как на наиболее активные соединения. Было показано, что некоторые из распространенных соединений натуральных эфирных масел, а именно коричный альдегид, α-метил-коричный альдегид, (E) -2-метилкоричная кислота, эвгенол и изоэвгенол, эффективно подавляют рост грибка белой гнили Lenzites betulina и коричневый -гнильный гриб L. sulphurous [38]. В свою очередь, результаты, полученные Reinprecht et al.[39] показывают, что среди пяти различных эфирных масел (базилика, корицы, гвоздики, орегано и тимьяна) самая высокая противогрибковая активность против грибка бурой гнили Serpula lacrymans и грибка белой гнили T. versicolor была показана для базилика. масло (содержащее преимущественно линалоол), а наименьшее — для гвоздичного масла (содержащего в основном эвгенол).

Указанные выше результаты были подтверждены на образцах древесины, обработанных отобранными эфирными маслами. Pánek et al. [33] исследовали противогрибковую эффективность и стабильность древесины бука, обработанной 10% -ными растворами десяти различных эфирных масел (березы, гвоздики, лаванды, орегано, сладкого флага, чабера, шалфея, чайного дерева, тимьяна и смеси эвкалипта, лаванды и т. масла лимона, шалфея и тимьяна) против грибка бурой гнили C.puteana и гриб белой гнили T. versicolor . Они обнаружили, что после сложной процедуры ускоренного старения наиболее эффективными против C. puteana оказались масла гвоздики, орегано, сладкого флага и тимьяна, которые содержат фенольные соединения, такие как карвакол, эвгенол, тимол и триметиловый эфир цис-изоазарола (химическая структура избранные соединения эфирных масел представлены в). Потери массы древесины березы составили 0,9%, 0,66%, 0,57% и 0,87% соответственно. Масла гвоздики, сладкого флага и тимьяна также были наиболее эффективными против плесени ( Aspergillus niger и Penicillium brevicompactum ) при тестировании с фильтровальной бумагой.Эти масла могут быть потенциально полезны для защиты древесины в интерьере. Интересно, что ни одно из протестированных масел не было эффективным против T. versicolor , что может быть результатом специфического ферментативного аппарата грибов белой гнили, способного разлагать как лигнин, так и другие фенольные соединения. Эффективность масла тимьяна против C. puteana и A. niger была также подтверждена Jones et al. [40]. Кроме того, они показали противогрибковую активность масел базилика, тысячелистника и календулы против C.puteana и P. placenta соответственно; однако два последних масла были эффективны только при использовании в чистом виде. Chittenden и Singh [37] сообщили о высокой устойчивости древесины сосны лучистой, обработанной 3% эвгенолом, с потерей массы <1% при воздействии C. puteana , O. placenta и A. xantha . Однако они обнаружили, что эвгенол легко выщелачивается из древесины, что предполагает его непригодность для защиты древесины, используемой на открытом воздухе.Kartal et al. [32] обрабатывали древесину суги составом, содержащим масло кассии, с получением высокой устойчивости древесины против коричневой гнили Tyromyces palustris (потеря массы 0,7%) и белой гнили грибов C. versicolor (потеря массы 3,6%).

Химическая структура и примерные растительные источники выбранных противогрибковых соединений эфирных масел.

Ян и Клаузен изучили свойства семи эфирных масел, включая аджован, укроп, герани (египетскую), лимонную траву, розмарин, чайное дерево и масло тимьяна, по подавлению плесени.Они обнаружили, что пары масла укропа и обработка окунанием образцов южной желтой сосны тимьяном или геранией эффективно защищали древесину от роста A. niger , Trichoderma viride и Penicillium chysogenum в течение как минимум 20 недель [ 41]. Результаты Bahmani et al. [31] подтвердили, что масла лаванды, лемонграсса и тимьяна, применяемые для пропитки древесины Fagus orientalis и Pinus tadea , могут обеспечить эффективную защиту от A.niger , Penicillium commune , C. puteana , T. versicolor и Chaetomium globosum . Салем и др. Продемонстрировали антиплесневую активность масел Pinus rigida и Eucalyptus camaldulensis , нанесенных на поверхность древесины Fagus sylvatica , P. rigida и P. sylvestris . [42] и аналогичные свойства гвоздичного масла, нанесенного на местную индийскую древесину, сообщили Hussain et al. [30].

Было доказано, что большое разнообразие эфирных масел, полученных из определенных местных растений со всего мира, обладает защитными свойствами против плесени и гниения древесины.Например, эфирное масло из листьев тайваньского коричного дерева Cinnamomum osmophloeum Kaneh., Содержащее коричный альдегид в качестве наиболее распространенного противогрибкового компонента, оказалось эффективным против различных грибов белой и коричневой гнили, включая Coriolus versicolor. и Laetiporus sulphureus [43]. Противогрибковые свойства коричного альдегида также подтвердили Kartal et al. [32] при применении для обработки древесины суги, эффективно повышая устойчивость древесины против коричневой гнили T.palustris (потеря массы 0,6%) и грибы белой гнили C. versicolor (потеря массы 3,8%). Хорошие результаты были также получены Читтенденом и Сингхом [37] для древесины сосны лучистой, обработанной 3% раствором коричного альдегида, где потеря массы составила <1% против C. puteana и A. xantha и около 3% против О. плацента .

Масла листьев и плодов другого тайваньского дерева, Juniperus formosana Hayata, были протестированы in vitro Su et al.[44] за их противогрибковые свойства против семи плесневых грибов ( Aspergillus clavatus , A. niger , Ch. Globosum , Cladosporium cladosporioides , Myrothecium virrucaria , T. , два гриба белой гнили ( T. versicolor , Phanerochaete chrysosporium ) и два гриба бурой гнили ( Phaeolus schweinitzii , Lenzites sulphureum ). Они сообщили о превосходной противогрибковой эффективности листового масла с α-кадинолом и элемолом в качестве наиболее активных соединений.Высокая противогрибковая активность против плесени и древесных грибов была также показана для тайваньского масла листьев Eucalyptus citriodora из-за присутствия цитронеллаля и цитронеллола в качестве основных активных компонентов [45].

Cheng et al. [46] сообщили о высокой противогрибковой активности эфирного масла, полученного из листьев флорина Calocedrus formosana . C. formosana — это эндемичный вид деревьев из Тайваня, отличающийся естественной устойчивостью к гниению. Самая сильная противогрибковая активность против L.betulina , Pycnoporus coccineus , T. versicolor и L. sulphurous были показаны для двух масляных соединений: α-кадинола и Т-мууролола.

Mohareb et al. [47] изучали противогрибковую активность эфирных масел восемнадцати различных египетских растений против дереворазрушающих грибов Hexagonia apiaria и Ganoderma lucidum . Наилучшая устойчивость была получена для заболони сосны обыкновенной, обработанной маслами Artemisia monosperma , Citrus limon , Cupressus sempervirens , Pelargonium graveolens , Schinus molle и Thuja occidentalis .В свою очередь, эффективность масла нима, содержащего азадирахтин в качестве основного противогрибкового соединения, против грибов S. commune , Fusarium oxysporum , Fusarium proliferatum , C. puteana и Alternaria alternate et al. al. [48]. Аналогичные результаты были получены Hussain et al. [30], которые показали устойчивость местной индийской древесины, обработанной маслом нима, к различным формам.

Здесь стоит упомянуть некоторые новые подходы, направленные на усиление противогрибковой активности эфирных масел как консервантов древесины.Один из них — использование комплексов эфирных масел с метил-β-циклодекстрином. Cai et al. [49] обрабатывали древесину южной сосны комплексами эвгенола, транс-коричного альдегида, тимола и карвакрола с метил-β-циклодекстрином и подвергали ее воздействию грибов бурой гнили Gloeophyllum trabeum и P. placenta . Результаты показали улучшенную стойкость к гниению древесины, обработанной определенными комплексами, даже после выщелачивания, по сравнению с контрольными образцами или образцами древесины, пропитанными эфирными маслами по отдельности.Таким образом, кажется, что использование определенных комплексов, содержащих природные соединения, такие как эфирные масла, имеет большой потенциал для увеличения срока службы изделий из дерева.

2.2. Танины

Танины — это природные соединения, вырабатываемые большинством высших растений для защиты их от патогенных бактерий, грибов и насекомых. Их можно найти практически во всех частях растения, от корней, древесины и коры до листьев и семян [50,51].

Разные по цвету танины представляют собой вяжущие, очень разнообразные полифенольные биомолекулы, разделенные на два класса: гидролизуемые танины (такие как галлотаннины и эллагитаннины) и конденсированные полифлавоноидные танины.Гидролизуемые дубильные вещества можно найти только в двудольных. Среди конденсированных танинов наиболее распространены процианидины в форме катехина и эпикатехина, затем танин продельфинидина в форме галлокатехина и эпигаллокатехина и танин пропеларгонидина в форме афзелехина и эпиафзелехина. Хвойные деревья считаются наиболее богатым источником танинов [19,50,52].

Специфическая химическая структура и результирующая реакционная способность позволяют танинам необратимо связываться с металлами и другими молекулами, включая белки, создавая прочные комплексы [19,50,52].Эти свойства делают их полезными для множества приложений. Например, они традиционно используются в производстве кожи и применяются в качестве добавок к пиву, вину и фруктовым сокам в качестве антиоксидантов и ароматизаторов [50,51,53,54,55,56]. Их можно использовать для очистки сточных вод, производства изоляционных и огнестойких пен, гидропонных пен для садоводства, термореактивных пластмасс, смол и гибких пластиковых пленок [50,57,58,59]. Они могут служить в качестве клея и отделки поверхностей для древесины и изделий из древесины, цементных суперпластификаторов, антикоррозионных покрытий для металла, высокотемпературной отделки поверхностей металлов и тефлона, упаковочных материалов, добавок для буровых растворов, и это лишь некоторые из них [50 , 60,61,62,63].

Уже опубликованные результаты исследований потенциального фармацевтического и медицинского применения дубильных веществ указывают на их положительное влияние на функциональность кишечника, а также на противораковую, противовоспалительную, противоаллергическую или противовирусную активность [43,50,51, 56,64,65,66,67,68,69]. Особые свойства дубильных веществ, которые делают возможным их необратимое связывание с белками, также делают их полезным оружием против микроорганизмов. Несколько исследований подтвердили их антибактериальную активность; существует также лекарство на основе танинов для лечения кишечных инфекций [50,69,70,71,72,73].Аналогичным образом сообщалось об эффективной активности дубильных веществ против различных видов патогенных грибов, то есть дерматофитов, плесени и дрожжей [74,75,76,77]. Отсюда и идея попробовать дубильные вещества в качестве противогрибковых консервантов для древесины. Поскольку большинство разрушающих древесину грибов используют внеклеточные ферменты для разложения компонентов древесины, присутствие дубильных веществ приводит к их неактивным комплексам с грибковыми ферментами, таким образом защищая древесину от биоразложения [78,79].

2.2.1. Танины в защите древесины

Противогрибковые свойства восьми различных фракций танинов, экстрагированных из коры и шишек ели европейской и шишек сосны обыкновенной, против восьми различных грибов бурой гнили, трех грибов белой гнили и четырех видов грибов мягкой гнили на солодовой агаризованной среде на Чашки Петри были изучены Anttila et al.[76]. Танины конуса были более эффективными в подавлении роста грибов, чем дубильные вещества коры. Однако экстракты танинов показали лучший ингибирующий эффект против коричневой гнили, чем виды белой или мягкой гнили, они рассматривались как потенциальные вещества для защиты древесины. Подобные эксперименты были выполнены Озгенч и др. [80] с использованием приморской ( Pinus pinaster L.), железа ( Casuarina equisetifolia L.), мимозы ( Acacia mollissima L.), сосны калабрийской ( Pinus brutia Ten.) и экстрактов коры деревьев пихты ( Abies nordmanniana ) против T. versicolor и C. puteana . Экстракты коры морской сосны и пихты показали лучшую устойчивость против T. versicolor , тогда как экстракты коры железа и мимозы были более эффективны против C. puteana . В результате исследования был сделан вывод о том, что наиболее важным фактором противогрибковой активности является концентрация экстракта. К сожалению, в этом исследовании не было указано, какие соединения экстрактов являются наиболее эффективными ингибиторами роста грибов.

Было проведено несколько исследований для оценки устойчивости различных древесных пород, обработанных дубильными веществами, к плесени и дереворазрушающим грибам.

Обильные дубильные вещества, водные экстракты листьев сицилийского сумаха и дуба валония и кора турецкой сосны были использованы Sen et al. [81] для обработки древесины сосны обыкновенной и бука. Затем образцы бука подвергали воздействию грибка белой гнили T. versicolor, , а образцы сосны обыкновенной — грибку коричневой гнили G. trabeum .Наиболее устойчивыми оказались образцы, обработанные экстрактами дуба валония. Однако противогрибковая эффективность применяемой обработки значительно снизилась после выщелачивания, что свидетельствует о плохой фиксации дубильных веществ в структуре древесины.

Tascioglu et al. [82] изучали противогрибковые свойства богатых танинами экстрактов коры мимозы ( Acacia mollissima ), квебрахо ( Schinopsis lorentzii ) и сосны ( Pinus brutia ), применяемых для пропитки древесины сосны обыкновенной, бука и тополя.Результаты микологических тестов против двух грибов белой гнили ( T. versicolor и Pleurotus ostreatus ) и двух грибов бурой гнили ( Fomitopsis palustris и G. trabeum ) выявили высокую противогрибковую эффективность экстрактов мимозы и квебрахо. особенно при нанесении на древесину сосны обыкновенной. Экстракты сосновой коры (даже в концентрации 12%) оказались малоэффективными. Результаты показали, что экстракты мимозы и квебрахо можно использовать в качестве экологически чистых консервантов для древесины, используемой в помещении.Ямагучи и Окуда [83] сообщили о повышении активности танина мимозы против T. palustris и C. versicolor после его химической модификации и удаления низкомолекулярных соединений диализом. Экстракты танинов из Acacia mearnsii были описаны Da Silveira et al. [84] в качестве эффективного консерванта древесины против грибка белой гнили P. sanguineus. В свою очередь, Mansour и Salem [85] продемонстрировали полное подавление роста T. harzianum (плесень) с помощью экстрактов коры Maclura pomifera , Callistemon viminalis и Dalbergia sissoo .

Танины валония, каштана, тары и сульфатного дуба использовали Томак и Гонултас [86] для пропитки древесины сосны обыкновенной. Была оценена их противогрибковая эффективность против коричневой гнили C. puteana и P. placenta и грибов белой гнили T. versicolor и P. ostreatus . Результаты показали, что дубильные вещества эффективно подавляли атаку коричневых грибов, но не были эффективны против белой гнили. Лучшая противогрибковая активность наблюдалась у дубильных веществ валония и каштана, предположительно из-за более высокого содержания эллагитаннинов.Однако выщелачивание значительно снизило эффективность применяемой обработки танином. Эллагитаннины были также указаны Харт и Хиллис [79] как соединения, ответственные за устойчивость сердцевины белого дуба к Poria monticola .

2.2.2. Танины в сочетании с другими веществами

Также были предприняты некоторые попытки применить дубильные вещества в сочетании с другими соединениями с доказанной противогрибковой активностью, такими как ионы бора или меди, для повышения их характеристик и усиления их фиксации в структуре древесины.

Ямагути и Окуда [83] использовали танин-медь-аммиачные комплексы мимозы для пропитки древесины Cryptomeria Japonica D. Don. В результате проведенной обработки повысилась устойчивость к вымыванию и грибковому распаду. Повышенная противогрибковая эффективность конденсированных танинсодержащих экстрактов коры сосны лоблоловой ( Pinus taeda ) в комплексе с ионами меди (II), нанесенных на образцы березы, против C. versicolor по сравнению с самими экстрактами коры была подтверждена Лаксом [78,87 ].Аналогичный эффект был получен Ramirez et al. [88] для Cocos nucifera танинно-медных комплексных растворов, нанесенных на образцы ольхи, а также для Bernardis и Popoff [89], которые сообщили о высокой устойчивости образцов древесины Pinus elliottii , обработанных экстрактом танина «quebracho colorado» в комплексе с раствором соли CCA. против белой гнили P. sanguineus и гриба бурой гнили Gloeophyllum sepiarium .

Исследование Thevenon et al. [90] показали повышенную эффективность систем консервантов на основе конденсированных танинов мимозы, гексамина и борной кислоты против очень агрессивного тропического гриба белой гнили P.sanguineus по сравнению с экстрактами танинов, применяемыми отдельно. Результаты показали пониженную выщелачиваемость бора, когда он образует комплекс в сети дубильных веществ и гексамина. Дальнейшие исследования подобных комплексных составов показали их высокую эффективность против C. versicolor и C. puteana при нанесении на буковую фанеру и древесину сосны обыкновенной, соответственно [91,92]. Они также указали, что повышенная устойчивость бора к выщелачиванию является результатом его ковалентной фиксации в танин-гексаминовой сети [91].

В свою очередь, Salem et al. [93] сообщили о высокой эффективности против плесени композиции экстрактов коры сахарного клена ( Acer saccharum ) с лимонной кислотой при нанесении на древесину Leucaena leucocephala . В качестве основных компонентов биологической активности были указаны п-гидроксибензойная кислота, галловая кислота и салициловая кислота.

Многокомпонентные консерванты для древесины на основе танинов, описанные выше, кажутся многообещающей альтернативой искусственным фунгицидам для наружного применения.

2.3. Экстрактивные вещества для древесины

Некоторые породы древесины обладают высокой естественной устойчивостью к гниению из-за присутствия различных экстрагируемых химических соединений, вместе называемых экстрактивными веществами. Экстрактивные вещества — это разнообразные неструктурные компоненты древесины, производимые деревьями в качестве защитных агентов от воздействия окружающей среды, и в основном они находятся в сердцевине древесины. Как правило, их можно разделить на две разные группы: алифатические и алициклические соединения (т.е. терпеноиды и терпены) и фенольные соединения (т.е.е., флавоноиды и дубильные вещества). Их противогрибковая эффективность, в зависимости от типа активной молекулы, может быть основана на различных механизмах, включая прямое взаимодействие с грибковыми ферментами, нарушение клеточных стенок и структуры клеточных мембран, приводящее к утечке содержимого клетки или нарушению ионного гомеостаза, или антиоксидантному действию. активность [11,94,95].

Естественно прочная древесина — ценный материал на рынке и экологически чистая альтернатива древесине, обработанной традиционными химикатами.Потенциально промышленные отходы от обработки прочных пород древесины могут служить источником природных, коммерчески жизнеспособных биоцидов, которые можно использовать для обработки менее прочной древесины. Поэтому во всем мире проводились обширные исследования экстрактивных веществ из древесины [96,97,98].

Тик ( Tectona grandis L.f) — одна из известных высокопрочных пород древесины. Однако его устойчивость к грибковому разложению значительно различается между деревьями из разных географических зон, плантаций или разных возрастов.Некоторые результаты исследований противогрибковых свойств древесины лиственных пород тика предполагают, что они могут быть результатом синергетического эффекта различных экстрактивных соединений, например антрахинины и тектохиноны [99,100,101], в то время как другие данные указывают на роль одного конкретного соединения, а не общего количества экстрактивных веществ в определении устойчивости древесины к гниению [102,103]. Haupt et al. [102], изучавшие устойчивость тикового дерева из Панамы к гниению, идентифицировали тектохинон как биоактивное соединение, подавляющее рост C.puteana . Исследования Туласидаса и Бхата [103] показали высокую устойчивость сердцевины тика из Кералы (Индия) к коричневой гнили ( Polypomus palustris и G. trabeum ) и белой гнили ( P. sanguineus , T. hirsuta и T. versicolor ), определяя нафтохинон как наиболее важное действующее вещество. Anda et al. [100] показали высокую естественную устойчивость тикового дерева из Мексики к белой ( P. chrysosporium ) и коричневой гнили ( G.trabeum ), тогда как его устойчивость к грибку белой гнили T. versicolor была умеренной. Они определили тектохинон, дезоксилапахол, изолапахол и дегидротектол как предполагаемые компоненты, ответственные за долговечность древесины. Микологические тесты, проведенные Kokutse et al. [99] показали, что древесина тикового дерева из Того была очень устойчива к P. sanguineus и G. trabeum , в то время как потеря массы древесины составляла <20% после воздействия Antrodia sp.и C. versicolor . Brocco et al. [98] показали эффективность этанольных экстрактов из отходов, полученных при механической обработке сердцевины тикового дерева из Бразилии, в защите обработанной заболони тика и сосны от грибов белой и бурой гнили. Противогрибковой активности против мягкой гнили не наблюдалось.

Киркер и др. [97] изучили естественную устойчивость нескольких пород древесины, полученных от различных производителей пиломатериалов в Северной Америке, к отобранным грибам коричневой и белой гнили.Их результаты показали высокую стойкость хвойных пород, таких как красный кедр восточный, можжевельник западный, красный кедр западный и желтый кедр Аляски, а также листопадная акация, медовый мескит и катальпа. Древесина южной сосны и павловнии оказалась менее устойчивой к гниению. Экстракты древесины павловнии не оказывали или оказывали незначительное ингибирующее действие на T. palustris и G. trabeum , а экстракты медового мескита не были эффективны против I. lacteus . Füchtner et al.[104] показали, что устойчивость недолговечной сердцевины ели европейской к грибку бурой гнили R. placenta является результатом присутствия фунгитоксической гидрофобной смолы, тогда как в случае умеренно прочной сердцевины курильской лиственницы устойчивость обусловлена ​​большим количество различных антиоксидантных флавоноидов.

Sablík et al. [96] сообщили об эффективности экстрактов сердцевины черной акации ( Robinia pseudoacacia L.) для повышения устойчивости к гниению недолговечного бука европейского ( Fagus sylvatica L.)) древесина от 5 класса (непрочная, потеря массы около 44%) до 3 класса (умеренно прочная, потеря массы около 13%). В то время как экстрактивные вещества из сердцевины Dicorynia guianensis Amsh из Французской Гайаны были показаны Anouhe et al. [105], чтобы иметь противогрибковую активность против P. sanguineus и T. versicolor в основном за счет присутствия алкалоидных соединений.

Экстракты из ксилемы Cinnamomum camphora (Ness et Eberm.), Китайской лиственной породы, были протестированы Li et al.[106] против двух грибов древесной гнили: G. trabeum и Coriolus (Trametes) versicolor . Наилучшие результаты были получены для экстрактов хлороформа и метанола, где эффективная доза для 50% ингибирования роста составляла 7,8 мг / мл экстракта хлороформа против C. versicolor и 0,3 мг / мл экстракта метанола против G. trabeum . Наиболее распространенными компонентами обоих экстрактов с доказанной противогрибковой активностью были камфора и α-терпинеол. C. camphora в таком случае можно рассматривать как источник природных противогрибковых консервантов для защиты древесины.

Также изучалась антиплесневая активность экстрактов сердцевины древесины. Маоз и др. [107] показали, что, однако, экстракты древесины кедра Аляски, можжевельника западного, кедра ладана и кедра Порт-Орфорд могут уменьшить рост плесени ( Paecilomyces , Trichoderma , Penicillium , Aspergillus , Graphium и Graphium ). Sporothrix видов) на заболони пихты дугласовой, они не способны полностью защитить древесину от грибков. Таким образом, только многокомпонентные экстракты могут рассматриваться как потенциальные альтернативы традиционным системам защиты древесины.Эффективность экстрактов древесины против плесени также изучали Мансур и Салем [85]. Они сообщили о полном подавлении роста T. harzianum древесными экстрактами Cupressus sempervirens L. и Morus alba L. -плесень биоцид. Результаты другого исследования Salem et al. [108] указали на хорошую устойчивость сосны обыкновенной ( P. sylvestris L.), сосны смоляной ( P.rigida Mill.) и европейского бука ( Fagus sylvatica L.), обработанные экстрактами сердцевины Pinus rigida против нескольких плесневых грибов ( Alternaria alternata , Fusarium subglutinans , Ch. globosum , A. globosum , niger и T. viride ). Однако примененный метанольный экстракт сердцевины древесины P. rigida не уменьшал полностью рост грибков. Его основные составляющие были идентифицированы как α-терпинеол, борнеол, терпин гидрат, D-фенхиловый спирт и лимоненгликоль.

Наиболее распространенными проблемами, связанными с экстрактами древесины, применяемыми для противогрибковой обработки древесины с низкой прочностью, являются их разнообразие и непостоянство в их биологической активности, а также проблемы с выщелачиванием древесины. Чтобы преодолеть последние, их фиксация на поверхности древесины с помощью ферментно-опосредованной реакции была предложена в качестве зеленой альтернативы традиционно используемым химическим веществам [109].

2.4. Другие экстракты растений

Помимо эфирных масел, дубильных веществ и экстрактов древесины, существует несколько других веществ растительного происхождения, полученных из разных частей растения с использованием различных методов, с доказанными противогрибковыми свойствами, которые потенциально могут быть применены для повышения устойчивости древесины к поражению грибами. .

Чай и кофе — одни из самых экономически ценных культур во всем мире. Их польза для здоровья была известна человеку на протяжении веков. Среди других биологически активных вторичных метаболитов, играющих важную роль в защите растений от патогенов, они содержат кофеин — алкалоид, который проявляет антиоксидантные, противомикробные, иммунологические, противораковые, а также противогрибковые свойства [110,111,112]. Экстракты чая и кофе были протестированы против древесных грибов, чтобы оценить их потенциальную эффективность в защите древесины.В целом, экстракты зеленого чая проявляли более сильное ингибирующее действие на отдельные грибы белой, коричневой и мягкой гнили, чем кофе, традиционный черный чай и коммерческие экстракты черного чая. Однако фильтрация удалила из экстрактов большую часть биологически активных соединений. Грибы белой гнили оказались наиболее чувствительными среди всех исследованных видов. Основной компонент экстрактов чая и кофе, кофеин, оказал сильное ингибирующее действие на большинство исследованных грибов [113]. Аналогичные результаты были получены при использовании экстрактов чая и кофеина против грибковых патогенов чайного растения, что подтверждает фунгицидную эффективность последних [114].Было показано, что механизм фунгистатической активности кофеина заключается в его повреждающем действии на клеточную стенку и клеточную мембрану грибов [112]. Другое исследование было сосредоточено на потенциальной противогрибковой эффективности кофейной шкурки, которая является отходом промышленного процесса обжарки кофе. Оказалось, что экстракты горячей воды кофейного серебра содержат хлорогеновую кислоту и производные кофеина, способные подавлять рост Rhodonia placenta , G. trabeum и T.разноцветный . Более того, их экотоксичность была значительно ниже по сравнению с коммерческими консервантами для древесины на основе меди, что делало их потенциальным сырьем для получения химических веществ, полезных для консервирования древесины [115]. Растворы чистого кофеина, нанесенные на образцы сосны обыкновенной, эффективно снижали восприимчивость древесины к плесени ( A. niger , A. terreus , Ch. Globosum , Cladosporium herbarum , Paecilomyces variotii , Penicillium , Penicillium , .funiculosum , T. viride ), грибы бурой гнили C. puteana и P. placenta и гриб белой гнили T. versicolor . Несмотря на перспективность защиты древесины от грибков, кофеин оказался легко вымываемым из древесины, что является его основным недостатком, препятствующим его применению для древесины, используемой на открытом воздухе [116]. Поэтому было предпринято несколько попыток стабилизировать кофеин внутри структуры древесины с использованием кремнийорганических соединений [117] или смеси силанов и прополиса [118].

Низкие концентрации экстрактов ядовитого Nerium Oleander L. показали Goktas et al. [119] как эффективные в защите образцов древесины бука восточного турецкого и сосны обыкновенной против грибов бурой и белой гнили P. placenta и T. versicolor соответственно. Об аналогичных свойствах сообщалось также у экстрактов другого ядовитого растения Gynadriris sisyrinchium (L.) Parl [120]. Кроме того, экстракты листьев лишайника ( Usnea filipendula ) и омелы ( Viscum album ), нанесенные на заболонь сосны обыкновенной, снижают восприимчивость древесины к поражению грибком C.puteana [121].

Компоненты пиролизного дистиллята были изучены Барберо-Лопесом [122] как потенциальный альтернативный ресурс для консервантов древесины. Дистилляты конопли, березы и ели в концентрации 1% подавляли рост C. puteana , R. placenta и G. trabeum . Пропионовая кислота была определена как наиболее эффективное противогрибковое соединение. В свою очередь, Sunarta et al. [123] сообщили о высокой противогрибковой эффективности биомасла, полученного в результате пиролиза скорлупы плодов пальмы, против грибка с синей окраской Ceratocystis spp.

Умеренные антиплесневые свойства 3% водных экстрактов Acacia saligna (Labill.) H. L. Wendl. о цветках сообщили Al-Huqail et al. [124] при нанесении на образцы древесины Melia azedarach , демонстрируя его потенциал для сохранения древесины. Среди основных активных соединений с доказанными противогрибковыми свойствами были бензойная кислота, кофеин, нарингенин и кверцетин. Экстракты плодов Withania somnifera значительно ограничивали рост мицелия A. alternata , Bipolaris oryzae , Colletotrichum capsici , C.lindemuthianum , Curvularia lunata , Fusarium culmorum , F. oxysporum , F. moniliforme , Macrophomina phaseolina , Rhizoctonia soltifungalina и Rhizoctonia soltifungalza , демонстрируя их потенциал защиты и Rhizoctonia solani , а также их потенциал защиты растений и Rhizoctonia solani , а также дерево [125,126,127]. Противогрибковую активность этих экстрактов приписывали однократному или синергетическому эффекту нескольких соединений, включая алкалоиды, флавоноиды, гликозиды, сапонины или дубильные вещества.Bi et al. [128] в свою очередь изучали устойчивость к гниению древесины тополя, обработанной этанольным экстрактом порошка коньяка ( Amorphophallus konjac K. Koch). Экстракты были более эффективны против коричневой гнили G. trabeum , чем против белой гнили T. versicolor . Салициловая кислота, ванилин, 2,4,6-трихлорфенол и коричный альдегид были определены как наиболее активные соединения.

Сообщалось также, что экстракты некоторых листьев обладают противогрибковой активностью против древесных грибов.Они могут быть экономически жизнеспособным потенциальным источником биологически чистых консервантов для древесины благодаря тому факту, что их можно легко получить непосредственно из деревьев или в качестве побочного продукта во время лесозаготовки. Маоз и др. [107] показали эффективность экстрактов листьев кедра Аляски, пихты Дугласа, западного красного кедра и листьев пихты тихоокеанской в ​​защите обработанной заболони пихты Дугласа от поражения плесенью видов Trichoderma и Graphium . Коллективные экстракты этанола из корней, стеблей и листьев Lantana camara , богатые алкалоидами, терпеноидами и фенолами, полностью подавляли рост белой гнили T.versicolor и бурая гниль Oligopous placentus [129]. Метанольные экстракты Magnolia grandiflora L., как показали Мансур и Салем [85], влияли на рост распространенного возбудителя древесной плесени Ta harzianum , тогда как экстракты листьев Robinia pseudoacacia эффективно подавляли рост разрушающих древесину грибов. T. versicolor [130].

3. Противогрибковые вещества животного происхождения

Некоторые соединения животного происхождения уже использовались для защиты древесины.Воски (пчелиный воск) применялись в основном для повышения водостойкости и защиты древесины от фотохимической деградации. Биополимеры, такие как желатин, зеин или другие белки, использовались в качестве компонентов защитных покрытий и клеев для древесины, повышая влагостойкость и стабильность размеров, а также предотвращая вымывание биоцидов из древесины [16,131,132,133,134,135]. Однако оказалось, что некоторые из них также обладают прямыми противогрибковыми свойствами и потенциально могут использоваться вместо традиционных фунгицидов.

3.1. Прополис

Прополис, также известный как пчелиный клей, представляет собой природное смолистое вещество, которое медоносные пчелы синтезируют из продуктов, собранных из почек деревьев и других растений, в смеси с их слюной, пчелиными ферментами, пчелиным воском и пыльцой. Восковая природа и хорошие механические свойства делают прополис идеальным изоляционным материалом, позволяющим поддерживать постоянную температуру и влажность внутри улья в течение всего года. Он используется для усиления структурной устойчивости и сглаживания внутренних стенок гнезда, а также для заделки небольших отверстий и трещин в улье или сотах.Прополис обеспечивает антибактериальную и противогрибковую защиту гнезда и служит для прикрытия трупов злоумышленников, которые попадают в улей и умирают внутри, и слишком велики для пчел, чтобы их можно было унести, чтобы избежать их гниения внутри. В целом, прополис используется для защиты ульев, поэтому его название происходит от греческого языка и происходит от слов «про», что означает «у входа» или «в обороне», и «полис», что означает «город» [ 136 137 138 139 140 141].

При температуре выше 20 ° C прополис представляет собой мягкое, податливое и липкое вещество.При охлаждении становится твердым и ломким. Его цвет обычно темно-коричневый, но он также может иметь черный, красный, желтый, зеленый или белый оттенки, в зависимости от ботанического источника [137, 142, 143, 144]. Как правило, это сложная смесь, содержащая 50% смол и бальзамов, 30% воска, 10% эфирных и ароматических масел, 5% пыльцы и 5% примесей [138, 140, 144]. Химический состав прополиса значительно различается между конкретными ульями, видами пчел, регионами и сезонами в основном из-за разнообразия видов растений, произрастающих вокруг и являющихся источником выделений, собираемых пчелами [137,138,140,141].К настоящему времени идентифицировано более трех сотен химических компонентов, в основном включая полифенолы (флавоноиды, фенольные кислоты и их сложные эфиры), терпеноиды, стероиды, аминокислоты, ароматические соединения, летучие масла и пчелиный воск [140, 141, 144].

С давних времен прополис применяли в самых разных целях. Некоторые цивилизации использовали его в традиционной медицине, например, для лечения простуды или заживления ран. Древние греки применяли его в качестве антисептика при кожных и буккальных инфекциях, а египтяне использовали его для бальзамирования мертвых тел [137,138].Благодаря антимикробной, антиоксидантной, противовирусной, противовоспалительной, противоопухолевой и иммуномодулирующей активности, обеспечиваемой в основном фенольными соединениями, он до сих пор используется в народной и дополнительной медицине как почти универсальное лекарство [137, 140, 145, 146].

В последнее время состав и свойства прополиса были тщательно изучены во всем мире, подтвердив его полезность в различных терапевтических целях, а также в качестве ингредиента в суперпродуктах и ​​биокосметике. Хотя стандартизация его химического состава остается сложной задачей, наличие множества молекул со многими полезными свойствами неоспоримо [137, 138, 139, 140, 147, 148].Антибактериальные свойства были приписаны кофейной кислоте, дитерпеновой кислоте, феруловой кислоте, p -кумариновой кислоте, галангину, лигнанам, пиноцембрину и шприцевому альдегиду. Противовирусная активность была приписана кофейной кислоте и ее производным, кемпферолу, p, -кумаровой кислоте и кверцетину. Противогрибковая активность показана для (+) — агатадиола, бензойной кислоты, кофейной кислоты и ее эфира, феруловой кислоты, p -кумаровой кислоты, бензилового эфира, эпи-13-торулозола, галангина, изокупрессиновой кислоты, пинобанксина, пиноцембрина, сакуранетина. и птеростильбен [141, 148, 149, 150, 151, 152, 153, 154, 155].

3.1.1. Прополис для защиты древесины

Хотя прополис использовался в течение тысячелетий для различных целей, его применение для обработки древесины малоизвестно. Единственное исключение — информация о скрипичных мастерах высшего класса, в том числе о Страдивари и мастерах из Кремоны в Италии. Они использовали изобретенный ими лак на основе прополиса для полировки своих инструментов с целью улучшения их акустических свойств или использовали его в смеси с другими ингредиентами в качестве красителя или финишного покрытия [149,156].В настоящее время прополис пробуют для отделки дерева индивидуально или в смеси с силанами. Результаты показывают, что, хотя его влияние на свойства древесины было посредственным, оно могло быть долгожданным дополнением к отделке древесины на основе натуральных ингредиентов [149,157,158]. Однако из-за доказанных противогрибковых свойств прополис также был задуман как потенциальный природный и экологически чистый консервант древесины против плесени и разрушающих древесину грибов [150, 159, 160, 161, 162].

3.1.2. Активность прополиса против плесени

Противогрибковая активность прополиса из Аргентины против нескольких фитопатогенных плесневых грибов, в том числе встречающихся в древесине, таких как A. niger , Trichoderma spp., Penicillium notatum или Fusarium sp. был оценен Quiroga et al. [150]. Они исследовали частично очищенный этанольный экстракт прополиса, а также два его флавоноидных компонента, выделенных с помощью ВЭЖХ — пиноцембрин и галангин. Их результаты ясно показывают, что как прополис, так и его изолированные компоненты были эффективны против тестируемых грибов и характеризовались низкой цитотоксичностью.Это означает, что прополис безопасен для окружающей среды и может применяться в качестве противогрибкового средства для защиты других натуральных продуктов, в том числе древесины, от плесени. Также была отмечена эффективность прополиса из США и Китая против P. notatum с такими основными компонентами, как пиноцембрин, пинобанксин-3- O -ацетат, галангин, хризин, пинобанксин и пинобанксин-метиловый эфир. подтверждено Xu et al. [163].

3.1.3. Активность прополиса против дереворазрушающих грибов

Экстракты прополиса со всего мира или их отдельные ингредиенты использовались для пропитки древесины различных пород с целью изучения их потенциала в защите древесины от дереворазрушающих грибов.

Woźniak et al. показали, что этанольные экстракты польского прополиса с концентрацией более 12% эффективно ограничивают гниение древесины сосны обыкновенной C. puteana [161]. Чем выше было содержание прополиса в растворе, тем лучше был достигнут противогрибковый эффект, достигая потери массы древесины 5,9%, 3,3%, 2,3% и 2,7% для концентрации прополиса 7,5%, 12%, 18,9% и 30%. соответственно. Более того, в польских экстрактах прополиса были выявлены высокие концентрации трех флавоноидов, известных своей противогрибковой активностью: пиноцембрина, галангина и хризина (около 47, 29 и 23 мг / г соответственно).

Древесина сосны обыкновенной и павловнии, обработанные 7% метанольным экстрактом турецкого прополиса, были более устойчивы к Neolentinus lepideus (коричневая гниль) и T. versicolor (белая гниль) по сравнению с необработанными образцами. Для сосны обыкновенной потеря массы составила 29,7% и 2,5% для необработанной и обработанной древесины, подвергшейся воздействию N. lepideus , и 28,4% и 4,2% для необработанной и обработанной древесины, подвергшейся воздействию T. versicolor , соответственно. Однако в случае древесины павловнии с низкой прочностью результаты были не такими хорошими, с потерей массы 39.2% для необработанной и 12,3% для обработанной древесины, подвергшейся воздействию T. versicolor , и 47,2% для необработанных и 11,6% для обработанных образцов, подвергшихся воздействию N. lepideus [159].

Budija et al. [158] продемонстрировали, что этанольный экстракт прополиса 29% из Восточной Словении эффективно защищает древесину ели европейской от грибов бурой гнили Antrodia vaillantii и G. trabeum и грибка белой гнили T. versicolor , в результате чего потеря массы древесины 5.3%, 7,2% и 4,6% соответственно. Кроме того, древесина тополя, обработанная раствором прополиса 40 мг / мл, была более устойчивой к T. versicolor , чем необработанная древесина (потеря массы около 11% против 20%, соответственно, после восьми недель воздействия) [162]. Однако в этом случае наблюдалось постепенное уменьшение противогрибкового действия прополиса с течением времени при воздействии грибов. Это может быть результатом биоразлагаемости определенных ингредиентов прополиса или низкого удерживания раствора прополиса в древесине, что является широко распространенным недостатком природных биоцидов.

Этаноловый экстракт прополиса из Аргентины, а также его изолированные соединения пиноцембрин и галангин, как было доказано, эффективно ингибируют радиальный рост гифа грибов белой гнили P. sanguineus и S. commune и несколько менее эффективны против Ganoderma applanatum и Lenzites elegans , демонстрируя их потенциал в защите древесины от гниения [150].

Jones et al. [40] обрабатывали образцы различных пород древесины метанолом или водными содовыми растворами прополиса, имеющимися в продаже в магазинах здоровья в Великобритании.Они подвергли их воздействию древесных грибов C. puteana и P. placenta . Их результаты доказали превосходную устойчивость обработанной древесины к C. puteana и несколько более низкую защиту от P. placenta. Однако защитный эффект был более выражен для сосны обыкновенной, ясеня и лиственницы, чем для древесины красного кедра западного или ели ситкинской. К сожалению, эксперименты также показали высокую чувствительность прополисовой обработки к выщелачиванию, поэтому ее нельзя применять на открытом воздухе без дополнительной фиксации в древесине.

3.1.4. Прополис в сочетании с полимерами

Обнаруженные недостатки экстрактов прополиса, применяемых в качестве консервантов для древесины, такие как вымываемость древесины и постепенное снижение противогрибковой активности с течением времени [40,162], побудили исследователей искать стабилизаторы, которые бы повысили эффективность прополиса. При консервации древесины применение некоторых полимеров, таких как протеины или кремнийорганические соединения, оказалось эффективным для удержания фунгицидов в древесине [14]. Аналогичный подход был успешно применен для прополиса.Возняк и др. показали, что смесь экстракта прополиса с кремнийорганическими соединениями метилтриметоксисиланом и винилтриметоксисиланом была более эффективной в защите древесины сосны обыкновенной против C. puteana , чем экстракт прополиса, использованный отдельно. Вместо этого Ратайчак и др. доказали, что древесина сосны обыкновенной, обработанная составом на основе прополиса, кофеина, метилтриметоксисилана и октилтриэтоксисилана, устойчива к C. puteana даже после процедуры ускоренного старения, включающей выщелачивание [118].

Представленные здесь результаты показывают потенциал прополиса в защите древесины от грибков. Однако из-за проблем, таких как высокая изменчивость состава прополиса и проблемы с его устойчивостью при нанесении на древесину, его раннее внедрение на рынок в качестве готового к использованию продукта кажется невозможным без улучшения его характеристик. Тогда необходимы дальнейшие исследования,

3.2. Хитин и хитозан

Хитин — это природный белый твердый неэластичный мукополисахарид, состоящий из 2-ацетамидо-2-дезокси-β-d-глюкоз, связанных β (1 → 4) связями.Распространенный в природе, он является основным компонентом экзоскелетов членистоногих, включая морских ракообразных, таких как креветки и крабы, клеточные стенки грибов, колючки диатомовых водорослей или чешую рыб. Он структурно сравним с целлюлозой, с такой же низкой растворимостью и низкой химической реакционной способностью [164,165,166]. Хитозан представляет собой N -деацетилированное производное хитина. Его производство экономически целесообразно, поскольку его основным источником является панцирь ракообразных, полученный как отходы пищевой промышленности. Возобновляемые, биоразлагаемые, биосовместимые и нетоксичные хитин и хитозан в последнее время привлекли особое внимание как потенциальный природный полисахаридный ресурс, полезный для производства многих продуктов с добавленной стоимостью.Благодаря своим противораковым, антиоксидантным, антикоагулянтным и противомикробным свойствам они используются для производства носителей лекарств, искусственной кожи и костей, перевязочных материалов, контактных линз, твердотельных батарей. Они также используются в качестве хелатирующих агентов для очистки сточных вод и в качестве добавок для пищевых продуктов, косметики и производства бумаги [164,165,166,167,168,169].

Хитозан обладает фунгицидной и фунгистатической активностью [164,170,171]. Однако его большое разнообразие с точки зрения химической структуры затрудняет точное определение его антимикробных свойств.Наиболее важными факторами, играющими роль в биоцидном действии, являются молекулярная масса, степень деацетилирования и полимеризации хитозана, а также тип микроорганизма [168, 170, 172]. Было доказано, что хитозан взаимодействует с клеточной стенкой грибов и изменяет ее структуру, и уже были обнаружены два типа механизмов, лежащих в основе антимикробной активности хитозана [14, 173, 174]. Один из них включает проницаемость плазматических мембран бактерий или грибов за счет электростатических взаимодействий между аминогруппами в цепи хитозана и молекулами на поверхности клетки, что приводит к утечке внутриклеточного материала и гибели клетки [171, 172, 174, 175, 176, 177].Второй относится к изменениям в экспрессии генов за счет взаимодействий между хитозаном и нуклеиновыми кислотами [171, 178, 179, 180].

Противогрибковые свойства хитина и хитозана успешно используются не только в пищевой и косметической промышленности, но также имеют высокий потенциал в сельском хозяйстве, поскольку они полезны для защиты растений от грибковых патогенов и продления срока годности фруктов [166, 181, 182, 183, 184]. ]. Отсюда возникла идея применить это вещество для защиты другого природного материала — дерева — от плесени и гниения.

Хитозан в защите древесины

Было предпринято много попыток оценить эффективность хитозана в защите древесины от грибков. Эксперименты, проведенные на чашках с агаром, показали, что скорость роста грибов снижалась с увеличением концентрации хитозана и молекулярной массы, при этом не наблюдалось явной разницы между плесневыми грибами, грибами белой и коричневой гнили [185, 186, 187, 188, 189]. Как правило, 1% раствор хитозана полностью подавлял рост грибков [188,190].

Применение хитозана в деревянных брусках выявило его потенциал как противогрибкового агента.Кобаяши и др. показали, что древесина Суги, обработанная хитозаном (поглощение 11,6 кг · м -3 ), была более устойчивой к грибам коричневой гнили T. palustris и белой гнили T. versicolor (потеря массы 15,9% и 4,9% соответственно. ), чем необработанная древесина (потеря массы 34,8% и 19,7%) [191]. Также древесина Fagus crenata , Pinus densiflora и Cryptomeria japonica , обработанная хитозаном, оказалась более устойчивой к почвенным микроорганизмам и грибкам гниения ( C.versicolor , T. palustris , S. lacrymans ) по сравнению с необработанной древесиной [192].

Schmidt et al. сообщили о повышенной устойчивости древесины сосны обыкновенной, обработанной раствором хитозана с поглощением 5,6–6,8 кг × м –3 , к коричневой гнили C. puteana и G. trabeum со средней потерей массы 1,6–3,2% и 3,7–6,0% по сравнению с 18,2% и 35,6% для необработанного контроля соответственно [193]. Eikenes et al. получили аналогичные результаты для мини-блоков из сосны обыкновенной, обработанных 4.8% ( w / v ) раствор высокомолекулярного хитозана, подвергнутый воздействию C. puteana и P. placenta . Сообщенная потеря массы составила 1,6% и 0,1% для обработанной древесины по сравнению с 60% и 35% для необработанных образцов, соответственно [188]. Однако некоторое вымывание хитозана наблюдалось после ускоренного выщелачивания обработанных образцов в воде. Он был тем более выраженным, чем ниже была молекулярная масса хитозана. Тем не менее 5% раствор хитозана оказался эффективным против грибков гниения, несмотря на выщелачивание [188].Альфредсен и др. и Gorgij et al. подтвердили более высокую эффективность хитозана с высокой молекулярной массой против плесени и синевы по сравнению с хитозаном с низким молекулярным весом [190,194].

В свою очередь, Larnøy et al. сообщили о противогрибковой эффективности 5% раствора низкомолекулярного хитозана, используемого для обработки сосны обыкновенной и бука [195]. Средняя потеря массы обработанной сосны обыкновенной, подвергшейся воздействию C. puteana и P. placenta , составила 4,9% и 1,6% по сравнению с 37,7% и 42,7% для необработанных образцов, соответственно.Потеря массы обработанной древесины бука, подвергшейся воздействию T. versicolor , составила 2,8% по сравнению с 30,2% для необработанной древесины после восьми недель испытания на ускоренное разложение.

Результаты применения хитозана на исторических образцах древесины, проведенные El-Gamal et al. продемонстрировали эффективность обработки против плесени и подтвердили, что она может быть рекомендована для защиты археологических деревянных предметов [196].

Хитозан может образовывать мембрану внутри структуры древесины, которая не только действует как барьер против влаги и воздуха, но также может удерживать другие частицы и предотвращать их вымывание из древесины [195,197].Поэтому была предпринята попытка применять его в сочетании с металлами с противогрибковыми свойствами или фунгицидами. Он успешно использовался с консервантами на основе меди, цинка, серебра, хромированного арсената меди или тебуконазолом, обеспечивая эффективную защиту древесины от плесени и гниения [191,198,199,200].

4. Выводы

Как видно, природные соединения обладают огромным потенциалом в защите древесины, поскольку они обладают широким спектром антимикробной активности. Они являются возобновляемыми, легкодоступными или экономически выгодными из отходов, нетоксичны или обладают гораздо меньшей экологической токсичностью, чем традиционные химические биоциды, и экологически безопасны.Однако у них также есть некоторые ограничения, в том числе высокая неоднородность в зависимости от источника, из которого они получены (например, прополис, эфирные масла, экстрактивные вещества древесины), отсутствие надлежащего удерживания внутри пропитанной древесной ткани, легкая выщелачиваемость, избирательная или неравномерная активность против отдельные виды грибов, высокая подверженность биоразложению. Некоторые из этих проблемных вопросов кажутся решаемыми путем комбинирования органических биоцидов с:

  • различными биологическими соединениями, способными разрушать мембраны ямок, тем самым увеличивая их проницаемость в древесные ткани;

  • различные природные полимеры и сшивающие агенты для фиксации природных соединений внутри структуры древесины и предотвращения их выщелачивания;

  • другие вещества, такие как антиоксиданты, агенты биологической борьбы или хелаторы для повышения их антимикробной активности и стойкости.

Вывод на рынок природных биоцидов дополнительно затруднен из-за некоторых несоответствий между лабораторными испытаниями и отчетными полевыми показателями, а также из-за проблем, связанных с законодательством, из-за необходимости соблюдения требований различных директив (касающихся строительных материалов и применения биоцидов). ) и отсутствие стандартов, определяющих качество, состав, характеристики и применение конкретных защитных составов на натуральной основе. Следовательно, необходимы дальнейшие исследования в этой области.

Поскольку решение всех проблем, с которыми сталкивается разработка природных консервантов, специально ориентированных на защиту древесины и изделий из древесины, может оказаться слишком дорогостоящим, чтобы быть прибыльным, объединение усилий с другими отраслями промышленности, заинтересованными в использовании конкретные природные активные соединения (например, для защиты растений, борьбы с вредителями, пищевых продуктов и фармацевтики) могут оказаться хорошим решением.

В настоящее время, когда продление срока службы изделий из дерева представляет большой интерес и важность, разработка натуральных консервантов нового поколения с минимальным воздействием в конце срока службы обработанной древесины является императивом с точки зрения здоровья человека и защиты окружающей среды.Хотя представленный обзор не исчерпывает тему, поскольку существуют сотни научных данных о противогрибковой активности природных веществ, он дает исчерпывающее представление о текущем состоянии исследований в этой области и показывает перспективы развития экологически безопасных альтернативных древесных материалов. защита на основе натуральных составов.

(PDF) Природные соединения для защиты древесины от грибков — обзор

Molecules 2020,25, 3538 18 из 24

45.

Su, Y.-C .; Ho, C.-L .; Wang, E.I.-C .; Чанг, С.-Т. Противогрибковые свойства и химический состав эфирных масел

из листьев четырех эвкалиптов. Тайвань Дж. Фор. Sci. 2006,21, 49–61.

46.

Cheng, S.-S .; Wu, C.-L .; Chang, H.-T .; Kao, Y.-T .; Чанг, С.-Т. Антитермитическое и противогрибковое действие эфирного масла

листьев Calocedrus formosana и его состав. J. Chem. Ecol. 2004,30, 1957–1967. [CrossRef]

47.

Mohareb, A.S .; Бадави, М.E .; Abdelgaleil, S.A. Противогрибковая активность эфирных масел, выделенных из египетских

растений, против грибов, вызывающих гниение древесины. J. Wood Sci. 2013 г., 59, 499–505. [CrossRef]

48.

Rawat, K .; Саху, Великобритания; Hegde, N .; Кумар, А. Эффективность масла нима (Azadirachta indica A. Juss) против

грибов гниения. Sci. Technol. J 2018,5, 48–51. [CrossRef]

49.

Cai, L .; Lim, H .; Николас, Д.Д .; Ким Ю. Консервант на биологической основе с использованием метил-

β

-циклодекстрин-эфирное масло

Комплексы для защиты древесины.Int. J. Biol. Макромол. 2020, 147, 420–427. [CrossRef] [PubMed]

50.

Пицци, А. Танинс: Перспективы и фактическое промышленное применение. Биомолекулы

2019

, 9, 344. [CrossRef] [PubMed]

51.

Sharma, K .; Кумар, В .; Kaur, J .; Tanwar, B .; Goyal, A .; Sharma, R .; Gat, Y .; Кумар, А. Воздействие на здоровье, источники,

Использование и безопасность дубильных веществ: критический обзор. Toxin Rev.2019, 1–13. [CrossRef]

52.

Hernes, P.J .; Хеджес, Дж. Таниновые сигнатуры коры, игл, листьев, шишек и древесины на молекулярном уровне

11 Заместитель редактора: C. Arnosti. Геохим. Космохим. Acta 2004,68, 1293–1307. [CrossRef]

53.

China, C.R .; Hilonga, A .; Nyandoro, S.S .; Schroepfer, M .; Kanth, S.V .; Мейер, М .; Нджау, К. Пригодность отобранных

растительных дубильных веществ, традиционно используемых при производстве кожи в Танзании. J. Clean. Prod. 2020, 251, 119687. [CrossRef]

54.

Raji, P.; Самрот, А.В .; Bhavya, K.S .; Шаран, М .; Priya, S .; Полрадж, П. Экологичный подход к дублению кожи с использованием

Меньше хрома с растительными танинами и наночастицами, опосредованными танинами. Дж. Класт. Sci.

2019

, 30, 1533–1543. [CrossRef]

55.

Picariello, L .; Gambuti, A .; Picariello, B .; Мойо, Л. Эволюция пигментов, дубильных веществ и ацетальдегида во время

принудительного окисления красного вина: эффект добавления дубильных веществ. LWT 2017,77, 370–375. [CrossRef]

56.

Fraga-Corral, M .; Garc

í

a-Oliveira, P .; Pereira, A.G .; Lourenço-Lopes, C .; Jimenez-Lopez, C .; Prieto, M.A .;

Симал-Гандара, Дж. Технологическое применение экстрактов на основе танинов. Molecules 2020,25, 614. [CrossRef]

57.

S

á

nchez-Mart

í

n, J .; Beltr

á

n-Heredia, J .; Solera-Hern

á

ndez, C. Очистка поверхностных и сточных вод с использованием

нового коагулянта на основе танинов.Опытно-промышленные испытания. J. Environ. Manag. 2010,91, 2051–2058. [CrossRef]

58.

Basso, M.C .; Пицци, А .; Аль-Марзуки, Ф .; Абдалла, С. Садоводство / гидропоника и оральные натуральные пены из

танинов. Ind. Crops Prod. 2016, 87, 177–181. [CrossRef]

59.

Tondi, G .; Петучниг, А. Пены на основе танина: инновационный материал для изоляционных целей.

В Справочнике композитов из возобновляемых материалов, структуры и химии; Wiley: Хобокен, Нью-Джерси, США, 2016;

Том 1, стр.93.

60.

Lei, H .; Пицци, А .; Du, G. Экологически чистая смесь дубильных и лигнинных древесных смол. J. Appl. Polym. Sci.

2008

,

107, 203–209. [CrossRef]

61.

Yazaki, Y .; Коллинз П.Дж. Клеи для дерева на основе дубильных экстрактов коры некоторых пород сосны и ели.

Holz als Roh-und Werksto ff1994,52, 307–310. [CrossRef]

62.

Missio, A.L .; Mattos, B.D .; Ferreira, D.d.F .; Magalh

ã

es, W.L.E .; Bertuol, D.A .; Gatto, D.A .; Petutschnigg, A .;

Тонди, Г. Наноцеллюлозно-таниновые пленки: от деревьев к экологически чистой активной упаковке. J. Clean. Prod.

2018

, 184,

143–151. [CrossRef]

63.

Zhao, B .; Han, W .; Zhang, W .; Ши Б. Ингибирование коррозии дубильных веществ для мягкой стали в растворе соляной кислоты

. Res. Chem. Промежуточный. 2018,44, 407–423. [CrossRef]

64.

Cai, Y .; Чжан, Дж.; Chen, N.G ​​.; Ши, З .; Qiu, J .; Он, С .; Чен, М. Последние достижения в противораковой деятельности и

систем доставки лекарств танинов. Med. Res. Ред. 2017 г., 37, 665–701. [CrossRef]

65.

Teodor, E.D .; Ungureanu, O .; Gatea, F .; Раду, Г.Л.Потенциал флавоноидов и танинов из лекарственных растений

в качестве противораковых агентов. Противораковый агент. ME 2020. [CrossRef]

66.

Вильхельмова-Илиева, Н .; Галабов, А.С .; Милева, М. Танины как противовирусные средства.В танинах-структурных свойствах,

биологических свойствах и текущих знаниях; IntechOpen: Лондон, Великобритания, 2019.

67.

Wang, H .; Chen, Y .; Zhang, W. Исследование с помощью атомно-силовой микроскопии одной молекулы показывает противовирусный

механизм танина и его производных. Наномасштаб 2019,11, 16368–16376. [CrossRef]

68.

Li, M .; Feng, L .; Jiang, W.-D .; Wu, P .; Liu, Y .; Jiang, J .; Kuang, S.-Y .; Tang, L .; Чжоу, X.-Q. Конденсированные танины

снижали рост и нарушали иммунную функцию кишечника у растущего белого амура

(Ctenopharyngodon idella).Br. J. Nutr. 2020, 123, 737–755. [CrossRef]

69.

Girard, M .; Би, Г. Приглашенный обзор: Танины как потенциальная альтернатива антибиотикам для предотвращения колиформной

диареи у свиней-отъемышей. Animal 2020,14, 95–107. [CrossRef]

Природные составы для защиты древесины

Древесина — это возобновляемый, универсальный материал, имеющий множество применений и самый большой на Земле запас секвестрированного углерода. Однако он подвержен разложению, в основном вызываемым древесными грибами.Поскольку некоторые традиционные консерванты для древесины были запрещены из-за их пагубного воздействия на человека и окружающую среду, продление срока службы изделий из древесины с использованием натуральных консервантов нового поколения является императивом с точки зрения здоровья человека и защиты окружающей среды. Некоторые природные соединения растительного происхождения были протестированы на их фунгицидные свойства, включая эфирные масла, дубильные вещества, экстрактивные вещества древесины, алкалоиды, прополис или хитозан; и был продемонстрирован их огромный потенциал в защите древесины.Хотя они не лишены ограничений, потенциальные методы преодоления их недостатков и повышения их биологической активности уже существуют, такие как совместная пропитка различными полимерами, сшивающими агентами, хелаторами металлов или антиоксидантами. Однако наличие расхождений между лабораторными тестами и результатами полевых испытаний, а также проблемы, связанные с законодательством, возникающие из-за отсутствия стандартов, определяющих качество и эффективность натуральных защитных составов, создают острую необходимость в дальнейших тщательных исследованиях и мероприятиях.Сотрудничество с другими отраслями промышленности, заинтересованными в использовании природных активных соединений, снизит связанные с этим расходы, таким образом, будет способствовать успешному внедрению альтернативных противогрибковых агентов.

1. Введение

Древесина — это натуральный, возобновляемый и универсальный материал с отличными характеристиками, который широко используется людьми с незапамятных времен. Это также самый большой резервуар секвестрированного углерода в земной среде. Однако его химический состав и структура делают его склонным к биоразложению, а грибы являются основными разрушителями древесины [1] [2] .

Традиционно, что касается характера разложения, различают три группы древесно-гниющих грибов, а именно: коричневую гниль, белую гниль и мягкую гниль (Таблица 1). Все они разрушают структурные полимеры ячеистой стенки дерева, что приводит к потере прочности древесины. Древесина также подвержена воздействию плесени и синей морилки (Таблица 1). Хотя они не вызывают значительных структурных повреждений, они отрицательно влияют на эстетическую ценность древесины, поскольку их активность приводит к изменению цвета древесины [1] [2] .

Таблица 1. Основные типы грибов, которые могут колонизировать и разрушать древесину [1] [2] [3] [4] [5] .

Тип грибов

Деградированная древесина и компоненты

Воздействие на древесину

Древесные грибы

коричневая гниль (Basidiomycota)

в основном хвойные породы; деградация гемицеллюлоз и целлюлозы, деметилирование лигнина

Усадка древесины и растрескивание на кусочки кубической формы, осталась коричневая окраска из-за присутствия лигнина, снижение механических свойств древесины

белая гниль (Basidiomycota)

в основном лиственных пород, но также и хвойных пород; разложение лигнина и гемицеллюлозы, а также целлюлозы

волокнистый вид и белая окраска древесины из-за наличия более светлых остатков целлюлозы, древесина становится мягкой, губчатой ​​или волокнистой, ее прочностные свойства снижаются по мере гниения

мягкая гниль (Ascomycota, грибов несовершенный)

гемицеллюлозы и целлюлоза, реже лигнин

образование полостей внутри клеточной стенки, изменение цвета и рисунок растрескивания, аналогичный коричневой гнили, ухудшение прочностных свойств древесины

Форма

плесень (Zygomycota или Ascomycetes)

легкодоступные сахара, не структурные полимеры

Поверхностное изменение цвета древесины, незначительное ухудшение состояния деревянной поверхности

Синяя морилка

синяя морилка (Ascomycota и Deuteromycota)

содержание белка в клетках паренхимы, легкодоступные сахара, не структурные полимеры

Изменение цвета заболони на темные гифы, разрушение мембран ямок, ведущее к повышенной водопроницаемости

Древесина становится восприимчивой к поражению грибами при определенных условиях окружающей среды, т.е.е. влажность более 20%, доступность кислорода и температура от 15 до 45 ° C. Грибковая порча поражает в основном наружные деревянные конструкции, снижая механические и эстетические свойства древесины и значительно ограничивая срок ее службы [5] [6] . Для предотвращения этого был применен широкий спектр эффективных синтетических консервантов для древесины, включая агенты на основе меди (в частности, хромированный арсенат меди), триазолы (азаконазол, пропиконазол, тебуконазол), пентахлорфенол или фунгициды на основе бора [7] [8 ] [9] .Однако из-за проблем, связанных с окружающей средой и здоровьем, многие из них были запрещены к использованию, что привело к необходимости разработки альтернативных средств защиты древесины и методов, основанных на нетоксичных натуральных продуктах [9] [10] [11 ] .

В настоящее время экологически безопасная защита древесины является объектом обширных исследований, охватывающих несколько различных подходов. Поскольку рост разрушающих древесину грибов зависит от наличия воды, одним из методов является контроль влажности с использованием природных гидрофобизаторов, таких как смолы и воски растительного или животного происхождения или растительные масла [12] [13] [14] [15] .Другой способ продления срока службы древесины — использование природных соединений с биоцидными свойствами и их фиксация внутри структуры древесины [11] [12] [16] . Более инновационный метод включает использование агентов биологической борьбы, то есть микроорганизмов, таких как другие грибы и бактерии, которые действуют как антагонисты дереворазрушающих грибов [12] [17] .

2. Противогрибковые вещества растительного происхождения

Растения являются богатым источником различных химических соединений, включая алкалоиды, флавоны и флавоноиды, фенольные соединения, терпены, дубильные вещества или хиноны.Вырабатываемые как вторичные метаболиты, они могут составлять до 30% сухой массы растений, играя важную роль в их защите от патогенных микробов, травоядных животных и различных видов абиотического стресса. Из-за их специфических свойств, возникающих в результате присутствия определенных фитохимических веществ, многие растения с тех пор используются людьми в качестве лекарств или пищевых добавок. В настоящее время знание химической структуры и функций отдельных компонентов растений позволяет разрабатывать эффективные методы их извлечения из тканей растений и использовать их в коммерческих целях, т.е.е. в качестве ингредиентов фармацевтических препаратов, косметики, функционального питания или красителей. Также существует большой интерес к их применению в качестве биопестицидов, инсектицидов и фунгицидов для защиты сельскохозяйственных культур и биоразлагаемых материалов [18] [19] [20] [21] .

Противогрибковые свойства различных растительных экстрактов делают их интересными еще и как потенциальный источник природных веществ, которые могут использоваться в качестве альтернативных консервантов древесины против гниения.Высокая доступность растительного материала в целом и перспективная возможность использования промышленных отходов от переработки различных культур могут повысить экономическую жизнеспособность всего процесса их получения, что позволит потенциально широко применять консерванты для растений в деревообрабатывающей промышленности.

2.1. Эфирные масла

Эфирные масла — это натуральные смеси летучих вторичных метаболитов различных растений, которые могут быть получены из растительного сырья путем дистилляции, механического прессования или экстракции с использованием различных растворителей.Они содержат множество химических соединений, которые отвечают за характерный аромат определенных растений, из которых они получены. Основными ингредиентами являются терпены, в том числе спирты, альдегиды, углеводороды, простые эфиры и кетоны, с доказанной биологической активностью, такие как антиоксидантное, антибактериальное и противогрибковое. Поэтому растения, содержащие эфирные масла, веками использовались в народной медицине и добавлялись в пищу как ароматизаторы и консерванты [22] [23] [24] .

В настоящее время эфирные масла нашли применение в парфюмерии, ароматерапии, производстве продуктов питания и косметики. Их состав был тщательно изучен вместе с их потенциальной терапевтической активностью, включая противовоспалительную, противомикробную, противовирусную, противораковую, антидиабетическую или антиоксидантную [23] [24] [25] . Наблюдаемый растущий интерес к биологически чистым, нетоксичным натуральным веществам с антимикробными свойствами делает эфирные масла потенциально полезными в качестве консервантов для широкого спектра продуктов [26] [27] [28] .Благодаря доказанным противогрибковым свойствам против плесени и древесных грибов, были предприняты некоторые попытки применить эфирные масла обычных растений, трав и специй в качестве защитных средств для древесины [29] [30] [31] [32] [33] [34] [35] .

2.2 Эфирные масла в защите древесины

Было проведено несколько тестов in vitro против различных видов грибов с использованием различных эфирных масел, чтобы найти наиболее эффективные.Voda et al. [29] сообщил о высокой противогрибковой эффективности масел аниса, базилика, тмина, орегано и тимьяна против грибка коричневой гнили Coniophora puteana и грибка белой гнили Trametes versicolor с использованием метода разбавления агаром. Они показали, что наиболее эффективными соединениями, подавляющими рост обоих грибов, были тимол, карвакрол, транс-анетол, метилхавикол и куминальдегид. Их дальнейшие исследования подтвердили существование взаимосвязи между молекулярной структурой кислородсодержащих соединений ароматических эфирных масел и их противогрибковой активностью против дереворазрушающих грибов [36] .Тесты in vitro, проведенные Chittenden и Singh [37] , продемонстрировали противогрибковую эффективность 0,5% -ных концентраций масел корицы и герани против грибов бурой гнили Oligoporus placenta , C. puteana и Antrodia xantha , грибов sapstainostoma . Mathiesen, Ophiostoma piceae , Sphaeropsis sapinea и Leptographium procerum и плесневый гриб Trichoderma harzianum .Они также показали противогрибковые свойства масел аниса, орегано и лемы (смесь 50% новозеландской мануки и 50% австралийского чайного дерева) против некоторых из упомянутых выше грибов. Zhang et al. [35] сообщил о противогрибковой эффективности чистых монотерпенов, таких как β-цитронеллол, карвакрол, цитраль, эвгенол, гераниол и тимол, против древесных грибов белой гнили Trametes hirsuta , Schizophyllum commune и Pycineusor. Xie et al. [34] подтверждены противогрибковые свойства Origanum vulgare , Cymbopogon citratus , Thymus vulgaris , Pelargonium graveolens , Cinnamomum zeylanicum ata и эфирных масел грибов T.hirsuta и Laetiporus sulphurous , указывая на карвакрол, цитрон, цитронеллол, коричный альдегид, эвгенол и тимол как на наиболее активные соединения. Было показано, что некоторые из распространенных соединений натуральных эфирных масел, а именно коричный альдегид, α-метил-коричный альдегид, (E) -2-метилкоричная кислота, эвгенол и изоэвгенол, эффективно подавляют рост грибка белой гнили Lenzites betulina и коричневый -гнильный гриб L. sulphurous [38] . В свою очередь, результаты, полученные Reinprecht et al. [39] показывают, что среди пяти различных эфирных масел (базилика, корицы, гвоздики, орегано и тимьяна) была показана самая высокая противогрибковая активность против грибка бурой гнили Serpula lacrymans и грибка белой гнили T. versicolor для базиликового масла (содержащего преимущественно линалоол), а самый низкий — для гвоздичного масла (содержащего в основном эвгенол).

Указанные выше результаты были подтверждены на образцах древесины, обработанных отобранными эфирными маслами. Pánek et al. [33] исследовал противогрибковую эффективность и стабильность древесины бука, обработанной 10% -ными растворами десяти различных эфирных масел (березы, гвоздики, лаванды, орегано, сладкого флага, чабера, шалфея, чайного дерева, тимьяна и смеси эвкалипта, масла лаванды, лимона, шалфея и тимьяна) против грибка бурой гнили C.puteana и гриб белой гнили T. versicolor . Они обнаружили, что после сложной процедуры ускоренного старения наиболее эффективными против C. puteana оказались масла гвоздики, орегано, сладкого флага и тимьяна, содержащие фенольные соединения, такие как карвакол, эвгенол, тимол и триметиловый эфир цис-изоазарола (химическая структура избранные соединения эфирных масел представлены на рисунке 1). Потери массы древесины березы составили 0,9%, 0,66%, 0,57% и 0,87% соответственно. Масла гвоздики, сладкого флага и тимьяна также были наиболее эффективными против плесени ( Aspergillus niger и Penicillium brevicompactum ) при тестировании с фильтровальной бумагой.Эти масла могут быть потенциально полезны для защиты древесины в интерьере. Интересно, что ни одно из протестированных масел не было эффективным против T. versicolor , что может быть результатом специфического ферментативного аппарата грибов белой гнили, способного разлагать как лигнин, так и другие фенольные соединения. Эффективность масла тимьяна против C. puteana и A. niger была также подтверждена Jones et al. [40] . Кроме того, они показали противогрибковую активность масел базилика, тысячелистника и календулы против C.puteana и P. placenta соответственно; однако два последних масла были эффективны только при использовании в чистом виде. Chittenden и Singh [37] сообщили о высокой устойчивости древесины сосны лучистой, обработанной 3% эвгенолом, с потерей массы <1% при воздействии C. puteana , O. placenta и A. xantha . Однако они обнаружили, что эвгенол легко выщелачивается из древесины, что предполагает его непригодность для защиты древесины, используемой на открытом воздухе.Kartal et al. [32] обработанную древесину суги составом, содержащим масло кассии, с получением высокой устойчивости древесины против коричневой гнили Tyromyces palustris (потеря массы 0,7%) и белой гнили Грибы C. versicolor (потеря массы 3,6% ).

Ян и Клаузен изучили свойства семи эфирных масел, включая аджован, укроп, герани (египетскую), лимонную траву, розмарин, чайное дерево и масло тимьяна, по подавлению плесени. Они обнаружили, что пары масла укропа и обработка образцов южной желтой сосны тимьяном или геранью окунанием эффективно защищают древесину от роста A.niger , Trichoderma viride и Penicillium chysogenum в течение не менее 20 недель [41] . Результаты Bahmani et al. [31] подтвердил, что масла лаванды, лемонграсса и тимьяна, применяемые для пропитки древесины Fagus orientalis и Pinus tadea , могут обеспечить эффективную защиту от A. niger , Penicillium commune , C. puteana6 , , , T. versicolor и Chaetomium globosum .Салем и др. Продемонстрировали антиплесневую активность масел Pinus rigida и Eucalyptus camaldulensis , нанесенных на поверхность древесины Fagus sylvatica , P. rigida и P. sylvestris . [42] и аналогичные свойства гвоздичного масла, нанесенного на местную индийскую древесину, были описаны Hussain et al. [30] .

Было доказано, что большое разнообразие эфирных масел, полученных из определенных местных растений со всего мира, обладает защитными свойствами против плесени и гниения древесины.Например, эфирное масло из листьев тайваньского коричного дерева Cinnamomum osmophloeum Kaneh., Содержащее коричный альдегид в качестве наиболее распространенного противогрибкового компонента, оказалось эффективным против различных грибов белой и коричневой гнили, включая Coriolus versicolor. и Laetiporus sulphureus [43] . Противогрибковые свойства коричного альдегида также подтвердили Kartal et al. [32] при применении для обработки древесины суги, эффективно повышая устойчивость древесины к коричневой гнили T.palustris (потеря массы 0,6%) и грибы белой гнили C. versicolor (потеря массы 3,8%). Хорошие результаты были также получены Читтенденом и Сингхом [37] для древесины сосны лучистой, обработанной 3% -ным раствором коричного альдегида, где потеря массы составила <1% по сравнению с C. puteana и A. xantha и около 3%. против О. плаценты .

Масло листьев и плодов другого тайваньского дерева, Juniperus formosana Hayata, было испытано in vitro Su et al. [44] за их противогрибковые свойства в отношении семи плесневых грибов ( Aspergillus clavatus , A. niger , Ch. Globosum , Cladosporium cladosporioides , Myrothecium verrucaria citroenicum, virrucaria T. ), двух грибов белой гнили ( T. versicolor , Phanerochaete chrysosporium ) и двух грибов бурой гнили ( Phaeolus schweinitzii , Lenzites sulphureum ). Они сообщили о превосходной противогрибковой эффективности листового масла с α-кадинолом и элемолом в качестве наиболее активных соединений.Высокая противогрибковая активность против плесени и древесных грибов была также показана для тайваньского масла листьев Eucalyptus citriodora из-за присутствия цитронеллаля и цитронеллола в качестве основных активных компонентов [45] .

Cheng et al. [46] сообщил о высокой противогрибковой активности эфирного масла, полученного из листьев флорина Calocedrus formosana . C. formosana — это эндемичный вид деревьев из Тайваня, отличающийся естественной устойчивостью к гниению.Наиболее сильная противогрибковая активность против L. betulina , Pycnoporus coccineus , T. versicolor и L. sulphurous была показана для двух масляных соединений: α-кадинола и Т-мууролола.

Mohareb et al. [47] изучал противогрибковую активность эфирных масел из восемнадцати различных египетских растений против дереворазрушающих грибов Hexagonia apiaria и Ganoderma lucidum . Наилучшая устойчивость была получена для заболони сосны обыкновенной, обработанной маслами Artemisia monosperma , Citrus limon , Cupressus sempervirens , Pelargonium graveolens , Schinus molle и Thuja occidentalis .В свою очередь, эффективность масла нима, содержащего азадирахтин в качестве основного противогрибкового соединения, против грибов S. commune , Fusarium oxysporum , Fusarium proliferatum , C. puteana и Alternaria alternate et al. al. [48] . Аналогичные результаты были получены Hussain et al. которые показали устойчивость местной индийской древесины, обработанной маслом нима, к различным формам.

Здесь стоит упомянуть некоторые новые подходы, направленные на усиление противогрибковой активности эфирных масел как консервантов древесины.Один из них — использование комплексов эфирных масел с метил-β-циклодекстрином. Cai et al. [49] обрабатывали древесину южной сосны комплексами эвгенола, транс-коричного альдегида, тимола и карвакрола с метил-β-циклодекстрином и подвергали ее воздействию грибов бурой гнили Gloeophyllum trabeum и P. placenta . Результаты показали улучшенную стойкость к гниению древесины, обработанной определенными комплексами, даже после выщелачивания, по сравнению с контрольными образцами или образцами древесины, пропитанными эфирными маслами по отдельности.Таким образом, кажется, что использование определенных комплексов, содержащих природные соединения, такие как эфирные масла, имеет большой потенциал для увеличения срока службы изделий из дерева.

Рисунок 1. Химическая структура и примерные растительные источники выбранных противогрибковых соединений эфирных масел.

2.3. Танины

Дубильные вещества — это природные соединения, вырабатываемые большинством высших растений для защиты от патогенных бактерий, грибов и насекомых. Их можно найти почти во всех частях растения, от корней, древесины и коры до листьев и семян [50] [51] .

Разные по цвету танины представляют собой вяжущие, очень разнообразные полифенольные биомолекулы, разделенные на два класса: гидролизуемые танины (такие как галлотаннины и эллагитаннины) и конденсированные полифлавоноидные танины. Гидролизуемые дубильные вещества можно найти только в двудольных. Среди конденсированных танинов наиболее распространены процианидины в форме катехина и эпикатехина, затем танин продельфинидина в форме галлокатехина и эпигаллокатехина и танин пропеларгонидина в форме афзелехина и эпиафзелехина.Хвойные деревья считаются наиболее распространенным источником танинов [50] [52] .

Специфическая химическая структура и результирующая реакционная способность позволяют танинам необратимо связываться с металлами и другими молекулами, включая белки, создавая прочные комплексы [50] [52] . Эти свойства делают их полезными для множества приложений. Например, они традиционно используются в производстве кожи и применяются в качестве добавок к пиву, вину и фруктовым сокам в качестве антиоксидантов и ароматизаторов [50] [51] [53] [54] [55] [56] [50,51,53–56].Их можно использовать для очистки сточных вод, производства изоляционных и огнестойких пен, гидропонных пен для садоводства, термореактивного пластика, смол и гибких пластиковых пленок [50] [57] [58] [59] . Они могут служить в качестве клея и отделки поверхностей для древесины и изделий из древесины, суперпластификаторов цемента, антикоррозионных покрытий для металла, высокотемпературной отделки поверхностей металлов и тефлона, упаковочных материалов, добавок для буровых растворов, и это лишь некоторые из них [ 60] [61] [62] .

Уже опубликованные результаты исследований потенциального фармацевтического и медицинского применения дубильных веществ указывают на их положительное влияние на функциональность кишечника, а также на противоопухолевую, противовоспалительную, противоаллергическую или противовирусную активность [63] [64 ] [65] [66] [67] [68] . Особые свойства дубильных веществ, которые делают возможным их необратимое связывание с белками, также делают их полезным оружием против микроорганизмов.Несколько исследований подтвердили их антибактериальную активность; существует также лекарство на основе танинов для лечения кишечных инфекций [69] [70] [71] [72] [73] . Аналогичным образом, эффективная активность дубильных веществ против различных видов патогенных грибов, то есть дерматофитов, плесени и дрожжей, была описана [74] [75] [76] [77] . Отсюда и идея попробовать дубильные вещества в качестве противогрибковых консервантов для древесины.Поскольку большинство разрушающих древесину грибов используют внеклеточные ферменты для разложения компонентов древесины, присутствие дубильных веществ приводит к их неактивным комплексам с грибковыми ферментами, таким образом защищая древесину от биоразложения [78] [79] .

2.3.1. Танины в защите древесины

Противогрибковые свойства восьми различных фракций танинов, экстрагированных из коры и шишек ели европейской и шишек сосны обыкновенной, против восьми различных грибов бурой гнили, трех грибов белой гнили и четырех видов грибов мягкой гнили на солодовой агаризованной среде на чашках Петри были изучены Anttila et al. [76] . Танины конуса были более эффективными в подавлении роста грибов, чем дубильные вещества коры. Однако экстракты танинов показали лучший ингибирующий эффект против коричневой гнили, чем виды белой или мягкой гнили, они рассматривались как потенциальные вещества для защиты древесины. Подобные эксперименты были выполнены Озгенч и др. [80] с использованием приморской ( Pinus pinaster L.), железа ( Casuarina equisetifolia L.), мимозы ( Acacia mollissima L.), сосны калабрийской ( Pinus brutia Ten.) и экстрактов коры деревьев пихты ( Abies nordmanniana ) против T. versicolor и C. puteana . Экстракты коры морской сосны и пихты показали лучшую устойчивость против T. versicolor , тогда как экстракты коры железа и мимозы были более эффективны против C. puteana . В результате исследования был сделан вывод о том, что наиболее важным фактором противогрибковой активности является концентрация экстракта. К сожалению, в этом исследовании не было указано, какие соединения экстрактов являются наиболее эффективными ингибиторами роста грибов.

Было проведено несколько исследований для оценки устойчивости различных древесных пород, обработанных дубильными веществами, к плесени и разрушающим древесину грибам.

Обильный дубильными веществами, водные экстракты листьев сицилийского сумаха и дуба валония и кора турецкой сосны были использованы Sen et al. [81] для обработки древесины сосны обыкновенной и бука. Затем образцы бука подвергали воздействию грибка белой гнили T. versicolor, , а образцы сосны обыкновенной — грибку коричневой гнили G.trabeum . Наиболее устойчивыми оказались образцы, обработанные экстрактами дуба валония. Однако противогрибковая эффективность применяемой обработки значительно снизилась после выщелачивания, что свидетельствует о плохой фиксации дубильных веществ в структуре древесины.

Tascioglu et al. [82] изучали противогрибковые свойства богатых танинами экстрактов коры мимозы ( Acacia mollissima ), квебрахо ( Schinopsis lorentzii ) и сосны ( Pinus brutia ), применяемых для пропитки древесины сосны обыкновенной, бука и тополя.Результаты микологических тестов против двух грибов белой гнили ( T. versicolor и Pleurotus ostreatus ) и двух грибов бурой гнили ( Fomitopsis palustris и G. trabeum ) выявили высокую противогрибковую эффективность экстрактов мимозы и квебрахо. особенно при нанесении на древесину сосны обыкновенной. Экстракты сосновой коры (даже в концентрации 12%) оказались малоэффективными. Результаты показали, что экстракты мимозы и квебрахо можно использовать в качестве экологически чистых консервантов для древесины, используемой в помещении.О повышении активности танина мимозы против T. palustris и C. versicolor сообщили Ямагучи и Окуда [83] после его химической модификации и удаления низкомолекулярных соединений диализом. Экстракты танинов из Acacia mearnsii были описаны Da Silveira et al. [84] в качестве эффективного консерванта древесины против грибка белой гнили P. sanguineus. В свою очередь, Мансур и Салем [85] показали полное подавление T.harzianum (плесень) рост Maclura pomifera , Callistemon viminalis и Dalbergia sissoo экстрактами коры.

Танины валония, каштана, тары и сульфатного дуба использовали Tomak и Gonultas [86] для пропитки древесины сосны обыкновенной. Была оценена их противогрибковая эффективность против коричневой гнили C. puteana и P. placenta и грибов белой гнили T. versicolor и P. ostreatus .Результаты показали, что дубильные вещества эффективно подавляли атаку коричневых грибов, но не были эффективны против белой гнили. Лучшая противогрибковая активность наблюдалась у дубильных веществ валония и каштана, предположительно из-за более высокого содержания эллагитаннинов. Однако выщелачивание значительно снизило эффективность применяемой обработки танином. Эллагитаннины также были указаны Харт и Хиллис как соединения, ответственные за устойчивость сердцевины белого дуба к Poria monticola .

2.3.2. Танины в сочетании с другими веществами

Также были предприняты попытки применить дубильные вещества в сочетании с другими соединениями с доказанной противогрибковой активностью, такими как ионы бора или меди, для повышения их характеристик и улучшения их фиксации в структуре древесины.

Ямагути и Окуда использовали танин-медно-аммиачные комплексы мимозы для пропитки древесины Cryptomeria Japonica D. Don. В результате проведенной обработки повысилась устойчивость к вымыванию и грибковому распаду.Повышенная противогрибковая эффективность конденсированных танинсодержащих экстрактов коры сосны лоблоловой ( Pinus taeda ) в комплексе с ионами меди (II), нанесенных на образцы березы, против C. versicolor по сравнению с самими экстрактами коры была подтверждена Laks [87] . Аналогичный эффект был получен Ramirez et al. [88] для Cocos nucifera растворов танинового комплекса меди, нанесенных на образцы ольхи, и для Bernardis и Popoff [89] , которые сообщили о высокой устойчивости образцов древесины Pinus elliottii , обработанных таниновым экстрактом «quebracho colorado» в комплексе с раствором соли CCA против белой гнили P.sanguineus и гриб бурой гнили Gloeophyllum sepiarium .

Исследование Thevenon et al. [90] продемонстрировал повышенную эффективность систем консервантов на основе конденсированных танинов мимозы, гексамина и борной кислоты против очень агрессивного тропического гриба белой гнили P. sanguineus по сравнению с экстрактами танинов, применяемыми отдельно. Результаты показали пониженную выщелачиваемость бора, когда он образует комплекс в сети дубильных веществ и гексамина. Дальнейшие исследования подобных комплексных составов показали их высокую эффективность против C.versicolor и C. puteana при нанесении на буковую фанеру и древесину сосны обыкновенной соответственно [91] [92] . Они также указали, что повышенная устойчивость бора к выщелачиванию является результатом его ковалентной фиксации в танин-гексаминовой сети [91] .

В свою очередь, Salem et al. [93] сообщил о высокой эффективности против плесени композиции экстрактов внутренней и внешней коры сахарного клена ( Acer saccharum ) с лимонной кислотой при нанесении на древесину Leucaena leucocephala .В качестве основных компонентов биологической активности были указаны п-гидроксибензойная кислота, галловая кислота и салициловая кислота.

Многокомпонентные системы защиты древесины на основе танинов, описанные выше, кажутся многообещающей альтернативой искусственным фунгицидам для наружного применения.

3. Противогрибковые вещества из древесных экстрактов

Некоторые породы древесины обладают высокой естественной устойчивостью к гниению из-за присутствия различных экстрагируемых химических соединений, вместе называемых экстрактивными веществами.Экстрактивные вещества — это разнообразные неструктурные компоненты древесины, производимые деревьями в качестве защитных агентов от воздействия окружающей среды, и в основном они находятся в сердцевине древесины. Как правило, их можно разделить на две разные группы: алифатические и алициклические соединения (например, терпеноиды и терпены) и фенольные соединения (например, флавоноиды и дубильные вещества). Их противогрибковая эффективность, в зависимости от типа активной молекулы, может быть основана на различных механизмах, включая прямое взаимодействие с грибковыми ферментами, нарушение клеточных стенок и структуры клеточных мембран, приводящее к утечке содержимого клетки или нарушению ионного гомеостаза, или антиоксидантному действию. активность [94] [95] .

Естественно прочная древесина — ценный материал на рынке и экологически чистая альтернатива древесине, обработанной традиционными химикатами. Потенциально промышленные отходы от обработки прочных пород древесины могут служить источником природных, коммерчески жизнеспособных биоцидов, которые можно использовать для обработки менее прочной древесины. Поэтому во всем мире проводились обширные исследования экстрактивных веществ из древесины [96] [97] [98] .

Тик ( Tectona grandis L.е) является одной из известных высокопрочных пород древесины. Однако его устойчивость к грибковому разложению значительно различается между деревьями из разных географических зон, плантаций или разных возрастов. Некоторые результаты исследований противогрибковых свойств древесины лиственных пород тика предполагают, что они могут быть результатом синергетического эффекта различных экстрактивных соединений, например антрахинины и тектохиноны [99] [100] [101] , в то время как другие данные указывают на роль одного конкретного соединения, а не общего количества экстрактивных веществ в определении устойчивости древесины к гниению [102] [103 ] .Haupt et al. [102] , изучавший устойчивость тикового дерева к гниению из Панамы, идентифицировал тектохинон как биоактивное соединение, подавляющее рост C. puteana . В исследовании Thulasidas и Bhat [103] сообщается о высокой устойчивости сердцевины тикового дерева из Кералы (Индия) к коричневой гнили ( Polypomus palustris и G. trabeum ) и белой гнили ( P. sanguineus , T .hirsuta и T. versicolor ), определяя нафтохинон как наиболее важное действующее вещество.Anda et al. [100] показал высокую естественную устойчивость тикового дерева из Мексики к грибам белой ( P. chrysosporium ) и коричневой гнили ( G. trabeum ), в то время как устойчивость к грибам белой гнили T. versicolor был умеренным. Они определили тектохинон, дезоксилапахол, изолапахол и дегидротектол как предполагаемые компоненты, ответственные за долговечность древесины. Микологические тесты, проведенные Kokutse et al. [99] показал, что тиковое дерево из Того обладает высокой устойчивостью к P.sanguineus и G. trabeum , в то время как потеря массы древесины составляла <20% после воздействия на древесину Antrodia sp. и C. versicolor . Brocco et al. [98] показали эффективность этанольных экстрактов из отходов, полученных при механической обработке сердцевины тикового дерева из Бразилии, в защите обработанной заболони тика и сосны от грибков белой и бурой гнили. Противогрибковой активности против мягкой гнили не наблюдалось.

Киркер и др. [97] изучал естественную устойчивость нескольких пород древесины, полученных от различных производителей пиломатериалов в Северной Америке, к отобранным грибам коричневой и белой гнили. Их результаты показали высокую стойкость хвойных пород, таких как красный кедр восточный, можжевельник западный, красный кедр западный и желтый кедр Аляски, а также листопадная акация, медовый мескит и катальпа. Древесина южной сосны и павловнии оказалась менее устойчивой к гниению. Экстракты древесины павловнии не оказывали ингибирующего действия на T.palustris и G. trabeum и экстракты медового мескита не были эффективны против I. lacteus . Füchtner et al. [104] показали, что устойчивость недолговечной сердцевины ели европейской к грибку бурой гнили R. placenta является результатом присутствия фунгитоксической гидрофобной смолы, в то время как в случае умеренно прочной сердцевины курильской лиственницы устойчивость обусловлена к большому количеству различных антиоксидантных флавоноидов.

Sablík et all. [96] сообщил об эффективности экстрактов сердцевины черной акации ( Robinia pseudoacacia L.) для повышения устойчивости к гниению недолговечной древесины европейского бука ( Fagus sylvatica L.) из древесины класса 5 (недолговечный, потеря массы около 44). %) до 3 класса (средней прочности, потеря массы около 13%). В то время как экстрактивные вещества из сердцевины Dicorynia guianensis Amsh из Французской Гайаны были показаны Anouhe et al. [105] обладает противогрибковой активностью против P.sanguineus и T. versicolor в основном из-за присутствия алкалоидных соединений.

Экстракты ксилемы Cinnamomum camphora (Ness et Eberm.), Китайской лиственной породы, были протестированы Li et al. [106] против двух грибов древесной гнили: G. trabeum и Coriolus (Trametes) versicolor . Наилучшие результаты были получены для экстрактов хлороформа и метанола, где эффективная доза для 50% ингибирования роста составила 7.8 мг / мл экстракта хлороформа против C. versicolor и 0,3 мг / мл экстракта метанола против G. trabeum . Наиболее распространенными компонентами обоих экстрактов с доказанной противогрибковой активностью были камфора и α-терпинеол. C. camphora в таком случае можно рассматривать как источник природных противогрибковых консервантов для защиты древесины.

Также изучалась антиплесневая активность экстрактов сердцевины древесины. Маоз и др. [107] показали, что, однако, экстракты древесины кедра Аляски, можжевельника западного, кедра ладана и кедра Порт-Орфорд могут уменьшить рост плесени ( Paecilomyces , Trichoderma , Penicillium , Aspergillus , Aspergillus , и Sporothrix видов) на заболони пихты дугласовой, они не способны полностью защитить древесину от грибков.Таким образом, только многокомпонентные экстракты могут рассматриваться как потенциальные альтернативы традиционным системам защиты древесины. Эффективность древесных экстрактов против плесени также изучалась Мансуром и Салемом. Они сообщили о полном подавлении роста T. harzianum древесными экстрактами Cupressus sempervirens L. и Morus alba L. -плесень биоцид. Результаты другого исследования Salem et al. [108] показал хорошую устойчивость древесины сосны обыкновенной ( P. sylvestris L.), сосны смоляной ( P. rigida Mill.) И бука европейского ( Fagus sylvatica L.), обработанной Pinus rigida. экстрактов сердцевины древесины против нескольких плесневых грибов ( Alternaria alternata , Fusarium subglutinans , Ch. Globosum , A. niger и T. viride ). Однако примененный метанольный экстракт сердцевины древесины P. rigida не уменьшал полностью рост грибков.Его основные составляющие были идентифицированы как α-терпинеол, борнеол, терпин гидрат, D-фенхиловый спирт и лимоненгликоль.

Наиболее распространенными проблемами, связанными с экстрактивными веществами древесины, применяемыми для противогрибковой обработки древесины с низкой прочностью, являются их разнообразие и непостоянство в их биологической активности, а также проблемы с выщелачиванием древесины. Чтобы преодолеть последнее, их фиксация на поверхности древесины с помощью ферментно-опосредованной реакции была предложена в качестве зеленой альтернативы традиционно используемым химическим веществам [109] .

4. Прочие растительные экстракты

Помимо эфирных масел, дубильных веществ и экстрактов древесины, существует несколько других веществ растительного происхождения, полученных из разных частей растения с использованием различных методов, с проверенными противогрибковыми свойствами, которые потенциально могут быть применены для повышения устойчивости древесины к поражению грибами.

Чай и кофе — одни из самых экономически ценных культур во всем мире. Их польза для здоровья была известна человеку на протяжении веков. Среди других биологически активных вторичных метаболитов, играющих важную роль в защите растений от патогенов, они содержат кофеин — алкалоид, который проявляет i.а. антиоксидантные, противомикробные, иммунологические, противораковые, а также противогрибковые свойства [110] [111] [112] . Экстракты чая и кофе были протестированы против древесных грибов, чтобы оценить их потенциальную эффективность в защите древесины. В целом, экстракты зеленого чая проявляли более сильное ингибирующее действие на отдельные грибы белой, коричневой и мягкой гнили, чем кофе, традиционный черный чай и коммерческие экстракты черного чая. Однако фильтрация удалила из экстрактов большую часть биологически активных соединений.Грибы белой гнили оказались наиболее чувствительными среди всех исследованных видов. Основной компонент экстрактов чая и кофе, кофеин, оказал сильное ингибирующее действие на большинство протестированных грибов [113] . Аналогичные результаты были получены с использованием экстрактов чая и кофеина против грибковых патогенов чайного растения, что подтверждает фунгицидную эффективность последних [114] . Было показано, что механизм фунгистатической активности кофеина включает его повреждающее действие на клеточную стенку и клеточную мембрану грибов [112] .Другое исследование было сосредоточено на потенциальной противогрибковой эффективности кофейной шкурки, которая является отходом промышленного процесса обжарки кофе. Оказалось, что экстракты горячей воды из кофейной шкурки содержат хлорогеновую кислоту и производные кофеина, способные подавлять рост Rhodonia placenta , G. trabeum и T. versicolor . Более того, их экотоксичность была значительно ниже по сравнению с коммерческими консервантами для древесины на основе меди, что делало их потенциальным сырьем для получения химикатов, полезных для консервирования древесины [115] .Растворы чистого кофеина, нанесенные на образцы сосны обыкновенной, эффективно снижали восприимчивость древесины к плесени ( A. niger , A. terreus , Ch. Globosum , Cladosporium herbarum , Paecilomyces variotii , Penicillium , Penicillium , . funiculosum , T. viride ), грибы бурой гнили C. puteana и P. placenta и гриб белой гнили T. versicolor . Несмотря на перспективность защиты древесины от грибков, кофеин оказался легко вымываемым из древесины, что является его основным недостатком, препятствующим его применению для древесины, используемой на открытом воздухе [116] .Поэтому было сделано несколько попыток стабилизировать кофеин внутри структуры древесины с использованием кремнийорганических соединений [117] или смеси силанов и прополиса [118] .

Низкие концентрации экстрактов ядовитого Nerium Oleander L. показали Goktas et al. [119] как эффективный в защите образцов древесины бука восточного турецкого и сосны обыкновенной против грибов бурой и белой гнили. P. placenta и T. versicolor , соответственно.Об аналогичных свойствах сообщалось также для экстрактов Gynadriris sisyrinchium (L.) Parl, другого ядовитого растения [120] . Кроме того, экстракты листьев лишайника ( Usnea filipendula ) и омелы (Viscum album), нанесенные на заболонь сосны обыкновенной, снижают восприимчивость древесины к поражению грибами C. puteana [121] .

Компоненты пиролизного дистиллята были изучены Barbero-López [122] как потенциальный альтернативный ресурс для консервантов древесины.Дистилляты конопли, березы и ели в концентрации 1% подавляли рост C. puteana , R. placenta и G. trabeum . Пропионовая кислота была определена как наиболее эффективное противогрибковое соединение. В свою очередь, Sunarta et al. [123] сообщил о высокой противогрибковой эффективности биомасла, полученного пиролизом скорлупы плодов пальмы, против грибка с синей окраской Ceratocystis spp.

Умеренные антиплесневые свойства 3% водных экстрактов Acacia saligna (Labill.) Х. Л. Вендл. о цветках сообщили Al-Huqail et al. [124] при нанесении на образцы древесины Melia azedarach , демонстрируя его потенциал для консервации древесины. Среди основных активных соединений с доказанными противогрибковыми свойствами были бензойная кислота, кофеин, нарингенин и кверцетин. Экстракты плодов Withania somnifera значительно ограничивали рост мицелия A. alternata , Bipolaris oryzae , Colletotrichum capsici , C.lindemuthianum , Curvularia lunata , Fusarium culmorum , F. oxysporum , F. moniliforme , Macrophomina phaseolina , Rhizoctonia soltifungalina и Rhizoctonia soltifungalza , демонстрируя их потенциал защиты и Rhizoctonia solani , а также их потенциал защиты растений и Rhizoctonia solani , а также дерево [125] [126] [127] . Противогрибковую активность этих экстрактов приписывали однократному или синергетическому эффекту нескольких соединений, включая алкалоиды, флавоноиды, гликозиды, сапонины или дубильные вещества.Bi et al. [128] , в свою очередь, изучали стойкость к гниению древесины тополя, обработанной этанольным экстрактом порошка коньяка ( Amorphophallus konjac K. Koch). Экстракты были более эффективны против коричневой гнили G. trabeum , чем против белой гнили T. versicolor . Салициловая кислота, ванилин, 2,4,6-трихлорфенол и коричный альдегид были определены как наиболее активные соединения.

Некоторые экстракты листьев также обладают противогрибковой активностью против древесных грибов.Они могут быть экономически жизнеспособным потенциальным источником биологически чистых консервантов для древесины благодаря тому факту, что их можно легко получить непосредственно из деревьев или в качестве побочного продукта во время лесозаготовки. Маоз и др. [107] продемонстрировал эффективность экстрактов листьев кедра Аляски, пихты Дугласа, западного красного кедра и тихоокеанской пихты в защите обработанной заболони пихты Дугласа от поражения плесенью видов Trichoderma и Graphium . Коллективные экстракты этанола из корней, стеблей и листьев Lantana camara , богатые алкалоидами, терпеноидами и фенолами, полностью подавляли рост белой гнили T.versicolor и коричневая гниль Oligopous placentus [129] . Метанольные экстракты Magnolia grandiflora L., как показано Мансуром и Салемом [85] , повлияли на рост патогена обыкновенной древесной плесени Ta harzianum , тогда как экстракты листьев Robinia pseudoacacia эффективно ингибировали рост древесины. гниющий гриб T. versicolor [130] .

Запись с 10.3390 / молекул 25153538

лигнин | Энциклопедия

Отделение лигнина от черного щелока, образующегося в процессе варки крафт-целлюлозы, может быть достигнуто с помощью мембран для подкисления и ультрафильтрации. Метод подкисления основан на равновесии диссоциации слабых кислотных групп, что влияет на растворимость химических соединений, связанных с лигнином. С другой стороны, процессы мембранного разделения могут быть эффективными и рентабельными во многих случаях, однако есть два ключевых ограничения: во-первых, такие процессы становится все труднее контролировать по мере увеличения концентрации удерживаемого материала.Во-вторых, поток пермеата, проходящего через мембрану, имеет тенденцию падать при продолжительном использовании из-за таких явлений загрязнения, как закупорка пор и образование корки [5] .

Процессы LignoBoost и LignoForce являются двумя основными коммерческими технологиями для осаждения лигнина из черного щелока [6] , и обе могут использоваться для получения крафт-лигнина из древесины твердых пород. В процессе LignoBoost используется растворенный диоксид углерода (CO 2 ) для снижения pH технологического потока с ~ 13 до 10 ().Хорошо известно, что при подкислении BL феноксидные группы растворенного лигнина становятся протонированными, и растворимость лигнина снижается, т.е. лигнин выпадает в осадок. После осаждения твердые вещества отделяют фильтрованием, затем повторно суспендируют в воде и серной кислоте (H 2 SO 4 ) для получения более низкого pH ~ 2,5 для удаления примесей [5] .

Рис. 1. Процесс LignoBoost от Stora Enso.

При значениях pH менее 11 могут образовываться значительные количества соединений общей восстановленной серы (TRS) и других летучих соединений серы.Такие соединения обладают сильным запахом и имеют хорошо известное отрицательное воздействие на здоровье человека и другие формы жизни. Таким образом, LignoForce была создана для решения этих проблем [7] . LignoForce — это коммерциализированная технология, которая сначала окисляет черный щелок с помощью O 2 , а затем подкисляет до pH ~ 9 с помощью CO 2 [8] ().

Стоит упомянуть, что лигнин необходимо осаждать из отработанных щелоков варки целлюлозы эффективно и выборочно, чтобы получить экономически целесообразное производство лигнина [8] .К сожалению, известно, что кислотные условия, используемые при осаждении лигнина, вызывают некоторое расщепление β-эфира и конденсацию лигнина [9] . Таким образом, условия процесса извлечения лигнина из черного щелока могут мешать его переработке и использованию. Реакции расщепления и конденсации изображены на.

Использование экстрагированных лигнинов, а не цельной биомассы может претендовать на преимущество, заключающееся в том, что материал может быть полностью растворен в органических растворителях, облегчая извлечение и непрерывную переработку [9] для диверсификации продуктов и, следовательно, создания ценности для целлюлозы и бумаги промышленность.Однако важно отметить, что лигнины могут быть извлечены из всей биомассы. Лигнины в любой форме растворимы в ионных жидкостях (ИЖ), что облегчает экстракцию из лигноцеллюлозы. Экстракцию можно проводить с растворением или без растворения биомассы [10] . ИЖ считаются экологически чистыми растворителями из-за их нелетучести и низкой воспламеняемости. Кроме того, ИЖ не только используются в качестве растворителей, но также играют важную роль в каталитических циклах в реакциях варки целлюлозы [11] .Однако у ИЖ есть серьезный недостаток, поскольку они намного дороже по сравнению с обычными и традиционными растворителями. Таким образом, следует изучить и подчеркнуть возможность восстановления ИЖ. Доказано, что из-за π – π взаимодействия между IL и лигнином удаление лигнина из IL является сложным процессом и, следовательно, требует нескольких этапов [12] . Это делает переработку и регенерацию ИЖ, особенно в чрезвычайно больших объемах, столь же неэффективными с точки зрения затрат [13] .

Кроме того, сообщалось, что глубокие эвтектические растворители (DES) полностью выделяют лигнин из лигноцеллюлозной биомассы в однореакторной процедуре [14] .DES — это экологически чистые и недорогие растворители, которые появились в начале этого века для решения проблем IL [15] . Подобно ИЖ, DES обладают интересными свойствами, включая незначительную летучесть, негорючесть и высокую проводимость [16] .

3. Применение лигнина

В этом разделе рассматриваются основные результаты исследований и разработок в области применения крафт-лигнинов из древесины лиственных пород.

3.1. Брикеты и пеллеты

Интерес к возобновляемым источникам энергии (ВИЭ) растет во всем мире, о чем свидетельствует огромный интерес к окатышам и брикетам.Эти два материала представляют собой топливо, произведенное из биомассы. Европейские страны потребили 50% мировых древесных пеллет в 2018 году [17] . Кроме того, в том же году Соединенные Штаты произвели 8,2 миллиона тонн; будучи вторым по величине производителем в мире, уступая только Китаю. Следует отметить, что рынок продолжает расти из-за высокого спроса со стороны зарубежных рынков.

Сообщается, что прямое добавление 6% (мас. / Мас.) HWKL к брикетам положительно влияет на кажущуюся плотность, удельную энергию, теплотворную способность и механическое сопротивление материала [18] .Кроме того, сообщалось о возможности добавления HWKL к гранулам. Наблюдалось улучшение физических и механических свойств (плотность, механическая прочность, мелкие фракции и твердость) [19] . Это исследование подчеркнуло важность лигнина с низким содержанием золы и влаги для производства брикетов и гранул.

Хотя это приложение все еще находится на стадии исследования, ранее упомянутые многообещающие результаты указывают на высокий потенциал брикетов и окатышей для обеспечения части потребляемой энергии во всем мире, с обширной кривой потенциального использования крафт-лигнина из древесины лиственных пород без сопутствующего фракционирования и / или модификация.

3.2. Диспергатор

Диспергатор — это термин, обычно используемый для описания поверхностно-активных веществ, пластификаторов или эмульгаторов в зависимости от области применения. Здравоохранение, пищевая промышленность, гражданское строительство и сельское хозяйство значительно выигрывают от диспергаторов, которые позволяют смешивать несмешивающиеся жидкие фазы и повышают стабильность суспензий частиц. Диспергаторы снижают межфазное натяжение между несмешивающимися жидкостями, а также увеличивают силы отталкивания между взвешенными частицами и предотвращают осаждение и агрегацию фаз, тем самым улучшая технические свойства многофазных систем, такие как реология, срок службы и функции [20] .

Как обсуждалось в предыдущих разделах, крафт-лигнины не растворимы в воде. Таким образом, для использования HWKL в качестве диспергатора требуется модификация. Исследование карбоксиметилированного крафт-лигнина древесины твердых пород показывает, что его можно успешно использовать в качестве диспергатора для глинистых суспензий [21] . Исследователи добавили, что он потенциально может применяться в составах пестицидов, керамических суспензиях и в качестве добавки к цементу. Оптимальные условия для карбоксиметилирования: концентрация 1,5 М NaOH, соотношение хлорацетат натрия (SCA) / лигнин 3 моль / моль, 40 ° C, 4 часа и 16.Концентрация лигнина 7 г / л. Кроме того, этот модифицированный лигнин имел плотность заряда и карбоксилатную группу 1,8 мэкв / г и 1,68 ммоль / г соответственно.

В другом исследовании сульфометилированный HWKL был получен с использованием формальдегида и сульфита натрия в щелочных условиях. Оптимальными условиями для модификации лигнина были 0,5 М NaOH (водн.), 0,9 моль / моль гидроксиметилсульфоната натрия / лигнин при 100 ° C в течение 3 ч и концентрация лигнина 20 г / л [22] . Было показано, что модифицированный лигнин имел плотность заряда -1.60 мэкв / г и содержание сульфонатных групп 1,48 ммоль / г. Сульфометилированный лигнин использовался в качестве диспергатора цемента, и диспергируемость цемента была увеличена с 60 до 155 мм путем добавления 1,2 мас.% Модифицированного лигнина в цемент. Исследователи также оценили добавление немодифицированного лигнина, который не изменил диспергируемость цемента.

Большинство используемых в промышленности диспергаторов синтезируются из невозобновляемых прекурсоров и не являются биоразлагаемыми, что вызывает опасения по поводу их устойчивости [20] .Поэтому разработка диспергаторов на основе лигнина является привлекательным решением. Более того, лабораторные эксперименты уже показали, что его изготовление из модифицированного HWKL возможно.

3.3. Адсорбенты

Лигнин обладает хорошей способностью адсорбировать ионы тяжелых металлов, поскольку он имеет два типа кислотных центров (карбоксильные и фенольные группы), которые участвуют в механизме сорбции. Таким образом, ионный обмен с использованием лигнина был изучен как потенциально дешевый метод очистки сточных вод [ 1 ] [23] .Крафт-лигнин эвкалипта был изучен для удаления Cu (II) и Cd (II) из воды / сточных вод в однокомпонентных и многокомпонентных системах [23] . Исследователи подчеркнули превосходные характеристики HWKL по сравнению с большинством адсорбентов, углей и биосорбентов, используемых в настоящее время. Также было упомянуто, что крафт-лигнин из твердых пород древесины в качестве адсорбента еще не является коммерческим, однако лабораторные результаты показывают, что его можно применять для разработки крупномасштабных систем.

Помимо ионного обмена, производные лигнина могут эффективно захватывать ионы металлов за счет хелатирования и электростатических взаимодействий.В обзорной статье о применении лигнина в качестве адсорбента тяжелых металлов говорится, что лигнин может быть модифицирован физическими / химическими методами для изготовления желаемых адсорбентов с хорошей сорбционной способностью и селективностью в отношении целевых металлов [24] . Исследователи также отметили, что материалы на основе лигнина продемонстрировали отличную сорбцию таких металлов, как токсичные металлы (Hg), драгоценные металлы (Ag) и анионы металлов (Cr). Кроме того, было рекомендовано сделать особый упор на модификации лигнина при проектировании и разработке усовершенствованных адсорбентов на основе лигнина.

3.4. Гидрогели

Гидрогели представляют собой трехмерные полимерные сетки, образованные из сшитых гидрофильных полимеров. Они нерастворимы и способны удерживать большое количество воды в набухшем состоянии. Обычно они используются для контактных линз, средств гигиены, перевязочных материалов, доставки лекарств и тканевой инженерии.

Синтез гидрогелей путем радикальной полимеризации крафт-лигнина лиственных пород, N-изопропилакриламида и N, N’-метиленбисакриламида показан на рис.

Рис. 4. Реакция радикальной полимеризации для получения гидрогеля на основе лигнина: ( a ) разложение инициатора азобисизобутиронитрила (AIBN), ( b ) образование феноксирадикалов и ( c ) реакция сшивки [25] .

Реакции, участвующие в производстве гидрогелей на основе лигнина, хорошо описаны в другом месте [25] . Результаты исследования показали, что гидрогели на основе лигнина проявляют меньшее сродство к набуханию, поскольку они обладают меньшей площадью поверхности и менее пористой структурой, чем синтетические гидрогели.С другой стороны, они были более термостойкими. Включение лигнина привело к образованию менее сшитого гидрогеля, что привело к увеличению жесткости и реологической стабильности гидрогеля. Было также указано, что по сравнению с синтетическими гидрогелями гидрогели на основе лигнина демонстрируют менее эластичные свойства при повышении температуры. Это единственное исследование, посвященное крафт-лигнину древесины лиственных пород в гидрогелях на основе лигнина.

3,5. Углеродные волокна (CF)

CF — это высокопрочные и легкие материалы, и их применение в композитах основано на их прочности, жесткости, малом весе, усталостных характеристиках, отсутствии коррозии и теплоизоляции [26] .Основные области применения CF — это строительство, электроника, транспорт и авиация. В настоящее время углеродные волокна производятся из полиакрилонитрила (ПАН) и пека, двух невозобновляемых материалов.

Одной из ключевых движущих сил продвижения рынка CF является потенциал для легких автомобилей. Однако высокая стоимость (~ 35 долларов США / кг) CF может препятствовать их использованию в коммерческих целях [27] . Углеродные волокна на основе лигнина с их низкой стоимостью и экологической привлекательностью являются хорошей альтернативой для сегмента [28] .Кроме того, ожидается, что лигнин будет иметь дополнительные преимущества для CF, такие как устранение токсичных веществ, участвующих в препарате [29] , более низкая температура плавления и более быстрая стабилизация [30] по сравнению с CF на основе PAN и пека.

Для получения CF на основе лигнина выделенный лигнин сначала перерабатывается в волокна путем экструзии нитей из геля, набухшего в расплаве или растворителе (прядение), а затем пряденные волокна термически стабилизируются на воздухе, где лигниновое волокно окисляется (стабилизация).После этого волокна подвергаются пиролизу в атмосфере азота или инертной атмосферы, где волокна карбонизируются за счет удаления летучих углеводородов, их окисленных производных, моноксида углерода, диоксида углерода и влаги [28] . представлена ​​модель рабочего процесса для получения углеродных волокон из лигнина.

Рис. 5. Рабочий процесс использования лигнина в качестве прекурсора для углеродного волокна.

Сообщалось о

CF из крафт-лигнина из твердой древесины с механическими свойствами, подходящими для обычных классов качества [31] .Было показано, что предварительная термическая обработка лигнина для удаления летучих примесей нарушает целостность волокна во время последующего термического прядения и снижает содержание гидроксильных групп и последующие межмолекулярные взаимодействия за счет конденсации ароматических ядер лигнина.

Формируемость лигнина, по-видимому, сильно зависит от его структуры. Лигнины твердых пород древесины, структура которых довольно линейна, можно формовать из расплава без каких-либо добавок [1] [31] . Смешивание HWKL с полиэтиленоксидом (PEO) дает смешивающиеся полимерные смеси, которые облегчают термическое прядение [31] .Кроме того, сообщается, что SWKL имеет трудности с прядением, которые можно преодолеть добавлением пермеата HWKL в качестве смягчающего агента [32] .

Сообщалось, что HWKL также может быть успешно преобразован в CF путем смешивания его с синтетическими полимерами, такими как полиэтилентерефталат (ПЭТ) и поли (этиленоксид) (ПП), особенно с первым [33] . Обе системы легко превращались в волокна, и состав смеси влиял на морфологию поверхности углеродных волокон.Несмешивающиеся волокна лигнин-ПП приводили к полому и / или пористому углеродному волокну, тогда как углеродное волокно, полученное из смешиваемых волокон лигнин-ПЭТ, имело тенденцию иметь гладкую поверхность.

Также сообщалось о производстве CF из сополимера HWKL с PAN. Полученный сополимер был подтвержден инфракрасной спектроскопией с преобразованием Фурье (FTIR), 13 C и 1 H ядерной магнитно-резонансной (ЯМР) спектроскопией, показывающей присутствие группы C≡N из PAN, элюируемой совместно с эфиром, гидроксилом, и ароматические группы, относящиеся к лигнину.Средняя прочность на разрыв CF составляла 2,41 гс / день, деформация при растяжении — 11,04%, а модуль — 22,92 гс / день [34] .

Стабилизированный крафт-лигнин CF из древесины твердых и мягких пород показал структуру сердцевины кожи, аналогичную волокнам, изготовленным из пека [35] . Кроме того, образование пор в несмешивающихся полимерных смесях крафт-лигнина древесины лиственных пород и полипропилена происходит в два этапа: окислительное разложение компонента полипропилена с последующей пиролизной газификацией остаточных компонентов, связанных с полипропиленом.Газификация — главный фактор роста пор. Площадь внутренней поверхности CF на основе лигнина (499 м 2 / г) была ниже, чем у коммерческого активированного угля (745 м 2 / г) [36] . Однако исследователи уверяют, что относительно простые процессы, такие как активация паром, могут эффективно активировать эти пористые углеродные волокна лигнина и сделать их пригодными для коммерческого использования.

Наконец, в недавней статье была продемонстрирована разработка электродов из активированного углеродного волокна, произведенных из HWKL, для изготовления конденсаторов с двойным электрическим слоем (EDLC) с высокими плотностями энергии и мощности с использованием IL-электролита [37] .Смесь раствора HWKL, полиэтиленгликоля в качестве расходуемого полимера и гексаметилентетрамина в качестве сшивающего агента в диметилформамиде / уксусной кислоте (6/4) подвергали электропрядению, и полученные волокна легко термостабилизировали с последующей карбонизацией и активацией паром с получением активированного CF.

3,6. Антиоксиданты

Антиоксидантные свойства HWKL были определены с помощью анализа свободных радикалов DPPH (2,2-дифенил-1-пикрилгидразилгидрат). Этот метод основан на переносе электрона, при котором образуется фиолетовый раствор в этаноле.Активность поглотителя радикалов выражается в количестве антиоксидантов, необходимых для снижения начального поглощения DPPH на 50% (IC50). Ингибирующий эффект образцов HWKL составлял ~ 8,4 мкг / мл, тогда как IC50 для коммерческого антиоксиданта бутилированного гидрокситолуола (BHT), аскорбиновой кислоты и Trolox составлял 13,3 мкг / мл, 2,9 мкг / мл и 3,4 мкг / мл соответственно [ 38] , который демонстрирует высокую антиоксидантную способность HWKL.

В целом, антиоксидантная активность увеличивается с увеличением содержания фенольных гидроксилов, поскольку они могут улавливать свободные радикалы, количество которых уменьшается с увеличением содержания алифатических гидроксилов.Лигнин с более низкой молекулярной массой и более узким молекулярно-массовым распределением кажется полезным [39] , что также демонстрирует большой потенциал крафт-лигнинов древесины лиственных пород.

В другом исследовании оценивали антиоксидантную активность HWKL с помощью анализа 2,2′-азино-бис (3-этилбензотиазолин-6-сульфоновой кислоты (ABTS), который измеряет относительную способность антиоксидантов поглощать ABTS, образующиеся в водной фазе. HWKL может окислять ABTS до ABTS + из-за своего восстанавливающего потенциала, что приводит к изменению цвета (с синего на зеленый) [40] .

Крафт-лигнины продемонстрировали способность действовать как антиоксидант для пищевой, косметической и фармацевтической промышленности вместо синтетического ресурса BHT. Лигнин как косметический или фармацевтический продукт до сих пор не регулируется, поскольку необходимы исследования, касающиеся безопасности его использования у людей [38] . Недавно сообщалось, что наночастицы лигнина из древесины лиственных пород улучшают солнцезащитные свойства. Лучшая рецептура имела коэффициент пропускания УФ только 0,5–3,8% по всей области UVA – UVB по сравнению с 2.7–51,1% коммерческого солнцезащитного крема SPF 15 [41] .

3,7. Ароматические соединения — химические вещества

Валоризация лигнина в системах растворителей для производства возобновляемых ароматических химикатов привлекла большое внимание в последние годы. Методологии получения этих соединений можно разделить на гидролиз, гидрогенолиз, окисление и двухстадийную деполимеризацию лигнина. Кроме того, катализ является многообещающим методом деполимеризации лигнина с образованием определенных продуктов [42] .

Бензол, толуол, ксилол (БТК) и фенолы — это ценные химические вещества, которые можно более рационально получать из лигнина, чем из ископаемых [43] . БТК является предшественником ряда материалов, таких как смолы, нейлоновые волокна, полиуретан и полиэстер; таким образом, производство БТК из лигнина могло бы расширить использование материалов на основе лигнина. Следует отметить, что при нацеливании на химические вещества из лигнина ключевой задачей на стадии фракционирования и деполимеризации является минимизация конденсации лигнина, как указано ранее в этом обзоре [44] .

Другими ароматическими соединениями, которые могут быть получены из лигнина, являются сирингальдегид и ванилин. Эвкалипт и HWKL из Северной Европы были исследованы на предмет получения этих соединений путем окисления O 2 в щелочной среде. Общий выход сиреневого альдегида составил 14%, тогда как для ванилина он составил 16% [45] . В другом исследовании кислородного окисления крафт-лигнина эвкалипта при оптимальных условиях было получено только пониженное количество фенольных альдегидов (4%).Напротив, в присутствии катализаторов выход может быть увеличен до 14% с нитробензолом и до 8% с CuO [46] . Это объясняется низким выходом превращения продуктов окисления лигнина / лигнина в низкомолекулярные кислоты.

Ванилин, ароматическое химическое вещество с наибольшим объемом производства в мире, производится из различных источников, а именно из масла (85%), древесной биомассы (15%) и стручков орхидей (<1%). В год производится около 20 000 тонн ванилина, 15% из которых поступает из лигнина (около 3000 тонн в год) [47] .Лигносульфонаты являются основными источниками для его производства; однако для этой цели также можно использовать крафт-лигнин. Использование лигнина в химической и полимерной промышленности представляет собой важную область исследований с серьезными проблемами с точки зрения науки, экономики и окружающей среды, и кажется оправданным, что лигнин станет многообещающим возобновляемым ароматическим ресурсом в последующие годы [48] . Сирингальдегид — еще один многообещающий ароматический альдегид, обладающий достойными биологически активными свойствами, который может использоваться в фармацевтической, пищевой, косметической, текстильной, целлюлозно-бумажной промышленности, а также в приложениях биологического контроля.

3.8. Полимерные смеси и композиты

Лигнин был добавлен к нескольким полимерам с определенной целью, чтобы потенциально обеспечить новые ценные свойства композита. Из-за большого количества полярных функциональных групп молекулы лигнина сильно взаимодействуют друг с другом. Большинство полимеров не смешиваются с лигнином из-за более слабого взаимодействия между лигнином и матричным полимером, чем между молекулами лигнина. Следовательно, конкурентные взаимодействия определяют структуру и свойства смесей и композитов [49] .

Была исследована смешиваемость синтетических полимеров, таких как поли (этиленоксид) (PEO), полиэтилентерефталат (PET) и поливиниловый спирт (PVA), с HWKL. Смешивающиеся смеси наблюдались в смесях лигнин / ПЭО и лигнин / ПЭТ, тогда как несмешивающиеся смеси были обнаружены в смесях лигнин / ПП и лигнин / ПВС [50] . Первые полимеры обладают функциональными группами, способными взаимодействовать с лигнином посредством вторичных силовых связей, а вторые — нет ().

Рисунок 6. Структурные изображения различных полимерных материалов, которые могут быть смешаны с лигнином [50] .

Возможный подход к валоризации лигнина — использование его в качестве компонента пластмасс. Разработка термопластов на основе лигнина основана на изменении вязкоупругих свойств лигнина посредством химической модификации или смешивания полимеров [50] . Последний — удобный метод разработки продуктов с желаемыми свойствами. Химические и физические свойства смесей / композитов зависят от типа (ов) мономера, молекулярной массы, а также распределения и состава соответствующих полимеров [2] [50] .

Термопласты с нейтральным углеродом были успешно получены сополимеризацией модифицированного HWKL (варианты дуба) и полибутадиена с концевыми дикарбоксильными группами (PBD- (COOH) 2 ). Модифицированный лигнин (фракционированием с метанолом или сшивкой формальдегидом) показал высокую молекулярную массу, которая облегчила получение свободно стоящих пленок термопласта на основе лигнина [51] . Кроме того, это позволило сформировать более непрерывную сеть с телехелическим полибутадиеном, в то время как очень широкое молекулярно-массовое распределение немодифицированного лигнина сформировало структуру с плохой сеткой.

Смешиваемые термопластичные смеси на основе лигнина были исследованы с использованием HWKL и PEO. Добавление небольших количеств ПЭО (5–10% мас. / Мас.) В достаточной степени разрушает супрамакромолекулярные комплексы лигнина, что приводит к улучшенным физическим свойствам. Увеличение включения ПЭО дополнительно разрушает структуру лигнина, и наблюдаемые физические свойства становятся более зависимыми от компонента ПЭО [2] .

Сообщалось, что олефиновые термопластичные полимерные композиции, содержащие по меньшей мере один полиолефин и эвкалиптовый крафт-лигнин, могут быть успешно изготовлены [52] .Патент обеспечивает повышение следующих свойств: индекса текучести (MFI), термоокислительной стойкости (время индукции окисления OIT), температуры теплового отклонения (HDT), жесткости (модуля упругости), прочности на разрыв и прочности на изгиб. Кроме того, материал сохраняет твердость и предел прочности на разрыв, измеренные на выходе.

Были изучены смеси эвкалиптового крафт-лигнина и PBAT (биоразлагаемый полиэфир, производимый BASF и основанный на мономерах 1,4-бутандиола, адипиновой кислоты и терефталевой кислоты).Исследование показало, что добавление до 20% лигнина приводит к смешивающимся или частично смешивающимся структурированным смесям, в которых лигнин действует как смазка. Кроме того, изгибы соответствуют техническим требованиям, необходимым для устойчивых решений для жестких пластиковых устройств в сельскохозяйственном сегменте, таких как пробирки для рассады [53] .

Межмолекулярные взаимодействия волокон из смеси HWKL и ПВС, полученных термической экструзией, были изучены [54] . Хотя смесь не смешивается (представляет собой два разных Т г ‘s), часть лигнина была тесно связана с ПВС в фазе, богатой ПВС.Анализ FT-IR подтвердил образование относительно прочной водородной связи между гидроксильными группами короткоцепочечного ПВС и лигнина.

Полиол на нефтяной основе был заменен крафт-лигнином из твердых пород древесины с получением жесткого пенополиуретана. Приготовленные пены содержали от 9% до 28% (мас. / Мас.) HKL [55] . Добавление лигнина снижает плотность пен, что желательно, если пену используют в качестве набивочного или изоляционного материала. Кроме того, авторы сообщили, что большая часть крафт-лигнина была химически сшита, и пены имели удовлетворительную структуру и прочность при добавлении до 23% (мас. / Мас.) При применении удлинителя цепи.

Сополимер полиуретана и лигнина был получен путем ступенчатой ​​полимеризации модифицированного крафт-лигнина эвкалипта с изоцианатом и легированного многослойными углеродными нанотрубками (MWCNTs) [56] [57] [58] . Лигнин обладает ионообменными свойствами благодаря наличию множества функциональных групп, что делает его привлекательным активным веществом для химической чувствительности. Сополимеризация позволяет закрепить лигнин внутри полимерной матрицы, обеспечивая высокую стабильность получаемого материала [56] .Кроме того, измерения электропроводности и импедансной спектроскопии показали, что взаимодействие между углеродными нанотрубками и молекулами лигнина в полимере увеличивает его электрическую проводимость [57] .

Фракции лигнина, имеющие различную молекулярную массу и различную химическую структуру из HWKL (Eucalyptus grandis), были включены в смесь покрытых оболочкой целлюлозных нановолокон (CNF) и крахмала для получения композитных пленок на 100% биологической основе. В общем, добавление лигнина привело к снижению термической стабильности и деформации при растяжении, а также к увеличению модуля Юнга композитной пленки [59] .Кроме того, в композитных пленках наблюдались некоторые агрегаты, которые могут объяснять более низкое растягивающее напряжение. Исследователи отметили, что лигнин из твердых пород древесины с более низкой молекулярной массой и полидисперсностью усиливает структуру пленки.

Использование лигнина в смесях полиолефинов вызывает растущий исследовательский интерес. Однако низкая совместимость лигнина и полиолефинов ограничивает получение удовлетворительных смесей и приводит к плохим механическим свойствам. Сообщалось, что эти проблемы можно преодолеть путем модификации лигнина перед его включением в полимеры для уменьшения его полярности [60] .Исследователи провели этерификацию крафт-лигнина эвкалипта, а затем смешали его с полиэтиленом в массовом соотношении 1: 1. Они обнаружили уменьшение объемного набухания и увеличения веса при использовании модифицированного лигнина, что может быть связано с этерификацией гидроксильных групп, а также со значительным уменьшением загрязнения сахаром и золой. Более того, они обнаружили, что относительное удлинение при максимальной прочности снизилось до 22% (εM = 11%), в то время как для других технических лигнинов снижение составило ~ 10%.Самые высокие значения прочности на разрыв наблюдались у смесей древесины твердых пород (17 Н / мм 2 ).

Сополимеризация N-изопропилакриламида (NIPAM) с HWKL была достигнута радикальной полимеризацией с переносом атома с использованием селективно модифицированного макроинициатора на основе лигнина, как показано на рис. Сообщается, что температура термического разложения сополимеров лигнин-полиНИПАМ значительно повышается с увеличением степени полимеризации НИПАМ. Растворимость сополимеров лигнин – полиНИПАМ в воде зависит от структуры сополимера.Как в водорастворимых, так и в суспендированных сополимерах, при температурах выше 32 ° C компонент, как сообщается, претерпевает переход от гидрофильности к гидрофобности, что приводит к осаждению сополимера [61] .

Фигура 7. Схема для получения сополимеров лигнин-g-поли-N-изопропилакриламид (НИПАМ) [61] .

Наконец, в последнее время большое внимание привлекли смеси и композиты лигнина и акрилонитрилбутадиена (АБС).АБС — очень популярный полимерный материал, о чем свидетельствует его широкое использование в качестве термопластической смолы в автомобильной, морской, бытовой, игрушечной и других отраслях промышленности. Лигнин обычно несовместим с полимерами АБС, о чем свидетельствуют большие домены разделения фаз с плохой межфазной адгезией в матрице АБС. К сожалению, это приводит к значительному снижению прочности и пластичности получаемого композита / смеси, тем самым ограничивая практическую применимость. В недавнем патенте рассматриваются эти проблемы и утверждается, что путем добавления агента, улучшающего совместимость, любой тип лигнина, включая HWKL, может быть добавлен к АБС-пластикам для обеспечения повышенной жесткости и снижения стоимости [62] .Авторы изобретения использовали агенты, улучшающие совместимость, такие как полиалкиленоксид, поливиниловый спирт, поливинилацетат, сополимер этилена и винилацетата, сополимеры стирола и малеиновой кислоты, нитрильный каучук и другие, чтобы способствовать диспергированию и / или распределению и / или смешиваемости лигнина и АБС.

4. Выводы

Благодаря высокой плотности энергии лигнина и внутренней структуре на основе ароматических веществ, этот биоматериал является идеальным возобновляемым сырьем, имеющим огромный потенциал в определении современного биоперерабатывающего завода.Лигнин демонстрирует большой потенциал для производства топлива, химикатов с добавленной стоимостью и функциональных материалов и, в конечном итоге, снижает воздействие их производства на окружающую среду. Хотя несколько исследований были сосредоточены на превращении лигнина в ценные продукты, только некоторые из этих усилий коммерчески прибыльны, в основном из-за низких выходов и низкого качества конечных продуктов [3] . К сожалению, большая часть работ с лигнином связана с крафт-лигнином из хвойных пород, тогда как лигнины остались без внимания. Поскольку HWKL имеет совершенно иную структуру, чем SWKL, знания, полученные от последних видов, не всегда могут быть применены к первому.Таким образом, цель настоящего обзора состояла в том, чтобы предоставить хорошую основу для его возможной оценки путем обзора структуры и свойств HWKL.

Добавить комментарий

Ваш адрес email не будет опубликован.