Как подключить диодный светильник: Как подключить светодиодный светильник к 220 В: 9 этапов монтажа

Содержание

Как подключить светодиодный светильник к 220 В: 9 этапов монтажа


Подключение точечных светильников: преимущества устройств

Если взять для сравнения светодиоды с люминесцентными экономными лампами, то превосходство и в этом случае будет на их стороне. К тому же, срок службы данных лампочек существенно больше. Экологическая составляющая светодиодных источников света и здесь будет на первом месте.

Светодиодные лампы нового поколения оснащены самыми лучшими свойствами и характеристиками, в сравнении с другими, имеющимися на рынке на сегодняшний момент.

Единственным недостатком, свойственным светодиодным лампам, сегодня можно назвать только высокую цену на такие изделия. За качественные светодиодные софиты придется заплатить дороже, чем за обычный источник света. Однако, тенденция к снижению стоимости дает надежду на то, что вскоре все смогут себе позволить более экономно расходовать энергоресурс, применять понижающий ее потребление способ освещения пространства.

Сегодня данные устройства применяют в основном на подвесном потолке. Если вы приобретете люстру с подсветкой, то в ней так же будут в наличии светодиоды.

Новые светодиоды обладают многими достоинствами:

  • Экономичность;
  • Качество;
  • Долгий срок службы;
  • Привлекательный вид;
  • Отсутствие плохого влияния на окружающую среду и человека;
  • Компактность;
  • Отсутствие в них нагара;
  • Простота установки.

Светодиодные лампы имеют самые лучшие характеристики среди других популярных дамп на рынке на сегодняшний момент.

Как подключить светодиодную лампу: устройство прибора

Строение светодиодного источника света довольно просто. Он включает в себя несколько светодиодов, а также корпус с необходимым отражателем. Для того, чтобы светодиоды охлаждать, в лампе присутствует радиатор. В нем, в месте соприкосновения со светодиодом, находится слой термопасты, которая улучшает контакт. И отвод тепла.

В случае, если светодиод перегреется, лампа выйдет из строя. Поэтому, при установке обязательно нужно оставлять свободное незамкнутое пространство возле радиатора. Также нельзя располагать светодиодную лампочку у нагревающихся приборов и поверхностей.

Общая мощность светильника всегда равна сумме мощности, равной всем входящим в нее светодиодам.

Светодиодов может иметься и совсем мало (один), и даже несколько десятков. Все они включены в общую электрическую схему, и подчиняются специально собранной цепи, подключенной через один блок питания. Новая светодиодная лампа обычной мощностью в 220 В состоит из более чем одного светодиода, которые защищены светорассеивателем или специальной пластиковой колбой. К патрону всегда подключена схема преобразования тока. Теплоотводящий радиатор установлен под светодиодом.

Схема подключения светодиодного светильника

Для действия светодиодов необходим постоянный ток. Покупая светильник для применения его в обычной квартире, на даче, или доме с рабочим обычным напряжением сети 220В, ищите светодиодную лампу, где на упаковке будет указана мощность именно 220 В.

Данная пометка означает, что схема необходимого для работы лампы блока питания, уже есть в лампе от завода-изготовителя, и прибор можно подключать напрямую к выключателю вашей электросети согласно имеющейся схемы подключения светильника (люстры).

В случае, если же на упаковке со светодиодной лампой указано значение 24 или 12 вольт, это значит, что для того, чтобы она нормально работала, нужен преобразователь напряжения. Тогда возможно использовать стандартный заводской специальный блок питания, который можно найти в специализированных отделах. Данный блок прослужит долго, он надежен и безопасен.

Все необходимые для подключения данные можно увидеть на упаковке лампы или в инструкции. Особую роль играет мощность устройства. Она должна быть, лучше всего, с запасом приблизительно в 20%. Чтобы правильно ее рассчитать, а затем полученные Амперы умножьте на рабочее напряжение. Так вы получите число, которое составляет потребляемую мощность необходимого вам светодиодного светильника.

Обратите внимание, что перед включением лампы обязательно следует убедиться, что блок питания не подключен к электросети. В противном случае поломки не избежать. Подключайте светильник к источнику питания параллельно, обязательно соблюдая полярность.

Производим монтаж встраиваемых спотов своими руками: как подключить трансформатор с 220 на 12В

Трансформатор – это устройство, представляющее собой сердечник с имеющимися двумя обмотками. В обязательном порядке на них должно присутствовать одинаковое количество витков. Сам же сердечник должен набираться из электротехнической стали.

На входе прибора подаётся напряжение, а в самой обмотке появляется необходимая электродвижущая сила, создающая магнитное поле. Сквозь него проходят витки первой из катушек. Благодаря этому возникает сила самоиндукции. Другая катушка генерирует напряжение, отличающееся от первого на столько раз, именно на сколько будет отличаться количество витков в обеих катушках.

Действие трансформатора осуществляется следующим образом:

  • Ток проходит по одной из катушек, создающей магнитное поле;
  • Все силовые полосы замыкаются возле проводников катушек;
  • Некоторые из данных силовых линий должны замкнуться возле проводников второй катушки.

Чем дальше находятся обмотки друг от друга на расстоянии, тем меньшая получается между ними электромагнитная связь. Через первую катушку проходит ток переменный и значит, создающееся магнитное поле тоже будет переменным. А значит меняться по закону и во времени. Из-за изменений тока в первом приборе, в обе катушки будет поступать магнитный поток, изменяющий величину и направление. В связи с этим будет происходить индукция переменной движущей силы. Если концы второй катушки соединить с приёмниками электроэнергии, тогда в цепочке приёмников образуется ток. К первой катушке от генератора сможет поступать энергия, равная той, которая отдается в цепочку второй. Данная энергия поступает посредством обычного переменного магнитного потока.

Можно ли одному изготовить трансформатор для встроенных потолочных ламп

Несмотря на то, что на первый взгляд данный прибор кажется довольно сложным, его без труда можно собрать самостоятельно. Необходимо всего лишь выполнить такие шаги:

  • Рассчитать характеристики и количество необходимых витков на обмотках катушках;
  • Полученное число умножаем на 220;
  • Изготовить из жестяных банок сердечник;
  • Обжечь эти заготовки в печи на огне;
  • Покрыть лаком и с одной стороны наклеить полоски бумаги.
  • Из толстого картона изготовить основу для катушки.
  • В готовую катушку нужно вставить железные полоски, которые должны войти, приблизительно на половину всей своей длины.
  • Обтянуть этими полосками основу
  • Соединить концы;

Возле сердечника и каркаса обязательно нужно оставить небольшое расстояние. Для понижающего устройства основание лучше всего изготовить из обычной доски до 50 мм толщиной. Крепить детали нужно при помощи больших скобок из металла, при чем так, чтобы скобки огибали всю нижнюю часть сердечника. На последнем шагу концы обмоток выводятся и закрепляются с контактами.

Схема подключения точечных светильников 220в (видео)

Современные светильники уверенно набирают темп среди всех приборов для освещения. Они экономны, безопасны и придают помещению эстетический вид.

Как подключить потолочные светильники — схема подключения

Современный рынок светотехники предлагает своим потребителям огромный выбор разнообразных встраиваемых осветительных приборов. Установить их можно абсолютно на любой потолок, из какого бы материала не был он создан. Современное освещение не только дает превосходную освещенность, но и способно преобразить интерьер, придав ему особый уют. Поток света при точечном освещении можно направлять в любую сторону, что создает интересные эффекты и делает интерьер комнаты оригинальным.

При монтаже можно добавить функцию  приглушения яркости света, что даст возможность все время экспериментировать с освещением.  В зависимости от интенсивности можно добиться очень необычных эффектов на потолке.

Подключение точечных светильников дело несложное, с которым можно справиться самостоятельно.

В этой статье мы рассмотрим, какие есть виды ламп, в чем отличие схем их подключения и монтажа, подробнее остановимся на нюансах их установки.

Какой тип светильника  выбрать?

В точечный светильник можно установить любой тип лампы –  светодиодную, галогенную, лампу накаливания.  Рассмотрим каждый тип подробней.

Потолочные светильники с галогенными лампами можно использовать в подвесных системах с небольшой высотой. Это безусловное преимущество, ведь такое освещение можно использовать практически во всех  конструкциях.  Галогенки дают интенсивный яркий свет, что весьма ценно, но зато замена их не так проста –  сначала нужно снять фиксирующее кольцо, и только тогда можно перейти к замене.

Внимание! Саму галогенную лампу нельзя трогать руками,  потому что потовые выделения с рук могут вызвать гидратогенез кварца,  из-за чего она потеряет герметичность и быстро перегорит.


При правильной установке, такой светильник будет служить раза в 2-3 дольше, чем обычный, еще и экономия электроэнергии при этом немалая.

Точечный светильник может быть оснащен и лампой  накаливания. Это конечно редкость в таком типе освещения, но изредка встречается. Использовать такое устройство можно только при высоких потолках, потому что лампы накаливания  сильно нагреваются. Подключение и замена таких ламп предельно проста и всем хорошо известна, но и срок ее службы совсем небольшой.

Светодиодные светильники – самый оптимальный выбор на данный момент. Светодиоды, использующиеся в данном устройстве, имеют массу преимуществ:

  • максимально экономны – меньше всего потребляют электроэнергии
  • долговечны– имеют самый долгий срок службы
  • обеспечивают  яркий, интенсивный свет.
  • компактны – могут использоваться тогда, когда расстояние между базовым и декоративным потолком небольшое.
  • не нагреваются при работе – поэтому не будут повреждать материалы потолочной конструкции.

Есть светодиодные лампы разного оттенка, потому подобрать освещение, максимально гармонирующее с вашим интерьером – не проблема.  Установка их имеет некоторые особенности, однако, без серьезных трудностей.

Как подключить потолочные светильники?

Чтобы предупредить перепады напряжения сети,  нужно  установить трансформатор, подающий напряжение равномерно, без перепадов.

Установка точечного освещения не так сложна, как может показаться на первый взгляд.  Подключение точечных потолочных светильников нужно производить строго по схеме. Все работы можно осуществлять одновременно с установкой любых потолочных систем.  Главное соблюдать некоторые условия, а именно –  между базовым потолком и корпусом светильника должно быть расстояние не менее10 см. Это позволит полностью спрятать внутри потолочной конструкции  корпус светильника, трансформатор, провода.

Для подключения потолочных светильников необходим трансформатор – это обязательный элемент схемы устройства, обеспечивающий бесперебойную подачу напряжения.

Для этих целей можно использовать трансформаторы нескольких типов:

  • Электронные. Они устанавливаются достаточно просто и легко. Благодаря своему легкому весу, не утяжеляют потолочную конструкцию. Однако у них есть свои минусы – довольно часто ломаются и требуют замены;
  • Индукционные трансформаторы стоят дешевле, но они довольно тяжелы – порядка 2 кг. Такие приборы служат гораздо дольше электрических, они надежны и практичны. Если вы решите использовать именно этот вид трансформатора, нужно, либо дополнительно усилить потолочную конструкцию, либо делать дополнительный крепеж для прибора от базового потолка.

Если вы решили своими руками смонтировать сеть точечных светильников, то вам необходимо приобрести сразу несколько трансформаторов. Каждый прибор будет обеспечивать напряжением определенную группу светильников, и если один сломается, то  другие поддержат рабочее напряжение в сети.

Подключение точечной системы освещения

Подключение точечной системы освещения можно осуществлять по нескольким различным схемам, а именно:

  • Схема последовательного подключения.  В этом случае подключение каждого элемента осуществляется на один провод, то есть  лампы подсоединяются друг за другом.  Монтаж тут предельно прост, но и минусов у схемы достаточно. В данном случае необходим выпрямитель цепи, а иначе ток будет подаваться неравномерно,  что вызовет перегорание ламп.
  • Второй вариант –  каждая лампа подключена к распределительной коробке персональным проводом.  Выпрямитель здесь также понадобиться, но в данном подключении безопасность и надежность в разы выше.

Для монтажа можно использовать специальный потолочный плинтус или  устанавливать прямо в потолочное  покрытие.

  • На начальном этапе, еще до установки навесной конструкции, нужно подготовить базовый потолок – произвести разметку будущего расположения всех элементов и  укрепить консоли.
  • После установки подвесной конструкции на ее поверхности проделывают отверстия под лампы.  Размеры  отверстия определить легко, ведь  диаметр обычно указан на упаковке. В среднем размеры составляют 6-7см.
  • Далее в каждое отверстие прокладывают кабели и подключают их к клеммам ламп.
  • Для установки светильника, его пружины нужно свести вместе, поместить в приготовленное отверстие, и только после этого отпустить. Благодаря таким манипуляциям светильник четко примет нужное положение и будет плотно прижат к поверхности потолка.  Все, монтаж окончен!

Подключение люстры по сложности мало чем отличается, с алгоритмом действий в этом случае, наверное, уже каждому знаком. Однако чаще всего в современном интерьере прибегают к точечному расположению освещения. Так можно сделать многочисленные источники света,  добиться лучшего освещения помещения, а также интересных световых эффектов.  Многих привлекает и то, что в данной системе освещения применяются экономичные лампы, что позволяет и комнату осветить ярко и не затратить много электроэнергии. Да и произвести своими руками подключение потолочных светильников– не проблема, главное не отходить от схемы, разработанной профессионалами.

Краткая суть статьи

  1. Точечная система освещения – оптимальное решение для любого помещения. Благодаря нему можно комнату равномерно наполнить ярким светом, а при желании добиться оригинальных эффектов с помощью мягкого освещения.
  2. Точечные светильники можно оснащать разными видами ламп – накаливания, галогенные светодиодные. Наиболее популярны последние два вида, а самым оптимальным по показателям практичности, экономичности и мощности являются светодиодные лампы.
  3. Смонтировать систему освещения вполне можно самостоятельно, если строго придерживаться схемы.
  4. Есть несколько видов подключения системы освещения, каждая из которых имеет свои нюансы,  подробнее о которых вы можете узнать в соответствующем разделе.

Как подключить светодиодный (LED) светильник?

Светодиодные светильники становятся более востребованными, чем старые добрые ртутные лампочки. Они могут работать десятки тысяч часов, экономя потребление электричества. LED-лампы обладают привлекательным внешним видом и компактностью. Их легко устанавливать, они полностью безопасны и не образуют нагара. Предлагаем подробнее рассмотреть, как правильно и безопасно выполнить подключение светодиодного светильника к 220В.

Правила безопасного подключения, необходимые инструменты

Чтобы избежать опасных последствий, важно соблюдать технику безопасности при монтаже осветительных приборов.

Простые правила работы с LED-освещением:

  1. Установку, обслуживание и другие работы с осветительными приборами важно выполнять только при выключенной электросети. Перед началом выполнения работ обесточивается помещение.
  2. Если светильник обладает напряжением менее 220В, его подключение осуществляется с помощью блока питания, идущего в комплекте. Запрещается пользоваться блоком питания для других видов ламп.
  3. Устанавливается светильник с учетом суммарного потребления энергии, которое указывается в инструкции к прибору. Напряжение тока проверяется индикаторной отверткой.
  4. Даже если работы выполняются в перчатках, руки обязательно должны быть сухими.
  5. Чтобы лампы прослужили дольше, а также во избежание нагрева и возгорания, рекомендуется сделать вокруг них достаточно свободного места.
  6. Если планируется монтаж светодиодных линейных светильников в помещениях с повышенной влажностью, важно учитывать условия допустимой температуры воздуха и влажности.
    Светильники, которые предназначены для помещений, нельзя монтировать на улице без специальной защиты.
  7. Светильники не должны подвергаться сильной вибрации или затоплению.
  8. Если осветительные приборы или блок питания имеют неисправности, не стоит их монтировать, во избежание плачевных ситуаций.
  9. Если система освещения неисправна, не стоит ее пытаться самостоятельно разобрать. Доверьте сервисное обслуживание производителю осветительных приборов.

Для монтажа светодиодного освещения в помещении потребуется минимальный набор инструментов. Необходимо подготовить плоскую и крестообразную отвертки, стрипперы, плоскогубцы. Работая с осветительными приборами, для соблюдения техники безопасности рекомендуется пользоваться специальными перчатками, имеющими диэлектрический слой.

Нюансы подключения светодиодных светильников к 220В

Устанавливается освещение разными способами. Каждый имеет свои особенности, плюсы и минусы.

Последовательный способ монтажа

Последовательное подключение светодиодных светильников применяют в том случае, если нет особенных требований к освещению. Используется данный способ с целью экономии длины кабеля. При установке используют двойные или тройные провода. Нельзя в одну цепь соединять больше, чем шесть светодиодных лампочек, так как они будут освещать помещение тускло.

К минусам данного метода относится то, что для устранения поломки в одной лампочке придется проверять все, чтобы выяснить, какая именно перегорела.

Монтаж последовательного способа:

  • От выключателя проводится фаза к первому осветительному прибору.
  • Провод монтируют от одного переключателя к следующим по очереди.
  • К последнему светильнику прокладывается ноль, пущенный от распределяющей коробки.

Проблем при таком способе не должно возникнуть, если строго следовать схеме подключения.


Важно не перепутать местами питание и ноль. В противном случае светильники окажутся под постоянным напряжением, что приведет к опасности.

Параллельное подключение

Параллельное подключение светодиодных светильников более практичное. Каждая лампочка светит настолько ярко, насколько позволяет ей производитель. Минус монтажа в том, что понадобится использовать намного больше проводника, чем при последовательном способе подключения освещения.

Важно обратить внимание на кабель ВВГ нг 2Х1,5. Он является негорючим с качественным изоляционным слоем. Если освещение в помещении требует чрезмерной техники безопасности, оно монтируется с использованием кабеля, имеющего маркировку ls. Такой кабель при возгорании не выделяет много дыма.


Для монтажа освещения с помощью параллельного способа кабель протягивается от распределителя через выключатель. При этом он по очереди соединяется с каждым освещающим прибором. Кабель обрезается после каждого подключения светильника и передается к следующему устройству до тех пор, пока все лампы не соединятся в одну сеть.

Положительная сторона такого способа подключения светильников в том, что если перегорит одна лампа, вся система будет продолжать работать. Достаточно будет заменить вышедшую из строя лампу для более яркого освещения помещения.

Лучевой способ монтажа освещения в помещении

Такой способ является трудоемким и дорогим. Кабеля к каждому осветительному прибору прокладываются по отдельности.

Для этого от распределяющей коробки к центральной части помещения прокладывается проводник, от которого кабель прокладывается к каждому отдельному осветительному прибору. К нулю и фазе важно провести провода с одной жилой. Такие действия выполняются для каждой лампы индивидуально.


Особенности монтажа светильника со светодиодами и тремя контактами

Чтобы смонтировать светильники с тремя контактами, рекомендуется вначале внимательно изучить инструкцию, документы устройства. В них должны быть указаны обозначения трех контактов. Чтобы было удобно работать со светильниками при подключении, провода окрашиваются в разные цвета. Нулевой провод окрашивают в синий цвет, а провод заземления – в желтый. Фазный кабель имеет другой оттенок.


Синий нулевой кабель соединяется с нулевым проводом из распределителя. Провод фазы из распределителя соединяется с выключателем, затем проводится под ним и соединяется с фазой на светильнике. Для безопасной работы при монтаже используют клеммные зажимы.

Не стоит в качестве изоляции использовать ПВХ-ленты. После их усыхания изоляция становится небезопасной. Такая ситуация может спровоцировать опасные последствия, например короткое замыкание.

Особенности монтажа светодиодных светильников на потолке

LED-лампы можно установить на натяжном потолочном покрытии, сделанном из ПВХ. Для монтажа светильников на пластичном материале рекомендуется сделать дополнительное крепление для предупреждения провисания потолка под весом осветительных приборов. С этой целью используют пластиковый конусовидный пандус. Для подгона размера лишние части конуса обрезаются острыми инструментами. Светильники крепят на стальную перфорированную ленту.


Лампы устанавливаются сразу же после монтажа натяжного потолка. В выбранном месте вырезается пленка, и достается патрон. Светильник монтируют на платформу, которая предупредит провисание потолка и его перегрев.

Чтобы наглядно увидеть подключение светодиодных светильников к сети, просматриваются специальные тематические видеоролики. Видео поможет правильно и безопасно выполнить монтаж светодиодного освещения в любой комнате.

Как настроить пульт от светодиодной люстры?

В последнее время все большей популярности приобретают светодиодные люстры с пультом управления (ПДУ). Благодаря возможности дистанционного контроля они просты и удобны в эксплуатации. Давайте разберемся, как настроить пульт от люстры и сложно ли это сделать.

Преимущества LED-светильников с ПДУ

Сегодня светодиодные потолочные люстры с пультом управления как никогда в моде. Их можно встретить в домах, офисах, кафе, гостиничных номерах, банкетных залах и прочих учреждениях.

Плюсы подобных осветительных приборов:

  • удобство – регулировать уровень освещения можно из любой части помещения;
  • энергоэффективность – встроенные светодиоды экономно расходуют электроэнергию;
  • разнообразие режимов – с помощью освещения в помещении можно создать нужную атмосферу;
  • долговечность – прибор прослужит многие годы;
  • доступная цена – особенно относится к китайским люстрам.

Программирование пульта от люстры

Чтобы правильно настроить ПДУ, внимательно прочтите инструкцию, имеющуюся в упаковке.

Настройка пульта

Чтобы привязать ПДУ к люстре, выполните следующие действия:

  1. выключите светильник с помощью стационарного выключателя и подождите 10 секунд;
  2. направьте ПДУ на люстру;
  3. нажмите на пульте кнопку СН1 и удерживайте ее, в течение этого времени включите светильник выключателем, панель должна блеснуть и затем включится – такое характерное мерцание свидетельствует о привязке ПДУ;
  4. после этого отпустите кнопку СН1.

Синхронизация люстры и пульта прошла успешно. Весь процесс занимает около минуты.

С использованием пульта вы сможете дистанционно регулировать режим работы, выбирать комплексное освещение или раздельное включение света.

Один ПДУ для нескольких светильников

Одним пультом можно управлять двумя и более радиоуправляемыми люстрами, и не одновременно, а по отдельности.

Чтобы запрограммировать пульт на работу с несколькими имеющимися в доме светильниками, проведите синхронизацию с каждым осветительным прибором по очередности. Такая возможность очень удобна, ведь в случае поломки ПДУ, вам не нужно покупать новое устройство. Все же существует минус – придется носить пульт во все помещения.

При необходимости можно программировать универсальный ПДУ под конкретную модель светильника. В этом случае делается прошивка – ее лучше доверить специалисту.

Управление через смартфон

Современными люстрами можно управлять с помощью телефона или планшета Samsung, Xiaomi, Lenovo, HTC и пр.

Синхронизировать умный девайс с потолочным светильником можно с помощью:

  • инфракрасного канала;
  • Wi-Fi;
  • Bluetooth.

Чтобы подключить смартфон к люстре, нужно скачать специальное приложение. Сделать это можно бесплатно для Андроид, Apple или другой ОС. Затем откройте программу, выберите предпочтительный способ передачи сигналов и управляйте освещением в удобный способ.

Где купить LED-люстры с пультом оптом?

В любом магазине осветительных приборов диодные светильники с ПДУ занимают значительную часть. Чтобы продавать действительно качественный товар и удовлетворять потребности любого клиента, важно выбрать надежного поставщика.

Компания Профит Лайт осуществляем оптовые поставки качественных китайских светодиодных люстр в Россию на выгодных условиях. У нас вы найдете широчайший ассортимент потолочных и настенных светильников, в том числе с пультами управления. Также вы можете отдельно заказать ПДУ и другие комплектующие для люстр.

Мы предлагаем осветительные приборы высокого качества по отличной цене. Заказывая у нас, вы получите товар с гарантий и бесплатную доставку в любой город РФ.

Как правильно подключить светодиодный прожектор?

Смотрите также обзоры и статьи:

Прожектор светодиодный представляет собой еще один тип осветительного прибора на основе современных источников света, коими являются светодиоды.

Наиболее часто прожекторы используются для оформления освещения вне пределов жилого помещения, на улицах, где требуется направить поток яркого света на определенный неосвещенный участок территории.

Наружный прожектор выполнен в защитной оболочке, которой не страшны перепады температуры в пределах от минус 50 и до плюс 70, скачки напряжения, периоды включения и выключения, воздействие негативных факторов окружающей среды: грязи, пыли, влаги, прямое попадание жидкости на корпус. Некоторые модели имеют дополнительный датчик движения, что значительно экономит электричество за счет работы по мере необходимости, а не все время.

Особенности конструкции

Прожектор в своей сердцевине обладает набором светодиодов матричного типа, которые в магазине или салоне света легко отличить по характерному ярко-желтому цвету. Обрамляет матрицу со светодиодами плафон, расширяющийся к краям с хромированными или зеркальными стенками – светоотражателями, которые усиливают яркость прожектора. Угол рассеивания света в этом приборе доходит до 110-140 градусов, чего вполне достаточно для эффективной подсветки калитки, деталей экстерьера, наружных витрин, рекламной продукции, афиш, биг-бордов, лайт-боксов и пр.

Отдельным типом прожекторов являются линейные, которые выполнены в виде ряда ярких и мощных светодиодов в металлической прямоугольной оболочке.
Используют прожекторы светодиодные повсеместно для подсветки объектов городской инфраструктуры: фасадов, архитектурных объектов, тоннелей, мостов, мануфактур, складских помещений, аллей и т. д. Подобного рода светодиодные приборы значительно экономят расходы на электроэнергию и непритязательны в эксплуатации, долговечны и просты в установке.

В среднем прожекторы обладают мощностью от 10 и до 50 ватт, что сравнимо с яркостью, производимой лампами накаливания в 75-500 ватт, соответственно маломощные подходят больше для частного применения, а сверхъяркие – для промышленного и общественного значения.

Схемы подключения

Надежная конструкция и прочный корпус выполнен из устойчивых к вибрациям, легким механическим повреждениям и проявлениям непогоды материалов позволяет использовать ее во внешней среде до 50000 часов без замены и выхода из эксплуатации. Снег, дождь, лютые морозы, зной, перепады напряжения, сильный ветер светодиодному прожектору нипочем.

Металлический корпус не подвержен коррозии и обладает степенью защиты от влаги IP 65. А благодаря встроенному стабилизатору напряжения яркость светодиодов в приборе не изменяется даже при низком напряжении: диапазон рабочего напряжения, не влияющий на качественную эксплуатацию, порядка 160-250 вольт.

Прожектор светодиодный на сегодня не является предметом дефицита – прожектор светодиодный купить можно на рынке в отделе светотехники, в специализированном магазине или строительном супермаркете, салоне света. Однако светодиодный прожектор купить наиболее выгодно можно в интернет-магазине, который обладает фирменными складами в Украине, в том числе и в Киеве, и осуществляет доставку напрямую от лучших производителей светодиодной продукции.

Последовательность работ

Для начала требуется выключить подачу электроэнергии на дом или квартиру в распределительном щитке. После чего необходимо провод или кабель питания прожектора завести в клеммную коробку.

И далее загерметизировать при помощи сальников всю конструкцию внутри коробки, определив где питающая жила. Затем необходимо выставить прожектор под нужным вам углом и закрепить его на кронштейне. Ослабляя винты можно отрегулировать угол падения света.

Подключение к сети

Надежным, долговечным и выгодным устройством для освещения наружных и в некоторых случаях внутренних помещений является прожектор светодиодный, который работает напрямую (сеть напряжения 220 вольт), не требует никаких дополнительных стартеров, трансформаторов напряжения, пусконаладочной аппаратуры.

При включении отсутствует период зажигания, светодиоды загораются моментально, нет стартерных токов. Подключение может происходить последовательно или по параллельной схеме.

Выводы

Подобного рода светодиодные приборы значительно экономят расходы на электроэнергию и непритязательны в эксплуатации, долговечны и просты в установке. просто достаточно знать самые распространенные схемы подключения, чтобы установить прибор самостоятельно правильно.

Светодиодные прожекторы не имеют стеклянных элементов в своей конструкции – металлический корпус с хромированными светоотражателями и пластиковый рассеиватель-диффузор.

Опубликовано: 2020-09-10 Обновлено: 2021-08-30

Автор: Магазин Electronoff

ПОДХОДЯЩИЕ ТОВАРЫ

Поделиться в соцсетях

Как подключать светильники?

Выбор и приобретение люстры являются самыми приятными моментами при оборудовании дома или квартиры новыми источниками света. Далее следует сборка люстры, время которой будет зависеть от сложности конструкции и ее последующее крепление. Но если с этим можно справиться, следуя подробной инструкции и имея под рукой элементарные монтажные инструменты, то для того чтобы подключить люстру требуются хотя бы минимальные знания электрики.

Подключение потолочной люстры – дело несложное, но с оговоркой… Если знаешь как ее подключать. Ну а поскольку большинство людей с законами физики сталкивались в последний раз разве что на лекциях, то давайте попробуем разобраться, как подключить люстру, не прибегая к помощи дяди электрика.

Правила техники безопасности при подключении люстры

Первым требованием при работе с электропроводкой является обесточивание необходимого участка, в данном случае – это выходящие из потолка провода. Не рекомендуется ограничиваться переводом выключателя в положение «ВЫКЛ», для гарантированного снятия напряжения следует отключить автоматы в щитке.

После этого подготовьте провода для тестирования, разомкнув их, чтобы не допустить соприкосновения друг с другом. Следуя правилам маркировки, нулевой провод обозначается латинской буквой N, а фаза буквой L. Для того чтобы определить, на какой из проводов что подается, воспользуйтесь индикаторной отверткой, поочередно касаясь оголенных кончиков. При этом следует подключить расположенный в щитке автомат, а клавиши выключателя перевести в положении «ВКЛ». Если во время тестирования внутри отвертки загорится светодиод, то данный провод находится под напряжением и являетсяфазой.

Разобравшись с проводами, следует вновь отключить подачу электропитания и уже спокойно заниматься монтажными работами. При соединении проводов рекомендуется использовать клеммные зажимы, также возможен вариант скрутки с последующей изоляцией защитными колпачками. Помните, лента ПВХ имеет свойство рассыхаться со временем, что значительно понижает ее изоляционные характеристики. Поэтому ее применение в данном случае нежелательно.

Установка люстры. Варианты и возможности

Существует несколько основных вариантов подключения люстры, которые могут изменяться в зависимости от таких параметров как:

  • количество проводов, выходящих из люстры;
  • количество проводов, выходящих из потолка;
  • количество клавиш на выключателе.

Подробное описание каждой схемы подключения позволит выбрать наиболее подходящий для установки вариант.

Вариант № 1. Два провода на люстре и два провода на потолке

Наиболее простым вариантом установки люстры, не требующим усилий, является подключение осветительных устройств с двумя проводами к двум проводам на потолке. В данном случае достаточно соединить пары проводов, предварительно определив фазу и ноль. Порядок соединения в данном случае не принципиален.

А) Схема подключения люстры с одной лампой на одноклавишный выключатель.

Нулевой провод (на схеме он синего цвета), идущий от распределительной коробки, следует напрямую подключить к нулевому проводу, выходящему из осветительного устройства.

Коричневый провод, обозначающий фазу, подключается не только к фазному проводу люстры, но и к выключателю.

Б) Схема подключения люстры с двумя-тремя лампами на одноклавишный выключатель.

При установке источников света с двумя или тремя лампами к выключателю с одной клавишей необходимо все нулевые провода, идущие от люстры, в первую очередь соединить между собой, а уже потом с нулевым проводом, приходящим от распределительной коробки. Провода с фазой также объединяются, после чего подаются на фазный провод, приходящий от выключателя.

Вариант № 2. Два провода на люстре и три провода на потолке

Электропроводка в современных строениях выполняется трехжильным кабелем, в котором присутствуют провода разного цвета. Соответственно к месту крепления осветительного прибора подводятся три провода, но на вашей люстре их только два. Так как же подключить люстру в данном случае?

В первую очередь следует разобраться с назначением проводов на потолке при помощи индикатора. Два из них – это фазы, а третий нулевой проводник. Два фазных провода предусматривают использование двухклавишного переключателя, но поскольку в данном случае мы рассматриваем подключение люстры всего с двумя проводами будет достаточно и одноклавишного выключателя.

Предварительно обесточив участок, проводим изоляцию одного из фазных проводов, оставляя пару фаза-ноль. Далее проводим монтаж уже вышеописанным способом.

Вариант № 3.

Три и более провода на люстре и два провода на потолке

Если из потолка выходит только два провода, то вариант подключения люстры, независимо от количества выходящих из нее проводов, только один – все лампочки в люстре будут гореть одновременно.

Для этого следует соединить все нулевые провода люстры между собой и подключить их к нулевому проводу, выходящему из потолка. Такая же операция проводится и со всеми проводами, на которые подводятся фазы.

Вариант № 4. Три и более провода на люстре и три провода на потолке

Данный вариант подключения подразумевает использование выключателя с двумя клавишами. Такой подход позволит обеспечить наиболее рациональное освещение рабочей зоны, комбинируя очередность и количество горящих на люстре ламп.

Три провода, выходящих из потолка маркируются следующим образом:

  • провод фазный L1;
  • провод фазный L2;
  • нулевой провод N.

Поскольку при прокладке электропроводки рабочие не всегда придерживаются цветовой схемы, а также зависят от типа используемого кабеля, следует обязательно убедиться в назначении каждого из проводов. Как уже было указанно выше, самым легким способом является работа с отверткой-индикатором.

Если такой индикатор отсутствует, то можно разобрать выключатель, предварительно выключив автомат в щитке. После этого легко определить, какие именно провода (какого цвета) проходят от выключателя к потолку. Помните, что фазные провода будет заходить на клавиши выключателя, а вот нулевой провод уходит напрямую к люстре.

Подключение люстры, из которой выходят несколько проводов к выключателю с двумя клавишами, отличается тем, что провода от ламп предварительно распределяются на две секции. Каждая из секций соединяется только с одним из проводов, по которым подается фаза, но при этом обе группы должны обязательно соединяться с нулевым проводом.

При таком способе подключения при нажатии одной из клавиш выключателя будет загораться одна группа ламп, а при нажатии второй клавиши – другая.

Такое соединение позволяет подключать как три лампы одновременно, так и одну или две лампы, при нажатии одной из клавиш выключателя.

В данном примере первая клавиша выключателя подключает 2 лампы, а вторая – 3 лампы.

В данном примере каждая клавиша выключателя включает по три лампы.

Еще один пример подключения 6-ти рожковой люстры, когда одна клавиша подключает сразу 5 ламп, а другая – одну.

Подключение люстры на большее количество рожков будет идентично уже рассмотренным примерам. Вам только остается распределить лампы по группам и подключить их на определенную клавишу.

Вариант № 5. Три и более провода на люстре и четыре провода на потолке

Если электропроводка в доме или квартире была выполнена относительно недавно, то существует вероятность наличия дополнительно защемляющего провода, который выполняет защитную функцию. Данный провод, обычно желто-зеленого цвета, и будет четвертым проводом, выходящим из потолка. Маркируется он латинскими буквами PE – заземляющий проводник. Остальные провода уже известны нам по предыдущему примеру. Это две фазы L1 и L2, а также нулевой провод.

При наличии в люстре желто-зеленого провода просто скрутите его с заземляющим проводом, выходящим из потолка. Если же в люстре такой провод не предусмотрен, просто заизолируйте на потолке желто-зеленый защитный проводник.

Как подключить несколько люстр к одному выключателю?

Данный вопрос актуален для помещений, где расположено сразу несколько источников света. В больших залах этот могут быть люстры, в жилых комнатах – группа галогенных или светодиодных ламп. Также может возникнуть необходимость подключения освещения сразу в нескольких помещениях. В данном случае подключение производится по следующей схеме:

Все люстры подключаются параллельным соединением. Каждая из люстр может быть подключена к выключателю через отдельные распределительные коробки, также в зависимости от схемы электропроводки возможно размещение в единой коробке распределения.

Как подключить три люстры к выключателю с тремя клавишами?

Такой вариант подключения очень часто используется для освещения кухни, туалета и ванной комнаты. При помощи установленного в коридоре выключателя с тремя клавишами можно легко включить необходимый осветительный прибор.

Как подключить одну люстру на два разных выключателя?

Для реализации схемы подключения осветительного прибора с двух разнесенных выключателей вам понадобятся специальные проходные выключатели. Такие устройства отличаются от обычных выключателей особенностями конструкции и наличием в монтажной схеме трех контактов.

Подсоединив провода согласно схеме вы сможете управлять освещением сразу с двух выключателей.

Как видно на рисунке в проходном выключателе присутствуют три контакта: общий вывод для подключения к люстре или фазовому проводу и два контакта, при помощи которых выключатели соединяются между собой.

Такое распределение необходимо продумать заранее, желательно перед началом ремонта. В противном случае вам понадобиться прокладка дополнительной проводки, с последующим косметическим ремонтом.

Галогенные лампы – преимущества использования и схемы подключения

Галогенные лампы намного выигрывают у своих предшественниц – обычных ламп накаливания, не только разнообразием представленного на рынке ассортимента, но и более низким потреблением электроэнергии. При этом их свечение остается не менее ярким, чем у ламп накаливания. Галогенные лампымалого напряжения нуждаются в источнике питания на 24, 12 или 6 Вольт. Единственное требование для подключения таких ламп – установка понижающего трансформатора, для преобразования 220 В от сети в требуемый номинал.

Для подключения нескольких галогенных светильников их необходимо подсоединить к понижающему трансформатору, предварительно запараллелив между собой.

Трансформаторы, благодаря небольшим размерам, можно размещать прямо в каркасах подвесных потолков. Количество светильников и трансформаторов может различаться, но помните, что каждый новый трансформатор должен подключаться отдельными проводами, которые будут сходиться враспределительной коробке.

Располагать трансформаторы следует на расстоянии не менее 20 см от источников тепла, при этом не рекомендуется превышать длину выходящих из трансформатора проводов более чем на 2-2,5 метра. Такое расположение может повлиять на яркостные характеристики галогенных ламп.

Люстра с пультом управления – роскошь или удобство?

Осветительные приборы с пультом ДУ – это самые современные разработки, в которые уже включены управляющие элементы. Такая люстра избавит вас от необходимости выбираться из-под теплого одеяла, чтобы потушить свет в спальне и поможет избежать случайных ударов об углы и стены при возвращении к кровати в полной темноте.

Люстры с пультом не требуют дополнительных знаний при установке, ведь их монтаж не отличается от подключения других источников света. Крепление такой люстры происходит по одному из описанных выше способов, а управлять освещением позволит уже встроенный контроллер.

При этом не рекомендуется избавляться от настенного выключателя, ведь каждый наверняка испытал на себе, сколько времени иногда занимают поиски пульта от телевизора и неоднократные возвращения из очередного похода в магазин без новых батареек.

Схемы подключения светодиодных диммеров

Диммеры активно применяются на промышленном и бытовом оборудовании в качестве выключателей, при этом они выполняют дополнительную функцию регулировку величины напряжения электрического тока.  Читайте также статью: → «Как работает диммер?».

Принцип работы диммера

Ранее в осветительных сетях последовательно нагрузке подключался реостат (проволочное переменное сопротивление) изменяя ток в цепи, менялась мощность, соответственно яркость свечения лампы. Этот метод не экономичен, оставшаяся мощность рассеивалась в виде тепла на конструкции реостата.

С появлением полупроводниковых приборов, диодов, симисторов, транзисторов и теристоров, появилась возможность более экономично управлять этим процессом. Расмотрим работу простейшей схемы на диодном мосту и теристоре.

Простейшая схема диммера на теристоре

Эта схема позволяет менять напряжение на нагрузке от 0 до 220В, лампы включаются в сеть через диодный мост. Пока теристор закрыт ток через диоды не проходит, выпрямленное напряжение прилагается между анодом и катодом теристора, одновременно оно прикладывается к зарядной цепи С1;R2;R1, при полной зарядке конденсатора теристор открывается. В этом случае замыкается диагональ моста через нагрузку пройдет переменный ток, в диагонали моста ток проходит только в одну сторону это позволяет использовать теристор. Аремя полупериода когда открывается теристор зависит от емкости С1 и сопротивления резисторов. Изменять продолжительность этого периода можно переменным резистором R1. Данная схема применима при мощности ламп до 160Вт, при большей нагрузке надо устанавливать теристор и диоды соответствующие потребляемой мощности. Читайте также статью: → «Критерии выбора диммера для светодиодных ламп и ламп накаливания».

Основные виды диммеров

Изначально диммеры использовались для управления мощностью приборов с активной нагрузкой, (с элементами нагрева, нить накаливания лампы, тэны в чайниках и нагревательных отопления). В процессе совершенствования конструкции изменялись, появилась возможность управлять индуктивной нагрузкой, регулировать обороты электродвигателей, яркость свечения светодиодных ламп и других приборов.

Диммеры разделяют по назначению:

  • Для активной нагрузки;
  • Для индуктивной нагрузки;
  • Для светодиодных энергосберегающийх ламп;
  • Для галогеновых ламп.

По конструкции органов управления выделяются следующие группы:

  • С поворотным диском;
  • На механических кнопках;
  • Сенсорные;
  • С дистанционным управлением.

Слово диммер происходит от английского dimmer (затемнитель), в данном случае подразумевается изменение параметров, яркости освещения, интенсивности нагрева, скорости оборотов или других. Современные приборы в зависимости от функционального назначения и конструкции могут управляться, поворотными ручками, кнопками, программируемыми сигналами, звуками определенной тональности, с пультов дистанционного управления.

Поворотные диммеры

По статистике продаж это самый востребованный у потребителей вид диммеров, он прост в подключении, дешевая цена, малогабаритный корпус легко вставляется в подрозетники для выключателей. Управление осуществляется поворотом дисковой ручки на панели корпуса, где отмечена рисками и цифрами величина устанавливаемой яркости ламп.

Многолетний опыт эксплуатации этих диммеров показывает, что при его использовании достигается существенная экономия электроэнергии и увеличивается сроки службы ламп накаливания. Этому способствует постепенный разогрев вольфрамовой нити, при резком скачке напряжения и тока нить часто не выдерживает и рвется.

Производители делают поворотные диммеры для управления яркостью светодиодных лент, температуры нагрева паяльников, конструкции таких изделий не имеют стандартных размеров. Они могут, исполнятся отдельными платами для монтажа в щитах с подключением через клеммы, после чего устанавливается значение яркости ламп или температуры теплого пола. Есть модели в отдельном блоке, на корпусе которого розетка для подключения приборов. Сам блок с регулятором включается в розетку с промышленной сетью 220 В, преимущество такой конструкции в том что димеер можно переносить и подключать к различным приборам.

Несмотря на сходство в органах управления функциональность электрической схемы, по параметрам выходного напряжения, потребляемой мощности, тока нагрузки могут сильно отличаться. Самая простая схема диммера для регулировки освещения ламп накаливания, более сложные схемы для управления светодиодными лампами и оборотами электродвигателей.

Диммеры для управления светодиодными лампами

Для управления яркости свечения светодиодных ламп схема диммера предусматривает использования широтноимпульсной модуляции. Амплитуда импульсов тока при этом остается постоянной, а временной промежуток между импульсами меняется.

Пример поворотного диммера для светодиодных ламп с пультом дистанционного управления

 По договоренности производителей ламп и диммеров в лампах предусмотрена часть схемы для согласования работы в совокупности с диммером. Стоимость светодиодных ламп и диммеров существенно больше элементов для обычных лам накаливания, но сроки службы и экономичность выше. Блоки диммера могут быть оснащены дополнительными функциями:

  • Таймером;
  • Программным управлением;
  • Подключением к ПК для расширения функций с помощью различных программ;
  • Возможностью использования в автоматизированных системах «Умный дом»;
  • С дистанционным пультом управления.
Вариант подключения диммера с дистанционным пультом к светодиодным лампам

Диммеры делают в виде отдельных плат или в пластиковом корпусе с клеммами для подключения. Последние модели светодиодных ламп могут подключаться к обычному диммеру, схема широтно импульсной модуляции встраивается в корпус лампы в области цоколя.

Особенности диммеров для галогеновых ламп

Ограничение проходящего тока через семисторонний ключ дросселями позволяет стабилизировать пульсацию напряжения. Это дает возможность применять диммеры для галогенновых ламп через понижающие трансформаторы.

Недостатком этого метода является снижение ресурса работы галогеновой лампы, в штатном режиме работы, при полноценном прогреве нити накаливания фальфрамовые пары осаждаются обратно. С использованием диммера нить прогревается не полностью частицы фальфрама скуднеют и она перегарает. Для продления срока службы, надо включать и выключать лампу на полной мощности, многие это забывают или вообще не знают. Читайте также статью: → «Схемы подключения и принцип работы проходного диммера».

Диммееры для люминосцентных ламп

Так же как и в светодиодных лампах, производители люминосцентныех моделей встраивают в цоколе микросхему согласующую работу. На нее приходят сигналы с делителя напряжения диммера.

Схема диммера для люминесцентной лампы

Выходные и входные параметры элементов ламп и диммеров должны соответствовать, для этого производители стараются адаптировать схемы в лампах под любые виды диммеров.

Методика подключения диммеров

Производители делают так, чтобы процесс подключения диммера в сеть был максимально прост, особенно на бытовом уровне. Поэтому для осветительных сетей в большинстве случаев габариты, форма и элементы крепления аналогичны простому выключателю.

Схема подключения диммера

 

Единственное отличие, это требование при подключении контактов, фазный провод, идущий от распределительной коробки к выключателю подключается на клемму с обозначением «L», на клемму N подсоединяют провод идущий от лампочки на выключатель.

Подключение и установка диммера в подрозетник

 

Одним из самых востребованных марок для экономичных и ламп накаливания являются диммеры фирмы Legrang они долговечны и удобны при монтаже.

Клеммы для подключения стандартны, а внешняя панель управления может отличаться, бывает одна клавиша, где при нажатии верхней половины яркость увеличивается, нижней уменьшается. Конструкция с двумя клавишами предусматривает полное отключение димера левой клавишей, правая работает как регулятор диммера.

Legrand диммер

модельОрганы управленияМощность в ВтСтоимость в руб
Legrand ValenaКнопки и поворотный350, 450, 650, 11001700
Legrand CelianeКнопки и сенсорные320, 420, 6202900
Legrand Galea Lifeкнопочные, поворотные420, 620, 11001700
Legrand Carivaкнопочные, поворотные320, 5201450
Legrand Mosaicкнопочные420, 11002000

 Характеристики и примерная стоимость диммеров Legrand

Совет №1 Диммеры в конструкции которых предусмотрен обычный выключатель, практично применять на загородных домах, в которых длительное время никто не проживает. В этом случае осветительная сеть обесточивается полностью.

Хорошей моделью считаются диммеры Шиндлер, стоят они дороже обычных для ламп накаливания или люминесцентных ламп, но преимущество их очевидно, практически эта схема универсальна. Корпус диммера сделан под стандартный выключатель, конструкция двухклавишная, одна клавиша работает как обычный выключатель, вторая регулирует яркость.

Диммеры Schneider

МодельМощность в ВтСтоимость в руб
ANYA AYA220012161-501650
ANYA AYA220012361-501650
Asfora EPH6400121601490
Asfora EPH65001216011200
Asfora EPH65001236011200
Asfora EPH66001213141000
Asfora EPH66001233141000

Некоторые модели диммеров Шиндлер могут подключаться к любым лампам, накаливания, светодиодным и галогеновым через пониджающий трансформатор. Часто такие диммеры используются для подогрева при выращивании цыплят в брудере с использованием инфракрасной лампы. Хорошие схемы подключения брудера автоматизированы, тепловое реле автоматически включается и отключается для поддержания необходимой температуры.

Совет №2 Диммер для ИК лампы в брудере должен быть по мощности не менее 800Вт.

Подключение диммера к люстре с двумя группами ламп (двойной преключатель)

Для люстр применяют двойные и тройные переключатели, чтобы включать различные группы ламп, для этой схемы производятся соответствующие диммеры.

Конструкция содержит два диммера и большее количество контактов, можно поставить два отдельных диммера, каждый из которых будет последовательно подключен к общей фазе и отдельно к своей группе ламп.

Схема подключения диммера к люстре 

Подключение двух и более диммеров к одной нагрузке

В концертных залах, стадионах в производственных помещениях большой с большими площадями, в цепи последовательно устанавливаются несколько диммеров в различных местах.

Такая схема подключения позволяет не переходить большие растояния, а воспользоваться ближайшим регулятором

Особенности подключения диммера к светодиодным лентам

Светодиодные ленты питаются от напряжения постоянного тока, 12; 24 или 36В, в этом случае применяется блок питания преоброзаватель напряжения 220/12В или другое напряжение.

Для каждой цепи необходимо рассчитывать потребляемую мощность и выбирать соответствующие преобразователи напряжения и диммеры.

Сам процесс подключения не сложный, блок питания подключается к сети, выход с соблюдением полярности + и – к входу диммера. Светодиодные ленты подключаются к выходу диммера по параллельной схеме.

Допускаемые ошибки при подключении диммеров

  • Надо учитывать, что не все светодиодные лампы могут работать от простого теристорного или семисторного диммера. Только те, в которых есть согласующая схема с широтноимпульснй модуляцией. Есть диммеры со схемой ШИМ, тогда можно подключать обычные светодиодные лампы. При покупке проконсультируйтесь со специалистом;
  • При подключении диммера обязательно фазный провод подключайте на клемму с обозначением «L», провод от лампы на клему «N»;
  • Правильно рассчитывайте нагрузку на диммер, для этого надо сложить потребляемую мощность ламп в цепи и устанавливать соответствующий диммер. Если в цепи 3 лампы по 60Вт, требуется диммер не менее 200Вт по мощности, с запасом. В противном случае полупроводниковые элементы схемы могут выгореть;
  • При подключении светодиодных лент иногда путают преобразователь напряжения с понижающим трансформатором. Это разные вещи, через понижающий транформатор можно подключить галогеновые лампы при этом напряжение остается переменным. Светодиодные ленты подключаются через преобразователь напряжения, оно понижается с 220В до 12В и выпрямителем преобразуется в постоянное. В такой схеме обязательно учитываются полярности.

Часто задаваемые вопросы

  1. На даче бываю редко, стоят обычные лампы накаливания, в комнате 2шт на люстре по 60Вт, какой диммер экономичнее поставить?

В этом случае лучше самый простой на теристорах.

  1. Во дворе четыре столба для подсветки дорожки к колитке, лампы меняю, не всегда одинаковые получаются, какой диммер в этом случае посоветуете?

Есть хорошие Шиндлер, практически адаптирован для всех видов ламп, только по мощности не ошибитесь. Поставьте на 600Вт, даже если 4 лампы накаливания по 100Вт мощности будет достаточно.

  1. Как определить необходимую мощность диммера и блока питания для светодиодных лент?

 Характеристики некоторых светодиодов

Производитель и маркаКитайские5630 5730,Китайские 5630 57300,Китайский 5050

 

Мощность

Яркость

0,09W

7 лм

15W

12 лм

0,1W

               8 люмен

 Это обширная тема и требует отдельного рассмотрения, если коротко, то это зависит от типа светодиодов в ленте. На ленте указывается мощность, потребляемая одним диодом и всей лентой. Как правило, лента режется на отрезки, поэтому надо посчитать количество диодов и умножить на мощность одного, получите суммарную потребляемую мощность отдельно взятого отрезка. Блок питания и диммер выбирайте с запасом мощности примерно на 25% больше расчетной.

  1. Для точечных светодиодных светильников на потолке, какой диммер подходит?

Ставьте обычный диммер для LED – ламп, но лампы должны быть с функцией диммирования.

Оцените качество статьи:

Подключение светодиодов

Полярность светодиода

Светодиоды — это диоды, которые представляют собой электронные устройства, которые пропускают ток только в одном направлении. Это означает, что светодиоды (и другие диоды) имеют положительную (+) и отрицательную (-) стороны. Для работы светодиода его необходимо подключить к источнику напряжения правильной стороной. Сторона подачи напряжения диода является положительной (+) стороной, она называется анодом . Отрицательная сторона называется катодом .

Поскольку диоды изготовлены из полупроводникового материала, они имеют очень определенное напряжение, при котором они будут включаться. Если напряжение питания, которое вы используете, больше, чем напряжение включения, вам понадобится резистор между одним из выводов светодиода и подключением к GND или к напряжению питания.

Светодиод резистор

Чтобы убедиться, что светодиод не повреждается слишком большим током, соединение между ним и источником напряжения требует резистора.Величина необходимого сопротивления зависит от того, какой ток будет использовать светодиод, чтобы он был достаточно ярким, чтобы видеть, но не настолько, чтобы он перегорел. Обычно это около 20 мА для большинства одноцветных светодиодов. Чтобы выбрать правильное значение сопротивления для светодиода, вам также необходимо знать, какое у него напряжение включения (Vf). Красный светодиод использует наименьшее количество напряжения для включения, около 1,8 В, в то время как для некоторых синих светодиодов требуется более 3,0 В.

Чтобы решить, какое сопротивление вам нужно, вам нужно использовать закон Ома для тока через резистор.Это та же величина, что течет к светодиоду, но напряжение на резисторе другое, потому что светодиод имеет напряжение включения, которое вы вычитаете из напряжения питания:

Напряжение резистора = напряжение питания - напряжение включения светодиода (Vf)

Для расчета сопротивления, необходимого для тока 20 мА для красного светодиода с Vf 2,0 В:

R = (3,3 В - 2,0 В) / 0,02 А = 65 Ом

Вот небольшая таблица с несколькими вариантами резисторов для красных светодиодов с разными значениями Vf:

Поставка Vf R
3.3 в 1,8 в 75 Ом
3.3 в 2.0 в 65 Ом
3.3 в 2.2 v 55 Ом

Все о светодиодах

светоизлучающих диодов (LED) — learn.

sparkfun.com Добавлено в избранное Любимый 64

Введение

Светодиоды нас окружают: В наших телефонах, автомобилях и даже в домах.Каждый раз, когда загорается что-то электронное, есть большая вероятность, что за ним находится светодиод. Они бывают самых разных размеров, форм и цветов, но независимо от того, как они выглядят, у них есть одно общее: они — бекон электроники. Они широко используются для улучшения любого проекта и часто добавляются к невероятным вещам (ко всеобщему удовольствию).

Однако, в отличие от бекона, после приготовления они бесполезны. Это руководство поможет вам избежать случайных светодиодных барбекю! Но обо всем по порядку.Что именно — это , эта светодиодная штука, о которой все говорят?

светодиода (это «эл-и-ди») — это особый тип диодов, преобразующих электрическую энергию в свет. Фактически, LED расшифровывается как «Light Emitting Diode». (Он делает то, что написано на жестяной банке!) И это отражается в сходстве схемных обозначений диода и светодиода:

Короче говоря, светодиоды похожи на крошечные лампочки. Однако по сравнению с этим светодиоды требуют намного меньше энергии для включения. Они также более энергоэффективны, поэтому не нагреваются, как обычные лампочки (если вы действительно не накачиваете их энергией).Это делает их идеальными для мобильных устройств и других приложений с низким энергопотреблением. Однако не стоит их исключать из игры с большим потенциалом. Светодиоды высокой интенсивности нашли свое применение в акцентном освещении, прожекторах и даже автомобильных фарах!

У вас уже есть тяга? Желание поставить светодиоды на все? Хорошо, оставайтесь с нами, и мы покажем вам, как это сделать!

Рекомендуемая литература

Вот еще несколько тем, которые будут обсуждаться в этом руководстве. Если вы не знакомы с каким-либо из них, пожалуйста, ознакомьтесь с соответствующим руководством, прежде чем продолжить.

Что такое цепь?

Каждый электрический проект начинается со схемы. Не знаю, что такое схема? Мы здесь, чтобы помочь.

Что такое электричество?

Мы можем видеть электричество в действии на наших компьютерах, освещающее наши дома, как удары молнии во время грозы, но что это такое? Это непростой вопрос, но этот урок прольет на него некоторый свет!

Диоды

Праймер диодный! Свойства диодов, типы диодов и их применение.

Электроэнергия

Обзор электроэнергии, скорости передачи энергии. Мы поговорим об определении мощности, ваттах, уравнениях и номинальной мощности. 1,21 гигаватта удовольствия от обучения!

Полярность

Введение в полярность электронных компонентов. Узнайте, что такое полярность, в каких частях она есть и как ее идентифицировать.

Рекомендуемый просмотр

Как ими пользоваться

Итак, вы пришли к разумному выводу, что светодиоды нужно ставить на все.Мы думали, ты придешь.

Давайте пройдемся по книге правил:

1) Полярность имеет значение

В электронике полярность указывает, является ли компонент схемы симметричным или нет. Светодиоды, будучи диодами, пропускают ток только в одном направлении. А когда нет тока, нет света. К счастью, это также означает, что вы не можете сломать светодиод, подключив его обратной стороной. Скорее, это просто не сработает.

Положительная сторона светодиода называется «анодом» и отмечена более длинным «проводом» или ножкой. Другая, отрицательная сторона светодиода называется «катодом» . Ток течет от анода к катоду и никогда не течет в обратном направлении. Перевернутый светодиод может препятствовать правильной работе всей схемы, блокируя прохождение тока. Так что не волнуйтесь, если добавление светодиода нарушит вашу цепь. Попробуйте перевернуть его.

2) Моар равен лунному свету

Яркость светодиода напрямую зависит от того, сколько тока он потребляет. Это означает две вещи. Во-первых, сверхяркие светодиоды разряжают батареи быстрее, потому что дополнительная яркость возникает из-за потребляемой дополнительной мощности.Во-вторых, вы можете управлять яркостью светодиода, контролируя количество проходящего через него тока. Но установка настроения — не единственная причина сократить свое течение.

3) Есть такая вещь, как слишком много мощности

Если вы подключите светодиод напрямую к источнику тока, он попытается рассеять столько энергии, сколько ему позволено потреблять, и, как трагические герои прошлого, он уничтожит себя. Вот почему важно ограничить силу тока, протекающего через светодиод.

Для этого используем резисторы. Резисторы ограничивают поток электронов в цепи и защищают светодиод от попыток потреблять слишком большой ток. Не волнуйтесь, требуется лишь немного математики, чтобы определить наилучшее значение резистора для использования. Вы можете узнать все об этом в примерах применения нашего руководства по резисторам!

Резисторы

1 апреля 2013 г.

Учебник по резисторам. Что такое резистор, как они ведут себя параллельно / последовательно, расшифровка цветовых кодов резисторов и применения резисторов.

Не позволяйте всей этой математике пугать вас, на самом деле довольно сложно слишком сильно напортачить. В следующем разделе мы рассмотрим, как сделать схему на светодиодах без калькулятора.

Светодиоды без математики

Прежде чем мы поговорим о том, как читать таблицу, давайте подключим несколько светодиодов. В конце концов, это руководство по светодиодам, а не руководство по и .

Это также не учебник по математике, поэтому мы дадим вам несколько практических правил по настройке и работе светодиодов.Как вы, наверное, уже поняли из информации в последнем разделе, вам понадобится аккумулятор, резистор и светодиод. Мы используем батарею в качестве источника питания, потому что ее легко найти, и она не может обеспечить опасное количество тока.

Базовый шаблон для схемы светодиода довольно прост: просто подключите батарею, резистор и светодиод последовательно. Нравится:


Резистор 330 Ом

Хорошее сопротивление резистора для большинства светодиодов составляет 330 Ом (оранжевый — оранжевый — коричневый).Вы можете использовать информацию из последнего раздела, чтобы помочь вам определить точное значение, которое вам нужно, но это светодиоды без математических расчетов … Итак, начните с подключения резистора 330 Ом в приведенную выше схему и посмотрите, что произойдет.

Пробная версия и ошибка

Что интересно в резисторах, так это то, что они рассеивают дополнительную мощность в виде тепла, поэтому, если у вас есть резистор, который нагревается, вам, вероятно, потребуется меньшее сопротивление. Однако, если ваш резистор слишком мал, вы рискуете пережечь светодиод! Учитывая, что у вас есть несколько светодиодов и резисторов, с которыми можно поиграть, вот блок-схема, которая поможет вам разработать схему светодиодов методом проб и ошибок:


Броски с плоской батареей

Еще один способ зажечь светодиод — просто подключить его к батарейке типа «таблетка»! Так как батарейка не может подавать достаточно тока, чтобы повредить светодиод, вы можете соединить их напрямую! Просто вставьте батарейку CR2032 между выводами светодиода.Длинная ножка светодиода должна касаться стороны батареи, отмеченной знаком «+». Теперь вы можете обернуть все это скотчем, добавить магнит и приклеить его к вещам! Ура для бросков!

Конечно, если вы не получаете хороших результатов с помощью метода проб и ошибок, вы всегда можете достать свой калькулятор и вычислить его. Не волнуйтесь, рассчитать лучшее значение резистора для вашей схемы несложно. Но прежде чем вы сможете определить оптимальное значение резистора, вам необходимо найти оптимальный ток для вашего светодиода.Для этого нам нужно сообщить в таблицу …

Получить подробности

Не подключайте какие-либо странные светодиоды к своим цепям, это просто не здорово. Сначала узнайте их. А как лучше даташит читать.

В качестве примера мы рассмотрим техническое описание нашего базового красного 5-миллиметрового светодиода.

Светодиодный ток

Начиная сверху и спускаясь вниз, первое, что мы встречаем, — это очаровательный столик:

А, да, но что все это значит?

Первая строка в таблице показывает, какой ток ваш светодиод может выдерживать непрерывно.В этом случае вы можете дать ему 20 мА или меньше, и он будет светить самым ярким при 20 мА. Вторая строка сообщает нам, каким должен быть максимальный пиковый ток для коротких импульсов. Этот светодиод может обрабатывать короткие удары до 30 мА, но вы не хотите поддерживать этот ток слишком долго. Эта таблица даже достаточно полезна, чтобы предложить стабильный диапазон тока (в третьей строке сверху) 16-18 мА. Это хорошее целевое число, которое поможет вам произвести расчеты резисторов, о которых мы говорили.

Следующие несколько строк менее важны для целей данного руководства.Обратное напряжение — это свойство диода, о котором в большинстве случаев не стоит беспокоиться. Рассеиваемая мощность — это количество энергии в милливаттах, которое светодиод может использовать до того, как получит повреждение. Это должно работать само по себе, пока вы держите светодиод в пределах предполагаемых номинальных значений напряжения и тока.

Напряжение светодиода

Давайте посмотрим, какие еще столы они сюда поставили … Ах!

Это полезный столик! Первая строка сообщает нам, каким будет падение прямого напряжения на светодиоде. Прямое напряжение — это термин, который часто используется при работе со светодиодами. Это число поможет вам решить, какое напряжение вашей цепи потребуется для подачи на светодиод. Если у вас есть более одного светодиода, подключенного к одному источнику питания, эти числа действительно важны, потому что прямое напряжение всех светодиодов, сложенных вместе, не может превышать напряжение питания. Мы поговорим об этом более подробно позже, в более глубоком разделе этого руководства.

Длина волны светодиода

Во второй строке этой таблицы указывается длина волны света.Длина волны — это, по сути, очень точный способ объяснить, какого цвета свет. Это число может немного отличаться, поэтому таблица дает нам минимум и максимум. В данном случае это от 620 до 625 нм, что находится как раз на нижнем красном конце спектра (от 620 до 750 нм). Опять же, мы более подробно рассмотрим длину волны в более глубоком разделе.

Яркость светодиода

Последняя строка (помеченная «Luminous Intensity») — это показатель яркости светодиода. Единица мкд, или милликандела, — это стандартная единица измерения интенсивности источника света.Этот светодиод имеет максимальную интенсивность 200 мкд, что означает, что он достаточно яркий, чтобы привлечь ваше внимание, но не совсем яркий фонарик. На 200 мкд этот светодиод будет хорошим индикатором.

Угол обзора

Далее у нас есть веерообразный график, который представляет угол обзора светодиода. В светодиодах разных стилей используются линзы и отражатели, чтобы либо сконцентрировать большую часть света в одном месте, либо максимально широко его распределить. Некоторые светодиоды похожи на прожекторы, испускающие фотоны во всех направлениях; Другие настолько ориентированы, что вы не можете сказать, что они идут, если не смотрите прямо на них.Чтобы прочитать график, представьте, что светодиод вертикально стоит под ним. «Спицы» на графике обозначают угол обзора. Круглые линии представляют интенсивность в процентах от максимальной интенсивности. У этого светодиода довольно узкий угол обзора. Вы можете видеть, что если смотреть прямо на светодиод, то он самый яркий, потому что при 0 градусах синие линии пересекаются с самым дальним кругом. Чтобы получить угол обзора 50%, то есть угол, при котором свет становится вдвое слабее, проследите по кругу 50% по графику, пока он не пересечет синюю линию, затем проследите за ближайшей спицей, чтобы определить угол.Для этого светодиода угол обзора 50% составляет около 20 градусов.

Размеры

Наконец, механический чертеж. Это изображение содержит все размеры, которые вам потребуются для установки светодиода в корпусе! Обратите внимание, что, как и у большинства светодиодов, у этого есть небольшой фланец внизу. Это очень удобно, если вы хотите установить его на панели. Просто просверлите отверстие идеального размера для корпуса светодиода, и фланец не даст ему провалиться!

Теперь, когда вы знаете, как расшифровать таблицу, давайте посмотрим, какие необычные светодиоды вы можете встретить в дикой природе. ..

Типы светодиодов

Поздравляем, вы знаете основы! Может быть, вы даже заполучили несколько светодиодов и начали зажигать, это круто! Хотели бы вы активизировать свою игру в миг? Давайте поговорим о том, как сделать это за пределами вашего стандартного светодиода.

Крупный план сверхяркого светодиода 5 мм. Крупный план

Типы светодиодов

Вот список других персонажей.

RGB светодиоды

Светодиоды

RGB (красный-зеленый-синий) на самом деле представляют собой три светодиода в одном! Но это не значит, что он может делать только три цвета.Поскольку красный, зеленый и синий являются дополнительными основными цветами, вы можете управлять интенсивностью каждого из них, чтобы создать каждый цвет радуги. Большинство светодиодов RGB имеют четыре контакта: по одному для каждого цвета и общий контакт. У некоторых общий вывод — это анод, а у других — катод.

Светодиод с общим прозрачным катодом RGB

Светодиоды с интегральными схемами

Велоспорт

Некоторые светодиоды умнее других. Возьмем, к примеру, светодиодный индикатор велосипедного режима. Внутри этих светодиодов на самом деле есть интегральная схема, которая позволяет светодиоду мигать без какого-либо внешнего контроллера.Вот крупный план ИС (большая черная квадратная микросхема на кончике наковальни), управляющей цветами.

5-миллиметровый светодиод с медленным циклом крупным планом

Просто включите его и смотрите! Они отлично подходят для проектов, где вам нужно немного больше действий, но нет места для схем управления. Есть даже мигающие светодиоды RGB, которые сменяют тысячи цветов!

Адресные светодиоды

Светодиоды других типов можно регулировать индивидуально.Существуют разные наборы микросхем (WS2812, APA102, UCS1903, и это лишь некоторые из них), используемые для управления отдельным светодиодом, соединенным в цепочку. Ниже представлен крупный план WS2812. Большая квадратная микросхема справа регулирует цвета по отдельности.

Адресный WS2812 PTH крупным планом

Встроенный резистор

Что это за магия? Светодиод со встроенным резистором? Верно. Есть также светодиоды с небольшим токоограничивающим резистором. Если вы внимательно посмотрите на изображение ниже, на стойке есть небольшая черная квадратная микросхема, которая ограничивает ток на этих типах светодиодов.

Светодиод со встроенным резистором крупным планом

Итак, подключите светодиод со встроенным резистором к источнику питания и зажгите его! Мы протестировали эти типы светодиодов при напряжении 3,3, 5 и 9 В.

Суперяркий зеленый светодиод с питанием от встроенного резистора

Примечание: В техническом описании светодиодов со встроенным резистором указано, что рекомендуемое прямое напряжение составляет около 5 В. При тестировании на 5 В он потребляет около 18 мА.Стресс-тест с батареей 9В, тянет около 30мА. Вероятно, это верхний предел входного напряжения. Использование более высокого напряжения может сократить срок службы светодиода. При напряжении около 16 В светодиод перегорел во время наших стресс-тестов.

Пакеты для поверхностного монтажа (SMD)

Светодиоды

SMD — это не столько конкретный вид светодиода, сколько тип корпуса. Поскольку электроника становится все меньше и меньше, производители придумали, как втиснуть больше компонентов в меньшее пространство. Детали SMD (устройство для поверхностного монтажа) представляют собой крошечные версии своих стандартных аналогов.Вот крупный план адресного светодиода WS2812B, упакованного в небольшой корпус 5050.

Адресный WS2812B Крупный план

Светодиоды

SMD бывают разных размеров, от довольно больших до меньших, чем рисовое зерно! Поскольку они такие маленькие и у них есть прокладки вместо ножек, с ними не так просто работать, но если у вас мало места, они могут быть именно тем, что прописал врач.

WS2812B-5050 Упаковка APA102-2020 Пакет

Светодиоды SMD также упрощают и ускоряют сборку и размещение машин для установки партии светодиодов на печатные платы и полосы. Вероятно, вы не стали бы вручную паять все эти компоненты вручную.

Крупный план адресной светодиодной матрицы 8×32 (WS2812-5050) Адресная светодиодная лента 5 м (APA102-5050) с питанием от ленты

Высокая мощность

мощных светодиода от таких производителей, как Luxeon и CREE, невероятно яркие. Они ярче сверхъярких! Как правило, светодиод считается высокомощным, если он может рассеивать мощность 1 Вт или более.Это необычные светодиоды, которые вы найдете в действительно хороших фонариках. Массивы из них могут быть построены даже для прожекторов и автомобильных фар. Поскольку через светодиоды пропускается очень много энергии, часто требуются радиаторы. Радиатор — это, по сути, кусок теплопроводящего металла с большой площадью поверхности, задача которого — отводить как можно больше отработанного тепла в окружающий воздух. Некоторое тепловыделение может быть встроено в конструкцию некоторой коммутационной платы, такой как показанная ниже.

Светодиод высокой мощности RGB Алюминиевая задняя часть для рассеивания тепла

Светодиоды высокой мощности могут выделять столько тепла, что они могут повредить себя без надлежащего охлаждения. Не позволяйте термину «отработанное тепло» вводить вас в заблуждение, эти устройства по-прежнему невероятно эффективны по сравнению с обычными лампами. Для управления можно использовать драйвер светодиода постоянного тока.

Специальные светодиоды

Есть даже светодиоды, которые излучают свет за пределами обычного видимого спектра. Например, вы, вероятно, используете инфракрасные светодиоды каждый день. Они используются в таких вещах, как пульты от телевизора, для отправки небольших фрагментов информации в виде невидимого света! Они могут выглядеть как стандартные светодиоды, поэтому их будет сложно отличить от обычных светодиодов.

ИК-светодиод

На противоположном конце спектра также можно встретить ультрафиолетовые светодиоды. Ультрафиолетовые светодиоды заставят определенные материалы светиться, как черный свет! Они также используются для дезинфекции поверхностей, потому что многие бактерии чувствительны к УФ-излучению.Они также могут быть использованы для обнаружения подделок (счетов, кредитных карт, документов и т. Д.), Солнечных ожогов, список можно продолжить. При использовании этих светодиодов надевайте защитные очки.

УФ-светодиод для проверки банкноты США

Другие светодиоды

Имея в вашем распоряжении такие модные светодиоды, нет оправдания тому, что ничего не светится. Однако, если ваша жажда знаний о светодиодах не утолена, читайте дальше, и мы подробно рассмотрим светодиоды, цвет и интенсивность света!

Углубляясь в глубины

Итак, вы закончили серию LEDs 101 и хотите большего? О, не волнуйтесь, у нас есть еще. Начнем с науки, которая заставляет светодиоды гореть … эээ … мигать. Мы уже упоминали, что светодиоды — это особый вид диодов, но давайте углубимся в то, что именно это означает:

То, что мы называем светодиодом, на самом деле представляет собой светодиод и упаковку вместе, но сам светодиод на самом деле крошечный! Это чип из полупроводникового материала, легированного примесями, который создает границу для носителей заряда. Когда ток течет в полупроводник, он перескакивает с одной стороны этой границы на другую, высвобождая при этом энергию.В большинстве диодов эта энергия уходит в виде тепла, но в светодиодах эта энергия рассеивается в виде света!

Длина волны света и, следовательно, цвет зависят от типа полупроводникового материала, из которого изготовлен диод. Это потому, что структура энергетических зон полупроводников различается в зависимости от материала, поэтому фотоны излучаются с разными частотами. Вот таблица распространенных светодиодных полупроводников по частоте:

Усеченная таблица полупроводниковых материалов по цвету. Полная таблица доступна в статье Википедии для «LED» .

В то время как длина волны света зависит от ширины запрещенной зоны полупроводника, интенсивность зависит от количества энергии, проталкиваемой через диод.Мы немного говорили об интенсивности света в предыдущем разделе, но это нечто большее, чем просто цифра, показывающая, насколько ярко что-то выглядит.

Единица измерения силы света называется кандела, хотя, когда вы говорите об интенсивности одного светодиода, вы обычно находитесь в диапазоне милликандел. В этом устройстве интересно то, что на самом деле это не показатель количества световой энергии, а реальный показатель «яркости». Это достигается за счет того, что мощность, излучаемая в определенном направлении, взвешивается по функции яркости света.Человеческий глаз более чувствителен к некоторым длинам волн света, чем к другим, и функция светимости — это стандартизированная модель, которая учитывает эту чувствительность.

Яркость светодиодов может составлять от десятков до десятков тысяч милликандел. Световой поток на вашем телевизоре, вероятно, составляет около 100 мкд, тогда как у хорошего фонарика может быть 20 000 мкд. Глядя прямо во все, что ярче нескольких тысяч милликандел, может быть болезненно; не пытайся.

Падение прямого напряжения

О, я также обещал, что мы поговорим о концепции прямого падения напряжения.Помните, когда мы смотрели техническое описание и упоминали, что прямое напряжение всех ваших светодиодов вместе взятых не может превышать напряжение вашей системы? Это связано с тем, что каждый компонент в вашей схеме должен разделять напряжения, и количество напряжения, которое каждая часть использует вместе, всегда будет равняться доступному количеству. Это называется законом напряжения Кирхгофа. Поэтому, если у вас есть источник питания 5 В и каждый из ваших светодиодов имеет прямое падение напряжения 2,4 В, то вы не можете питать более двух одновременно.

Законы Кирхгофа также пригодятся, когда вы хотите приблизительно определить напряжение на данной детали на основе прямого напряжения других деталей. Например, в примере, который я только что привел, есть источник питания 5 В и 2 светодиода с падением прямого напряжения 2,4 В каждый. Конечно, мы бы хотели добавить резистор, ограничивающий ток, не так ли? Как узнать напряжение на резисторе? Это просто:

5 (напряжение системы) = 2,4 (светодиод 1) + 2,4 (светодиод 2) + резистор

5 = 4.8 + резистор

Резистор = 5 — 4,8

Резистор = 0,2

Значит, на резисторе 0,2 В! Это упрощенный пример, и это не всегда так просто, но, надеюсь, он дает вам представление о том, почему так важно прямое падение напряжения. Используя число напряжения, которое вы получаете из законов Кирхгофа, вы также можете делать такие вещи, как определение тока через компонент, используя закон Ома. Короче говоря, вы хотите, чтобы напряжение вашей системы было равным ожидаемому прямому напряжению компонентов вашей комбинированной схемы.

Расчет токоограничивающих резисторов

Если вам нужно рассчитать точное значение резистора, ограничивающего ток, последовательно со светодиодом, ознакомьтесь с одним из примеров приложений в руководстве по резисторам для получения дополнительной информации.

Ресурсы и дальнейшее развитие

Вы сделали это! Вы знаете, почти все … о светодиодах. А теперь иди и включи светодиоды на все, что тебе заблагорассудится! А теперь … драматическая реконструкция светодиода без перенапряжения токоограничивающего резистора и его выгорания:

Ага… это не впечатляюще.

Если вы хотите узнать больше о некоторых темах, связанных со светодиодами, посетите эти другие руководства:

Свет

Свет — полезный инструмент для инженера-электрика. Понимание того, как свет соотносится с электроникой, является фундаментальным навыком для многих проектов.

ИК-связь

В этом руководстве объясняется, как работает обычная инфракрасная (ИК) связь, а также показано, как настроить простой ИК-передатчик и приемник с Arduino.

Как делают светодиоды

Мы совершим экскурсию по производителю светодиодов и узнаем, как изготавливаются 5-миллиметровые светодиоды PTH для SparkFun.

Повязки на голову со светодиодными помпонами

Следуйте этому руководству, чтобы сделать свою собственную повязку на голову с помпоном с подсветкой! Попробуйте версию для начинающих, если вы новичок в электронике, или расширенную версию, если у вас есть больше опыта!

Фотодетектор SparkFun (MAX30101) Руководство по подключению

Фотодетектор SparkFun — MAX30101 (Qwiic) является преемником датчика частиц MAX30105, высокочувствительного оптического датчика.Это руководство поможет вам получить необработанные данные с датчика MAX30101.

Хотите узнать больше о светодиодах?

На нашей странице LED вы найдете все, что вам нужно знать, чтобы начать использовать эти компоненты в своем проекте.

Отведи меня туда!

Или просмотрите некоторые из этих сообщений блога по теме:

Как работают светодиоды

Диод — это простейший полупроводниковый прибор. Вообще говоря, полупроводник — это материал с различной способностью проводить электрический ток. Большинство полупроводников сделано из плохого проводника, в который были добавлены примеси (атомы другого материала). Процесс добавления примесей называется легированием .

В случае светодиодов материалом проводника обычно является арсенид алюминия-галлия (AlGaAs). В чистом арсениде алюминия-галлия все атомы идеально связаны со своими соседями, не оставляя свободных электронов (отрицательно заряженных частиц) для проведения электрического тока.В легированном материале дополнительные атомы изменяют баланс, либо добавляя свободные электроны, либо создавая дыры, по которым электроны могут уходить. Любое из этих изменений делает материал более проводящим.

Полупроводник с дополнительными электронами называется материалом N-типа , поскольку в нем есть дополнительные отрицательно заряженные частицы. В материале N-типа свободные электроны перемещаются из отрицательно заряженной области в положительно заряженную.

Полупроводник с дополнительными отверстиями называется материалом P-типа , поскольку он фактически содержит дополнительные положительно заряженные частицы.Электроны могут прыгать от отверстия к отверстию, перемещаясь из отрицательно заряженной области в положительно заряженную. В результате кажется, что сами отверстия перемещаются из положительно заряженной области в отрицательно заряженную.

Диод состоит из секции материала N-типа, прикрепленной к секции материала P-типа, с электродами на каждом конце. Это устройство проводит электричество только в одном направлении. Когда на диод не подается напряжение, электроны из материала N-типа заполняют отверстия в материале P-типа вдоль стыка между слоями, образуя зону обеднения.В зоне истощения полупроводниковый материал возвращается в свое исходное изолирующее состояние — все отверстия заполнены, поэтому нет свободных электронов или пустых пространств для электронов, и электричество не может течь.

Чтобы избавиться от зоны истощения, вы должны заставить электроны двигаться из области N-типа в область P-типа, а дырки — в обратном направлении. Для этого вы подключаете сторону N-типа диода к отрицательному концу цепи, а сторону P-типа — к положительному концу.Свободные электроны в материале N-типа отталкиваются отрицательным электродом и притягиваются к положительному электроду. Отверстия в материале P-типа перемещаются в другую сторону. Когда разность напряжений между электродами достаточно высока, электроны в зоне обеднения выталкиваются из своих отверстий и снова начинают свободно перемещаться. Зона обеднения исчезает, и заряд перемещается по диоду.

Если вы попытаетесь пропустить ток другим способом, когда сторона P-типа подключена к отрицательному концу цепи, а сторона N-типа подключена к положительному концу, ток не будет течь.Отрицательные электроны в материале N-типа притягиваются к положительному электроду. Положительные отверстия в материале P-типа притягиваются к отрицательному электроду. Через переход не протекает ток, потому что дырки и электроны движутся в неправильном направлении. Зона истощения увеличивается. (См. «Как работают полупроводники» для получения дополнительной информации обо всем процессе.)

Взаимодействие между электронами и дырками в этой установке имеет интересный побочный эффект — оно генерирует свет!

Объявление

Объявление

Ремонт светодиодных ламп своими руками на дому

Светодиодные лампы — это современный и эффективный источник света.Светодиодные лампы безопасны — они не содержат ртути и других токсичных элементов и не причиняют вреда при поломке. Однако первое, что побуждает нас покупать эти лампочки, — это их экономичность из-за низкого потребления электроэнергии. К тому же светодиодные устройства достаточно надежны и обычно служат весь срок службы. Таким образом, преимущества этого источника света очевидны: он яркий и долго служит.

Традиционные лампы накаливания вообще не подлежат ремонту, а светодиодные лампы можно отремонтировать практически все.Вам просто нужно найти неисправность, отремонтировать и продлить срок службы лампочки. Если вы знакомы с ремонтными операциями, то сможете найти все необходимые инструменты даже дома; все, что вам нужно, это найти для этого время.

Принцип действия светодиодной лампы

основан на способности некоторых материалов излучать свет при определенных условиях. Рабочий элемент колбы, светоизлучающий диод, представляет собой полупроводниковое устройство, излучающее некогерентный свет при прохождении через него электрического тока. Светодиоды излучают свет только при использовании постоянного тока.

Как работает светодиод?

Давайте использовать популярный светодиод SMD в корпусе 5730, чтобы проиллюстрировать работу светодиода.

Вы можете найти его технические характеристики ниже:

Пиковый постоянный ток (IFPM) 260 мА
Постоянный ток (IFM) 180 мА
Обратное напряжение (VR) 5 В
Мощность рассеивания (PD) 0,63 Вт
Угол луча 120 °
Светодиодная линза тип прозрачный
Рабочая температура (TOPR)-40 ° С — + 85 ° С
Температура хранения (TSTG)-40 ° С — + 100 ° С
Температура пайки (TSOL) 260 ° С

Проще говоря, светодиод преобразует электрический ток в излучение света. Этот источник света состоит из полупроводникового кристалла на непроводящей основе, корпуса с контактами и оптической системы. Для повышения стабильности светодиода пространство между кристаллом и пластиковой линзой заполнено прозрачным силиконом. Алюминиевая основа снижает перегрев. В нормальных условиях тепловыделение невелико.

Чем больше ток проходит через диод, тем ярче он светится. Однако из-за внутреннего сопротивления p-n перехода диод нагревается и при сильном токе может сгореть — соединительные проводники плавятся, а полупроводник горит.Таким образом, для обеспечения необходимого значения тока в лампе должны быть блок питания — драйвер и система отвода тепла — радиатор.

А теперь посмотрим на лампочку поближе.

Основные части светодиодной лампы

  1. Диссипатор . Это снижает неравномерность светового потока и лишнюю легкость некоторых излучающих элементов. Также он обеспечивает освещение под определенным углом (у бытовых светильников он должен быть шире).
  2. Печатная плата со светодиодами . Плата на алюминиевой основе со светодиодами.Количество светодиодов очень важно для теплообмена; следовательно, он должен соответствовать конструкции лампы. Между печатной платой и радиатором имеется термопаста для увеличения теплопередачи.
  3. Радиатор . Качественный радиатор предназначен для отвода тепла от компонентов колбы. Он используется для предотвращения перегрева светодиодов. Ребра радиатора повышают эффективность отвода и отвода тепла.
  4. Колпак лампы . Он вкручивается в патрон лампы и обеспечивает надежный контакт.Колпачки в основном изготавливаются из медно-цинкового сплава с никелевым покрытием. Для защиты от пробоя электрического тока у большинства светодиодных ламп цоколи имеют полимерную основу.
  5. Драйвер . Это электронная принципиальная схема, предназначенная для преобразования переменного тока в постоянный ток требуемой величины. Избыточный ток приводит к перегоранию светодиода. Качественный драйвер обеспечивает работу лампочки при скачках напряжения и работу светодиода без пульсаций. Схематических схем драйверов светодиодов существует множество.Продемонстрируем лишь пару из них: Существуют простые драйверы, в которых напряжение ограничивается резистором или конденсатором, а также более продвинутые драйверы, использующие микрочипы. Этот тип драйверов не только ограничивает напряжение, но также обеспечивает оптимальное энергопотребление и выполняет функции защиты. Драйверы с микрочипами более современные и эффективные, но более сложные в производстве и, следовательно, более дорогие.

Работа лампы и устранение неисправностей

Принцип работы лампы довольно прост: переменный ток подается от линии электропередачи к драйверу через контактные провода, где он становится постоянным и проходит через светодиоды, которые преобразуют его в свет.Отвод тепла осуществляется с помощью платы со светодиодами и радиатором.

Светодиодные лампы

сначала кажутся разными, но имеют схожий дизайн и сделаны по одним и тем же принципам. Если вы научитесь ремонтировать только одну лампочку, будет намного проще починить следующие.

В большинстве современных ламп в качестве источника света последовательно подключены светодиоды SMD. Схема находится на картинке слева.

Если один из диодов не работает, остальные не работают. Самая частая причина выхода из строя — перегорание светодиода (в большинстве случаев только одного из них).Однако иногда выходят из строя несколько светодиодов одновременно.

светодиода могут гореть по разным причинам. Среди них невысокое качество компонентов, отсутствие стабилизации тока, перегрев светодиода и скачки напряжения. Некоторые производители перегружают светодиоды, чтобы заинтересовать клиентов высокой яркостью маленькой лампочки.

Однако в большинстве случаев ремонт светодиодной лампы возможен. Причем ремонт может провести даже дилетант. И стоимость ниже, чем у новой лампочки.

Для выяснения причины неисправности необходимо разобрать лампочку — снять рассеиватель и потянуться внутрь. Он может быть приклеен к корпусу, поэтому для этого может потребоваться тонкая отвертка. Часто бывает, что лампочки со стеклянным рассеивателем не разбираются.

Внутри находится плата со светодиодами. У качественных лампочек на этой плате только светодиоды. Если есть какие-то другие компоненты, он будет перегреваться быстрее, и компоненты выйдут из строя.

Далее следует визуальный осмотр.Вы можете определить местонахождение сгоревшего светодиода, просто найдя черное пятно от горящих следов.

Однако в некоторых случаях светодиод может выглядеть неповрежденным. Затем вы можете проверить и найти неисправный светодиод с помощью мультиметра. Большинство современных мультиметров имеют функцию проверки диодов. Процедура проверки следующая: прикоснитесь к аноду красным зондом, а катод — черным. Загорится рабочий диод. Если вы измените полярность датчика, на измерителе будет отображаться «1», а диод не загорится. Также во время теста не загорится неисправный диод.

Замена светодиода

Теперь, когда вы обнаружили неисправный диод, его нужно заменить. Он припаян к плате. Опасность перегрева критична при работе диодов. Учтите, что рекомендации по пайке включены в технические характеристики диодов. Например, для светодиода 5730 SMD, который широко используется благодаря удачному балансу размеров, мощности и светового потока, температура пайки составляет 260 ° C (не более 2 секунд).

Если конструкция лампы позволяет, снять плату с радиатора, распаять контакты драйвера и после этого приступить к замене светодиода.Плату можно закрепить с помощью держателя для печатной платы (тогда обе руки будут свободны). По возможности нагрейте его снизу с помощью термофена. Температура не должна быть высокой, порядка 100 ÷ 150 ° C, чтобы не повредить исправные диоды.

Старый светодиод удобно снимать горячим пинцетом, который одновременно нагревает оба выхода. А можно сделать самодельный простой аналог — медный проводник, намотанный на жало паяльника.

Следует заменить старый светодиод на новый того же типа.Обычно вы можете найти светодиодную маркировку на печатной плате лампы. Соблюдайте полярность во время установки.

Есть вроде бы более простой способ отремонтировать светодиод — просто установить провод вместо поврежденного диода, то есть подключить контактные площадки. Выглядит это так:

Если на печатной плате много светодиодов и все они установлены последовательно, отсутствие одного из них не сильно повлияет на остальные. Однако напряжение на рабочих диодах будет выше и шансы на их возгорание выше.Такого риска нет с качественными лампочками, где драйвер выставляет необходимый ток и снижает напряжение до безопасного для светодиодов уровня.

Прочие неисправности

Если все диоды во время теста оказались исправными, следует проверить драйвер лампы и поискать другие повреждения, а также проверить проводники и контакты на обрыв цепи.

Драйвер в качественных лампах должен быть отдельной платой и располагаться в цоколе лампы. У каждого производителя уникальная схемотехника драйвера, поэтому стандартных рекомендаций по ремонту нет.Здесь стоит применить индивидуальный подход.

Следует проверить основные компоненты мультиметром, проверить диоды и транзисторы на предмет нехватки, сравнить номиналы резисторов, заменить потерявшие емкость конденсаторы. Если в схеме драйвера есть микросхема IC, вам следует проверить напряжение на ее выходах в соответствии с ее техническими характеристиками и решить, нормально ли она работает. При необходимости замените неисправные компоненты.

Наконец, проверьте, исправна ли разобранная лампочка, и затем соберите ее.Возможно, потребуется нанести термопасту, затянуть винты и закрепить рассеиватель.

В нашем магазине вы можете найти комплекты для сборки светодиодных ламп своими руками, а также отдельные компоненты: драйверы, платы со светодиодами, корпуса и т. Д. Вам просто нужно разобрать лампу, распаять старый неисправный компонент и установить новый. Это займет всего несколько секунд.

Здесь мы описали простейшие варианты ремонта светодиодных ламп, не вдаваясь в подробности. Однако очевидно, что такой вид ремонтных работ перспективен и перспективен.Стоимость замены светодиода или драйвера будет значительно ниже, чем покупка новой лампы. Добавим также, что при замене следует использовать только качественные комплектующие с хорошими техническими характеристиками. Это может обеспечить долгую и стабильную работу светодиодной лампы.

Toolboom Team

Все права защищены. Этот материал с веб-сайта toolboom.com не может быть опубликован, переписан или распространен полностью или частично без указания авторства и предоставленных обратных ссылок.

Интернет-кампус ZEISS Microscopy | Интерактивные учебные пособия

Среди наиболее перспективных технологий освещения в оптической микроскопии — светоизлучающие диоды ( LED ). Эти универсальные полупроводниковые устройства обладают всеми желательными характеристиками, которых нет у ламп накаливания (вольфрамово-галогенные) и дуговых ламп, и теперь они достаточно эффективны, чтобы питаться от низковольтных батарей или относительно недорогих переключаемых источников питания. Разнообразный спектральный выход, обеспечиваемый светодиодами, позволяет выбрать отдельный диодный источник света для обеспечения оптимального диапазона длин волн возбуждения для флуорофоров, охватывающего ультрафиолетовую, видимую и ближнюю инфракрасную области. В этом интерактивном руководстве показано, как два разных легированных полупроводника могут излучать свет при приложении напряжения к области соединения между материалами.

Учебное пособие инициализируется анимированным изображением полупроводника светоизлучающего диода в процессе генерации зеленого света (535 нанометров). К слою, легированному p-примесью, приложено положительное напряжение, тогда как к слою, легированному n-примесью, приложено отрицательное напряжение. Под полупроводником находится зеркальная подложка для отражения испускаемых фотонов. Для работы с учебником используйте ползунок Wavelength Selector для изменения длины волны излучения и ползунок Voltage Output для регулировки напряжения перехода и количества излучаемых фотонов.

Переходы излучающего фотоны диода p-n обычно основаны на смеси элементов группы III и группы V , таких как галлий, мышьяк, фосфор, индий и алюминий. Относительно недавнее добавление карбида кремния и нитрида галлия к этой палитре полупроводников привело к появлению диодов с синим светом, которые можно комбинировать с другими цветами или вторичными люминофорами для получения светодиодов, излучающих белый свет. Фундаментальным ключом к изменению свойств светодиодов является электронная природа перехода p-n между двумя разными полупроводниковыми материалами.При плавлении разнородных легированных полупроводников поток тока в переход и характеристики длины волны излучаемого света определяются электронным характером каждого материала. В общем, ток будет легко течь в одном направлении через переход, но не в другом, что составляет базовую конфигурацию диода. Этот тип поведения лучше всего понять с точки зрения перехода электронов и дырок в двух материалах и через переход. Электроны из полупроводника типа n перемещаются в положительно легированный полупроводник (тип p ), в котором есть свободные дырки, позволяя электронам «прыгать» от дырки к дырке.Результатом этой миграции является то, что дырки, кажется, движутся в противоположном направлении или от положительно заряженного полупроводника к отрицательно заряженному полупроводнику. Электроны из области типа n и дырки из области типа p рекомбинируют в окрестности перехода с образованием обедненной области, в которой не остается носителей заряда. Таким образом, в области истощения устанавливается статический заряд, который препятствует протеканию тока, если не приложено внешнее напряжение.

Чтобы сконфигурировать диод, на противоположных концах полупроводникового устройства p-n помещают электроды для подачи напряжения, которое способно преодолеть эффекты области обеднения. Обычно область типа n подключается к отрицательной клемме, а область типа p подключается к положительной клемме (известная как с прямым смещением перехода), так что электроны будут течь из n — наберите материал в сторону типа p , и отверстия будут двигаться в противоположном направлении.В результате зона истощения исчезает, и электрический заряд перемещается по диоду с электронами, движущимися к переходу из материала типа n , тогда как дырки перемещаются в переход из материала типа p . Комбинация дырок и электронов, текущих в переход, позволяет поддерживать постоянный ток через диод. Хотя контроль взаимодействия между электронами и дырками на переходе p-n является фундаментальным элементом конструкции всех полупроводниковых диодов, основной целью светодиодов является эффективное генерирование света.Производство видимого света из-за инжекции носителей заряда через переход pn имеет место только в полупроводниковых диодах с особым составом материалов, что привело к поиску новых комбинаций, обеспечивающих необходимую ширину запрещенной зоны между зоной проводимости и орбиталями валентная зона. Кроме того, продолжаются исследования по разработке светодиодных архитектур, которые минимизируют поглощение света диодными материалами и более надежны при концентрации излучения света в определенном направлении.

На рисунке 1 представлены архитектурные детали двух популярных конструкций светодиодных корпусов. Обычный полусферический 5-миллиметровый светодиод с выводной рамкой, показанный на Рисунке 1 (а), обычно используется в качестве индикаторной лампы для электронных приборов. Эпоксидные смолы используются для заливки герметизирующей системы в этих светодиодах, которые также имеют цилиндрическую и прямоугольную геометрию линз. Матрица закреплена в конической чашке отражателя, которая припаяна к катодному выводу, а анод соединен с матрицей с помощью соединительной проволоки.Свет, исходящий от боковых сторон светодиода, отражается чашей в эпоксидный КОРПУС. Плоское литье в основании эпоксидного купола служит индикатором полярности свинца. Обычно эти индикаторные светодиоды содержат матрицу размером от 0,25 до 0,3 миллиметра на стороне, а диаметр линзы составляет от 2 до 10 миллиметров. Поперечное сечение мощного перевернутого диода GaInN , показанное на рисунке 1 (b), построено на алюминиевой или медной вставке радиатора, которую можно припаять к печатной плате для более эффективного отвода тепла.Инкапсулирующая матрица представляет собой защитный силиконовый слой, предназначенный для преодоления полного внутреннего отражения излучаемых волновых фронтов и их направления через большую пластиковую линзу. Золотая проволока служит для подключения большого катодного вывода к кристаллу, который установлен на кремниевом кристалле для защиты от электростатического разряда. Анод (не показан) по конфигурации аналогичен катоду, но выступает из упаковки в противоположном направлении. Светодиоды этой конструкции в настоящее время являются предпочтительным выбором для освещения в флуоресцентной микроскопии.


Анализ жизненного цикла светодиодной лампы OSRAM — Веб-сайт OSRAM Group

Название продукта PARATHOM CLASSIC A
Средний срок службы 25000 ч
Люмен 345
Ватт 8


Светоизлучающий диод (LED) — это полупроводниковый диод, излучающий узкоспектральный свет. В зависимости от используемого материала светодиоды могут излучать свет разных цветов. Для получения белого света свет синего светодиода проходит через желтый люминофор, состав которого определяет конечную цветовую температуру.Чтобы сделать светодиоды пригодными для использования в бытовых приборах, несколько светодиодов объединены с электронным пускорегулирующим аппаратом в форме колбы. Выбирая соответствующий белый светодиод, можно предлагать светодиодные системы с такими же цветами света, что и люминесцентные лампы. Благодаря исключительно низкому энергопотреблению, чрезвычайно долгому сроку службы и низкой стоимости обслуживания светодиодные лампы являются наиболее эффективными домашними лампами.

Влияние производства на окружающую среду

В следующей таблице показано влияние светодиодной лампы на окружающую среду во время производства, включая совокупную потребность в энергии (CED) на этом этапе жизненного цикла.

Суммарная потребность в энергии на этапе использования

Накопленная (первичная) потребность в энергии на этапе использования рассчитывается на основе мощности лампы, ее среднего срока службы и структуры энергопотребления.

CED и потенциал глобального потепления на этапе использования и производства

На графиках ниже показаны совокупный спрос на энергию и потенциал глобального потепления на этапе использования по сравнению с этапом производства. Для расчета выбросов CO 2 , возникающих на этапе использования, состав электроэнергии равен 0.55 кг CO 2 на кВт · ч El было взято за основу. Конечно, производство электроэнергии во время использования также несет ответственность за другие категории воздействия на окружающую среду, но это во многом зависит от того, где используется лампа. По этой причине мы описали только воздействие CO 2 , которое также может варьироваться в зависимости от места использования.

В равной степени, в зависимости от состава электроэнергии, светодиодная лампа может также вызывать выбросы ртути во время использования. Это связано со сравнительно высокой долей угольных электростанций в некоторых электрических смесях, которые выделяют ртуть при сжигании бурого или каменного угля для производства электроэнергии. Тем не менее, по сравнению с лампами накаливания и галогенными лампами, при использовании светодиодных ламп выделяется гораздо меньше ртути. Это связано с их высокой энергоэффективностью, которая обеспечивает экономию до 80 процентов электроэнергии и, таким образом, сокращение выбросов ртути в результате производства электроэнергии на угольных электростанциях. Таким образом, светодиодные лампы оказывают минимально возможное воздействие ртути на окружающую среду.

Применимость этого анализа жизненного цикла

Подобно компактным люминесцентным лампам, различные типы светодиодных ламп оказывают различное воздействие при производстве.Из-за динамичного развития светодиодных ламп очень сложно обобщить взаимосвязь между светоотдачей и производительностью. Однако фаза использования продолжает оставаться наиболее влиятельной стадией жизненного цикла с наибольшим влиянием, поэтому гораздо важнее рассчитать эффект этой фазы. Для этого просто необходимо пересчитать совокупную потребность в энергии на основе мощности ламп в соответствии с тремя этапами, показанными в таблице выше.

Светодиод

< Что такое светодиоды и как они работают? > | Основы электроники

Что такое светодиоды?

Светодиоды

— это тип полупроводника, который называется «светоизлучающий диод».Белые светодиоды, которые получили практическую реализацию за счет использования синих светодиодов высокой яркости, разработанных в 1993 году на основе нитрида галлия, привлекают повышенное внимание как 4-й тип источника света.

Как светодиоды излучают свет?

Светодиоды

(светоизлучающие диоды) представляют собой полупроводниковые источники света, которые объединяют полупроводник P-типа (большая концентрация дырок) с полупроводником N-типа (большая концентрация электронов). Приложение достаточного прямого напряжения заставит электроны и дырки рекомбинировать в P-N переходе, высвобождая энергию в виде света.

По сравнению с обычными источниками света, которые сначала преобразуют электрическую энергию в тепло, а затем в свет, светодиоды (Light Emitting Diodes) преобразуют электрическую энергию непосредственно в свет, обеспечивая эффективное производство света с небольшими потерями электроэнергии.

Типы светодиодов

Доступны светодиоды двух типов: ламповые (с выводами) и микросхемы (для поверхностного монтажа). Пользователи могут выбрать идеальный тип, исходя из установленных требований.

Длина волны и цвет

Цвет светодиода (длина волны излучения) будет меняться в зависимости от используемых материалов.Это позволяет настроить цвет в соответствии с определенными спецификациями длины волны, необходимыми для приложений, которые используют традиционные лампы в качестве источников света (для которых существуют стандарты), таких как светофоры и автомобильные лампы.

Для обозначения цвета используются две спецификации длины волны: λP (пиковая длина волны) и λD (доминирующая длина волны), при этом λD соответствует цвету, фактически наблюдаемому человеческим глазом.

Как создается белый свет?

Существует несколько методов получения белого света с помощью светодиодов.Ниже приведены 2 типичных метода эмиссии.

Синий светодиод + Желтый люминофор

Комбинация синего светодиода с желтым люминофором, который является дополнительным цветом, дает белый свет. Этот метод проще других решений и обеспечивает высокую эффективность, что делает его наиболее популярным выбором на рынке.

Красный светодиод + Зеленый светодиод + Синий светодиод

Сочетание трех основных цветов приведет к белому свету. Обычно этот метод используется не для освещения, а для полноцветных светодиодных устройств.

Светоизлучающий диод
LED К странице продукта

Линейка светодиодов

ROHM включает в себя светоизлучающие диоды с боковым излучением, с задним креплением и тип лампы в дополнение к стандартным типам SMD.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *