Схема подключения светодиодного светильника: Как правильно и безопасно подключить светодиодные светильники

Содержание

Как правильно и безопасно подключить светодиодные светильники

Специалисты компании «Ледрус» ежедневно отвечают на десятки вопросов покупателей по особенностям подключения светодиодных светильников. Людей волнует задача правильного подсоединения осветительных приборов на светодиодах к электросети своими руками. У нас покупают светодиодные светильники различного типа для дома и офиса: встраиваемые, накладные, потолочные, офисные «Армстронг» и многие другие. Правила и способы подключения светильников абсолютно одинаковы и не зависят от варианта конструктивного исполнения.

В этой статье мы ответим на наиболее частые вопросы, задаваемые покупателями, не имеющими широких познаний в электротехнике. Надеемся, что наши рекомендации помогут домашним мастерам качественно и безопасно подключать любое количество светодиодных светильников.

Подключение светодиодного светильника к сети 220В

Многие заказчики интересуются решением проблемы электропитания светодиодных светильников от переменного напряжения бытовой электрической сети 220В. На самом деле проблемы не существует, а решение очень простое – все LED-светильники в нашем интернет-магазине продаются со встроенным преобразователем AC/DC. Поэтому можно смело подсоединять приборы освещения к существующей электропроводке.


Для примера посмотрим фотографию стандартного светильника, встраиваемого в подвесной потолок. Виден небольшой преобразовательный блок и два провода для подключения к электросети. Электроника блока выполняет выпрямление, стабилизацию и снижение входного напряжения переменного тока до нужной величины.

Подключение двумя или тремя проводами, без заземления/с заземлением

Светодиодный светильник подключается посредством двух или трех проводов. Необходимо понимать, что в большинстве квартир или офисных помещений разводка электросети выполнена двумя проводами: нулевым (синего цвета) и фазным (коричневого или красного цвета). Третий, заземляющий провод (желто-зеленого цвета), как правило, не используется.


Подсоединение осветительного прибора обычно осуществляется только 2-мя проводами при помощи специальных клеммников. На корпусе блока электропитания светильника имеются обозначения входных проводников: L – фаза, N – ноль. Таким образом реализуется двухпроводное подключение без заземления.


Если в сети присутствует отдельная заземляющая жила, то она присоединяется к специальному выводу на корпусе светильника, обеспечивая заземление в трехпроводном варианте подключения.


Схемы подключения 2, 3, 4 и более светильников

Зачастую возникает необходимость подключить 2, 3, 4 светодиодных светильника от одного выключателя. Например, в квартире с натяжными потолками и несколькими приборами освещения, распределенными по всей потолочной площади каждой комнаты. На практике используются три основные схемы, реализующие различную топологию разводки:

  1. Последовательная. Выполняется прокладка фазного провода к первому светильнику и от него последовательно к каждому последующему устройству. Нулевой проводник напрямую подсоединяется к крайнему в цепочке осветительному прибору. Плюс: небольшой расход проводов и времени. Минусы: уменьшение яркости пропорционально числу подключенных устройств; при выходе из строя одного прибора прекращают работать и все остальные.

  2. Параллельная. Более практичное решение, при котором к каждому светильнику прокладывается отдельный кабель. Больший расход кабельной продукции компенсируется значительными преимуществами. Яркость источников света соответствует заводским параметрам. Неисправность прибора освещения не влияет на нормальную работу остальных.

  3. Лучевая. Этот вариант является разновидностью параллельной схемы, позволяющей сэкономить электрический кабель. Вначале монтируют электрокабель до точки на потолке, равноудаленной от установленных LED-светильников, и устанавливают распределительную коробку. Затем от коробки прокладывают короткие кабельные линии к осветительным приборам.

Одноклавишные и двухклавишные выключатели

При монтаже осветительной проводки применяются как одноклавишные, так и двухклавишные выключатели. Рассмотрим их особенности:

  • одноклавишные – предназначены для управления одним или целой группой светодиодных светильников. Одна пара контактов;

  • двухклавишные – позволяют включать/выключать два отдельных LED-устройства освещения либо две группы, например, в разных зонах гостиной или холла. Две пары контактов.

Важно понимать, что на контакты выключателя требуется подводить фазный проводник, который коммутируется ими в зависимости от положения нажимной клавиши. Нулевой провод подключается к светильнику непосредственно из распределительной коробки, не подвергаясь коммутации.


Инструменты для монтажа

В процессе монтажных работ понадобятся качественные инструменты и материалы. Необходимо приготовить плоскогубцы, кусачки (бокорезы), отвертку обычную и индикаторную с хорошо изолированными рукоятками.

Для межпроводных соединений оптимально подходят клеммные разъемы Wago зажимного типа. Немного дешевле обойдутся стандартные пластиковые клеммники под винт.


Наверняка пригодится рулон изоляционной ленты. Для зачистки жил от изоляции лучше приобрести специализированное приспособление – стриппер.


Меры предосторожности

При самостоятельном подключении светодиодных светильников следует соблюдать элементарные меры предосторожности. Основным правилом безопасности является производство работ только после отключения подачи электроэнергии в помещение. Для этого нужно отключить соответствующий «автомат» в электрощитке.


Перед началом монтажа обязательно убедитесь в отсутствии напряжения 220В на проводах при помощи специального индикатора. Для большей безопасности воспользуйтесь диэлектрическими резиновыми перчатками. Если при внешнем осмотре обнаружился механический дефект осветительного прибора, то не стоит использовать его из-за возможного нарушения электроизоляции.

Работы на высоте лучше проводить при помощи прочной стремянки, а не сомнительного стула/табурета с шатающимися ножками.

После завершения монтажных операций рекомендуем проверить правильность выполнения реализованной схемы и надежность всех соединений. Неверные коммутации приводят к короткому замыканию в электросети. Поэтому внимание и еще раз внимание!

Воспользуйтесь консультацией специалиста

Свяжитесь с менеджером «Ледрус», чтобы проконсультироваться по любым вопросам, касающимся нашей продукции. Сотрудник интернет-магазина поможет Вам выбрать оборудование, а также рассчитать его количество под индивидуальный проект. Вы узнаете критерии выбора светодиодных светильников для помещений различного назначения, например для ванной, с особыми требованиями к уровню защиты от повышенной влажности.


Подключение светодиодного светильника к сети 220В

Оглавление:

  1. Введение
  2. Меры предосторожности и инструменты
  3. Подключение светодиодного светильника к 220В
  4. Подключение светодиодного светильника с тремя контактами
  5. Подключение потолочного светодиодного светильника
  6. Видео

LED-лампы вошли в нашу жизнь прочно и неотвратимо – в отличие от старых добрых ртутных лампочек они более энегкоемки и работоспособны: потребляют меньше электроэнергии и не выходят из строя на протяжении десятков тысяч часов. Из других плюсов – привлекательный внешний вид и компактность. Они не образуют нагара, просты в установке, экологически безопасны. В этой статье постараемся разобраться, как подключить светодиодный светильник к 220В, и главное – как сделать это правильно и безопасно.

Меры предосторожности и инструменты

Несмотря на то, что с подключением может справиться каждый, необходимо помнить о соблюдении техники личной безопасности, иначе ваши действия могут быть чреваты опасными последствиями. Лучше не рисковать и придерживаться простых правил:

  1. Монтаж, обслуживание и демонтаж осветительных приборов производится при выключенной электрической сети, поэтому первым шагом необходимо обесточить помещение, в котором будут происходить работы.
  2. Если напряжение LED-светильника меньше 220 вольт, то подключать его к сети можно только через блок питания, который должен идти в комплекте. При этом запрещено использование БП для галогенных и люминесцентных ламп.
  3. Установка должна выполняться с учетом суммарного энергопотребления данной осветительной системы, которое указано в выданном Техническом условии. Напряжение тока можно проверить с помощью индикаторной отвертки.
  4. Сухие руки при монтаже – обязательное условие несмотря на использование перчаток.
  5. Необходимо обеспечить свободное пространство вокруг прибора, чтобы лампы не перегревались – в противном случае они будут быстрее выходить из строя, возможно возгорание.
  6. Ознакомьтесь с условиями допустимых температур и влажности перед установкой – особенно это касается монтажа в банях и саунах. Нельзя устанавливать светильники, предназначенные для использования в помещениях, на улице без защиты.
  7. Выбирайте место установки таким образом, чтобы светильник и осветительная система не могла быть затоплена или подвержена сильной вибрации.
  8. Не рискуйте устанавливать светильники и блоки питания если при осмотре вы заметили внешние признаки неисправностей.
  9. При неисправностях не нужно разбирать светильники и блоки питания самостоятельно – неисправимые поломки приведут к отказу от сервисного обслуживания со стороны производителя.

При установке LED-элемента бытового назначения вы можете обойтись минимальным набором инструментов. Вам понадобится набор отверток – плоская и крестообразная, инструмент для удаления изоляционного слоя – стриппер – и плоскогубцы. Для большей безопасности советуем использовать специальные перчатки с диэлектрическим слоем.

Подключение светодиодного светильника к 220В

Способы установки можно условно разделить на три вида. У каждого свои особенности, достоинства и недостатки.

Последовательное

Используется в помещениях, к освещению которых нет высоких требований, чтобы сэкономить длину кабеля. В монтаже используются несколько двойных или тройных проводов. Не следует в одну цепь соединять более шести светодиодных лампочек, в противном случае свет от них будет тусклым. Недостаток способа в том, что при поломке одной лампы, проверять придется каждую – только так можно определить и устранить поломку.

Как осуществить? Обратите внимание на схему подключения. Сложностей такое подключение вызвать не должно. От выключателя к первому светильнику проводится фаза, затем от первого переключателя кабель протягивается к следующему устройству. К последнему светильнику нужно будет проложить ноль, который пущен от распределительной коробки.

Будьте внимательны! Если перепутать питание и ноль местами, светильники будут под постоянным напряжением – это небезопасно.

Параллельное

Такое соединение используется чаще – оно практичнее. Каждый светильник будет ярким настолько, насколько это заявил производитель. Минус заключается в том, что проводника потратить придется намного больше.

Обращайте внимание на кабель ВВГ нг 2*1,5 или 3*1,5 – он негорючий, имеет качественный изоляционный ПВХ-слой. В помещениях с повышенным требованиями можно купить кабель с маркировкой ls, которая означает, что при воспламенении кабель не будет выделять много дыма.

Чтобы осуществить такое подключение, протяните кабель от распределительной коробки через выключатель, поочередно соедините с каждым светильником. Обрезайте кабель после первого и передавайте его к следующему до тех пор, пока все лампы не будут соединены в общую сеть. Плюс такого способа в том, что при поломке одной лампы, сеть остается работоспособной.

Лучевое

Наиболее трудоемкий и дорогой способ соединения. К каждому прибору кабель прокладывается индивидуально.

От распределительного щитка проводим проводник в центр комнаты, а оттуда – к каждому отдельному светильнику. Затем к нулю и фазе проведите одножильные провода, их также проводим к каждой лампе отдельно.

Подключение светодиодного светильника с тремя контактами

Постараемся разобраться, как подключить светодиодный светильник, если у него три провода. Перед началом монтажа, советуем прочитать инструкцию, паспорт устройства, в котором помечены значения трех контактов. Для удобства монтажа провода различаются цветами: нулевой обозначается синим, провод заземления — желтым. Фазный обозначается отличным от двух остальных цветов.

  1. Соединяем синий нулевой провод лампы с нулевым из распределительной коробки;
  2. Фазный провод из распределительной коробки соединяем с выключателем, проводим провод под ним и соединяем с фазным проводом светильника.

Соединять безопаснее при помощи специальных клеммных зажимов.

Будьте осторожны! Не применяйте для изоляции ПВХ-ленты – со временем они усыхают, качество изоляции ухудшается. Это чревато опасным последствиями, в том числе коротким замыканием.

Подключение потолочного светодиодного светильника

Расскажем, как установить LED-элемент на натяжное потолочное покрытие, выполненное из ПВХ. Так как материал достаточно пластичный, то в процессе необходимо установить дополнительное крепление, чтобы потолок не провисал под тяжестью светильников. Для этого используется специальный пандус из пластика в форме конуса. Чтобы подогнать размер, срежьте ножом или другим подручным инструментом лишние полоски с конуса. Крепится устройство стальной перфорированной лентой — она достаточно гибкая, поэтому проблем возникнуть не должно.

Монтаж ламп производим сразу после установки потолочного покрытия. В месте, которое вы выбрали вырезаем пленку и извлекаем патрон. Устанавливаем потолочный светильник на платформу, что защитит не только от провисания потолка, но и перегрева.

В деталях увидеть, как подключить светодиодный светильник к сети, можно на видео ниже.

Видео

Подключение светодиодного светильника

Для бытового применения выпускают светодиодные лампы с рабочим напряжением в 220 и 12 вольт. Решение о том, как подключать светильники, не зависит от выбранной модели. На прокладку провода будет влиять способ подачи питания и количество приборов в сети. В этой статье вы найдете описание конкретных схем для подключения. Хотя все операции и можно выполнить самостоятельно, лучше обратиться за помощью к специалистам.

В этой статье:

Подключение светильников на 220В

Главное преимущество таких светильников перед моделями, работающими от 12 вольт, заключается в том, что питание подается напрямую от выключателя. В результате затрачивается меньше средств и усилий на монтаж ламп. В настоящее время существуют три способа подключить светильник:

  • последовательный;
  • параллельный;
  • лучевой.

Подключение точечных светильников к сети 220В без трансформатора

Каждый имеет свои достоинства и недостатки, применяется в разных ситуациях. Обсудим схемы более подробно.

Последовательный

Если возникает необходимость экономии провода, а к помещению нет особых требований, тогда последовательное подключение подойдет лучше других. Тут потребуется небольшое количество двойных или тройных проводов. При этом разрешается ставить в одну цепь не больше шести ламп, иначе яркость всех устройств будет низкой. А также если один из светильников выйдет из строя, подача питания прекратится, и придется проверять каждое устройство отдельно, чтобы найти дефект.

Сам процесс подключения прост: от выключателя прокладывается фаза к первому светильнику, далее от него подается провод к следующему и так до тех пор, пока не будет произведено подсоединение в одну цепь всех устройств. К последнему прокладывается ноль, идущий от распределительной коробки. Если перепутать провода местами и вместо питания пустить ноль, то лампы будут всегда оставаться под напряжением, что небезопасно.

Схема последовательного подключения светодиодных светильников

Все современные светильники выпускаются с расчетом на подключение провода «земля». Если в вашем случае в квартире есть заземление, тогда придется протягивать кабель напрямую от розетки к каждой лампе.

Для экономии средств, реализуя последовательную схему, применяют провод, так как в кабеле вторая жила будет просто обрываться и никак не использоваться.

Параллельный

Подключение светильников параллельным способом более практично и применяется чаще, чем последовательное. При реализации этого метода все источники света будут выдавать яркость, заявленную производителем. Единственным недостатком можно считать повышенный расход проводника по отношению к предыдущему варианту.

Рекомендуется применять кабель ВВГ нг 2х1,5 или 3х1,5. Эта маркировка означает, что два или три провода сечением 1,5 мм и кабель в целом имеют ПВХ-оболочку. Отметка «нг» в маркировке свидетельствует о том, что кабель негорючий. В некоторых случаях применяют кабель с дополнительной маркировкой «Is», означающей отсутствие сильного выделения дыма при воспламенении.

Параллельное соединение источников света шлейфным способом

Большинство пожаров возникает из-за некачественной проводки, поэтому на ней не стоит экономить, особенно если дом деревянный.

Для подключения от распределительной коробки через выключатель тянут кабель, который по очереди соединяется к каждому светильнику. После первой лампы провод обрезается и подается к следующей, пока не закончатся все устройства. Такая схема гарантирует работоспособность цепи даже в том случае, если одна из ламп перегорит.

В помещениях, разделенных на несколько функциональных зон, устанавливают две группы светильников. Обычно их подключают к двухклавишному выключателю. Так появляется возможность управлять включением света, давая его там, где планируется активность. В таком случае придется прокладывать кабель отдельно от каждой клавиши на определенную группу ламп. В целом принцип такой схемы ничем не отличается от описания в абзаце выше.

Лучевой

Лучевая схема по своей природе относится к параллельному методу подключения и часто встречается в люстрах. Он подразумевает прокладку питания к каждому светильнику индивидуально. Такой вариант более затратный, так как требует наибольшего количества провода. Чтобы сэкономить, прокладывают кабель в центр комнаты, откуда до каждого светильника будет равное расстояние. Далее к нулю и фазе подключаются одножильные провода, которые тянутся к осветительным приборам.

Важно решить, как будут соединены жилы кабеля с отдельным проводом. Если ламп немного, то можно довольствоваться обычно скруткой. Важно ее надежно обжать пассатижами и сварить воедино. В таком случае соединение выходит неразъемным и требует много времени для реализации. Для более безопасного варианта понадобится приобрести клеммы с нужным количеством выходов. На каждую жилу одевается разъем, и уже от него тянут провода к лампам.

Шлейфное и лучевое соединение ламп

При желании в цепь можно подключить диммеры — устройства, позволяющие управлять яркостью светильников.

Особенности подключения ламп на 12В

Так как для работы некоторых разновидностей точечных светильников требуется напряжение в 12 вольт, к сети подключают понижающий трансформатор. Кроме того, в домашней сети находится переменный ток, а для светодиодов нужен постоянный. Если есть навык и опыт, преобразовать электричество можно самостоятельно, использовав диодный мост, резистор и емкость. Все же рекомендуется выбирать заводские устройства, так как они более надежны, безопасны и имеют гарантийный срок.

Перед тем как купить трансформатор, рассчитывают максимально разрешенные величины тока. Этот показатель зависит от количества подключаемых светильников. Общая мощность устройств должна быть на 20% ниже, чем у блока питания. Так, если планируете устанавливать 6 ламп по 20 Вт, тогда потребуется трансформатор с мощностью в 150 Вт (6 шт. * 20 Вт * 1,2 = 144 Вт). Все характеристики устройств указаны на их упаковках и в описании.

Подключение светодиодных ламп на 12В

При выборе трансформатора учитывайте место его установки. Так, для ванной комнаты лучше отдать предпочтение моделям, защищенным от проникновения влаги.

Схема подключения низковольтных светодиодных светильников мало чем отличается от описанных в предыдущих разделах. В цепь после распределительной коробки устанавливается трансформатор, и уже дальше протягивают кабель. Чтобы при монтаже не ударило током, не забудьте отключить подачу питания.

Все описанные схемы просты в реализации, а чтобы избавиться от лишних трат и головной боли, покупайте светильники, работающие от напряжения в 220 вольт. Если не уверены в собственных силах или недостаточно инструмента для выполнения работ, обращайтесь к профессионалам. Качественный монтаж гарантирует долгий срок службы светильников и безопасность работы электропроводки.

Устройство, схема подключения светодиодного светильника

Самым эффективным способом сокращения электропотребления в быту является переход на искусственное освещение помещений в доме или квартире с использованием светодиодов, которые из всех типов ламп являются самыми высокоэффективными. Например, по сравнению с обычной лампой накаливания их энергопотребление более чем в 10 раз меньше при одинаковом световом потоке.

А кроме того светодиодные лампы во много раз превосходят люминесцентные энергосберегающие по сроку службы. Устанавливая светодиодные светильники Вы содействуйте сохранению  окружающей среды благодаря тому, что сокращается выделение продуктов горения топлива  в атмосферу от работы электростанций.


К основным достоинствам светодиодов относятся: экономичность, компактность, простота установки и отсутствие вредного влияния как на человека, так и природу. Будущее именно за ними и Я уверен,  что они вскоре вытеснят популярные сегодня компактные энергосберегающие лампы, у которых КПД и срок службы гораздо меньше.

Главный недостаток, который сдерживает всеобщее применение светодиодных светильников- это их цена. В Минске качественный светодиодный светильник дешевле, чем за 50 у. е. не найти, но уже наметилась тенденция по снижению цен на светодиодную продукцию. На лампочки уже  значительно снизились цены и они приближаются к энергосберегающим. Например, месяц назад Я заказал на известном китайском аукционе светодиодные лампы по цене 6 у. е.  за штуку, которые светят как 75 Вт лампа накаливания, а потребляют всего 5 Ватт электроэнергии.

Устройство светодиодного светильника.

Светильник состоит из корпуса с отражателем и набора небольших светодиодов. Светодиоды сильно греются, поэтому для их охлаждения используются специальный радиатор. На место соприкосновения светодиода и радиатора наносится термопаста, улучшающая контакт между ними, а значит и отвод тепла. Перегрев приводит к преждевременной поломке светодиодов, поэтому всегда при установке своими руками учитывайте, что должно быть свободное место вокруг радиатора и желательно не замкнутое.

Не устанавливайте светодиодный светильник возле нагревающихся поверхностей, приборов  и т. п.

Сумма  мощностей всех светодиодов и будет составлять общую мощность светильника. Количество светодиодов может варьироваться от одного до нескольких десятков, которые включаются в одну общую электрическую цепь и управляемой специально собранной схемой, подключенной через блок питания.

Если Вам необходимо функция диммирования или изменение уровня яркости, то Вам понадобятся специальные регуляторы и лампы с функцией диммирования. Подробнее об этом читайте в следующей нашей статье.

При выборе светодиодного светильника необходимо учитывать доступность ламп для замены, особенно обращаем внимание на тип цоколя (патрона). Прежде чем отправляться за покупкой в магазин рекомендую прочитать нашу статью «Как правильно выбрать светильник или люстру для дома«.

Светодиодная лампа на 220 Вольт состоит, как правило из одного или нескольких сверхъярких светодиодов, которые защищает светорассеиватель или пластиковая колба. К патрону подключается драйвер или электронная схема преобразования электрического тока и питания светодиодов. За отвод тепла отвечает радиатор, который устанавливается под светодиодом.

Как подключить светодиодный светильник

Светодиоды работают на постоянном токе! Внимание! Обращайте внимание при покупке на рабочее напряжение светодиодной лампы, если рабочее напряжение равно 220 Вольт, то значит схема блока питания встроена в лампу и Вы можете напрямую подключить ее к электросети дома или квартиры по общей схеме подключения светильника или люстры.

А если светодиодный светильник или лампа на 12 или 24 Вольта, то  для нормальной его работы необходимо переменное напряжение 220 Вольт преобразовать в постоянное и уменьшить до необходимой величины, а для этого нужно собрать диодный мостик и установить гасящий резистор и емкость. Я рекомендую использовать вместо всего этого покупной блок питания заводской конструкции, который надежен, безопасен и долговечен.

При покупке блока питания главное, на что необходимо обратить внимание- это на величину выходного напряжения (12/24 В) и максимально допустимой величины тока (350 /  700 mA  и др. )

Необходимые данные Вы найдете в инструкции к светильнику или благодаря надписям на нем или лампе. Мощность блока питания лучше брать не меньше, чем с 20 процентным запасом. Для перевода в Ватты необходимо Миллиамперы умножить на 1000 для перевода в Амперы, а затем амперы умножить на рабочее напряжение, полученная величина и будет мощностью, потребляемой светильником или лампой.

Прежде, чем приступать к подключению светильника во избежание его поломки убедитесь, что блок питания не подключен к электросети.

Подключение производится к источнику питания со строгим соблюдением полярности «-» и «+».

Если необходимо подключить несколько светодиодных светильников к одному блоку питания, тогда соединяем их параллельно: плюсовые провода от всех светильников подключаются к  «плюсу» блока питания, а к «минусу»- минусовые выводы (как изображено на схеме).

 

Помните! Максимальное  количество  светильников, подключаемых к одному блоку питания в общей сумме не должно превышать его мощности! А сечение используемых электрических проводов или кабелей должно быть достаточным для прохождения соответствующей силы тока!

 Из своей многолетней практики электрика отмечу, что не стоит покупать светодиодные светильники или лампы на 12 или 24 В для дома. Гораздо проще купить и подключить своими руками обыкновенный накладной, встраиваемый светильник или люстру. Для них практически под все распространенные цоколи или патроны выпускаются светодиодные лампы на 220 Вольт, которым не нужен для подключения блок питания. Они подключаются на прямую к электропроводке, так же как и лампы накаливания или компактные энергосберегающие.

Устройство и схема подключения светодиодного светильника

Если вы хотите снизить финансовые затраты на электроэнергию, пожалуй самым эффективным способом будет являться переход с ламп накаливания или галогенных ламп на использование специальных светодиодов. Энергопотребление таких ламп по сравнению с лампами накаливания будет во много раз меньше, тогда как световой поток останется неизменным.

Если сравнивать светодиоды с люминесцентными энергосберегающими лампами, превосходство также будет на их стороне — срок службы таких ламп существенно больше. Если вы заботитесь об экологии окружающей среды, светодиодные источники света также будут здесь на первом месте.

Содержание статьи

Достоинства светодиодных ламп

Исходя из вышестоящего текста, светодиоды обладают такими достоинствами как экономичность, долгий срок службы и отсутствие негативного влияния на экологию планеты и человека. К этому можно добавить компактность таких ламп, простоту установки, а также отсутствие нагрева лампы во время работы. Светодиодные лампы обладают самыми лучшими характеристиками среди других популярных на сегодняшний момент.

Единственный недостаток, свойственный светодиодным лампам, часто сдерживающий человека от их покупки — цена. Качественный светодиодный источник света стоит гораздо дороже аналогов, однако тенденция снижения цен на рынке на светодиодную продукцию уже наметилась. Цены на светодиоды постепенно снижаются, благодаря этому они становятся доступными для любого человека. Светодиоды можно заказать в интернете, на популярных сейчас китайских аукционах, по довольно низкой цене. Такие лампы излучают свет как обычная 75 Вт лампочка, а потребляют энергии всего 5 Ватт.

Устройство светодиодной лампы (светильника)

Строение светодиодного светильника довольно просто: несколько светодиодов и корпус со специальным отражателем. Для охлаждения светодиодов в лампе присутствует специальный радиатор, в месте соприкосновения которого со светодиодом проложен слой термопасты, улучшающей контакт, а также отвод тепла. Если светодиод перегреется, поломки лампы не избежать, поэтому при ее установке обязательно оставляйте свободное незамкнутое пространство вокруг радиатора. Также нельзя устанавливать светодиодную лампу возле нагревающихся поверхностей и приборов.

Общая мощность светильника будет равна сумме мощности всех входящих в нее светодиодов. Светодиодов может быть как совсем небольшое количество, например один, так и несколько десятков. Все эти светодиоды включены в общую электрическую цепь и управляются специально собранной схемой, подключенной через блок питания.

Светодиодная лампа мощностью 220 В состоит из нескольких светодиодов, которые защищены пластиковой колбой или светорассеивателем. К патрону подключена электронная схема преобразования тока. Радиатор для отвода тепла установлен под светодиодом.

Функциональность светодиодной лампы

Для возможности регулировать яркость светового потока и подключения диммера, нужно приобрести специальные светодиодные лампы с возможностью такой регулировки, а также специальные регуляторы.

Обратите внимание также на тип цоколя (патрона), он должен подходить к выбранным вами корпусам (светильникам). Для удобства поика нужных ламп для замены в дальнейшем, можно сохранить упаковку.

Подключение светодиодного светильника

Для работы светодиодов нужен постоянный ток. Если вы покупаете светильник для использования в стандартной квартире или доме с рабочим напряжением сети 220 В, вам нужно искать светодиодную лампу, на упаковке которой будет указана мощность 220 В. Это означает, что схема блока питания уже встроена в лампу и она подключается напрямую к вашей электросети по схеме подключения светильника (люстры).

Если же на упаковке светодиодной лампы указано значение 12 или 24 В, это означает, что для нормальной ее работы нужен преобразователь напряжения. Для этого возможно использовать специальный заводской блок питания, продающийся в специализированных отделах. Такой блок прослужит вам долгое время, он безопасен и надежен.

Если вы решили приобрести такой блок, обратите внимание на необходимую для ваших светодиодных ламп величину входного напряжения — 12 или 24 Вольта и максимально допустимую величину тока — 350 mA, 700 mA или другие значения.

Все необходимые данные можно посмотреть на упаковке светильника или в инструкции. Мощность блока питания должна быть с запасом, не менее чем 20%. Для правильного подсчета мощности следует mA умножить на 1000 (для перевода в Амперы), а затем амперы умножить на рабочее напряжение. Таким образом вы получите число, составляющее потребляемую мощность вашего светодиодного светильника.

Перед подключением лампы следует убедиться в том, что блок питания отключен от электросети, иначе поломки не избежать.

Произведите подключение к источнику питания, строго соблюдая полярность.

Подключение нескольких светодиодных светильников

Можно подключить несколько светодиодных ламп к одному блоку питания, для этого потребуется соединить их параллельно, плюсовые провода от всех светильников подключаются к «плюсу» блока питания, а к «минусу»- минусовые выводы (используйте схему).

Обязательно нужно помнить, что мощность всех светильников, которые вы подключаете к одному блоку питания, не должны превышать его мощности. Также внимание следует обратить на сечение используемых электрических проводов — оно должно быть достаточным для прохождения соответствующей силы тока.

Однако если вы хотите использовать светодиодные лампочки в своем доме или квартире, лучшим вариантом будет приобрести лампу, подходящую к вашему рабочему напряжению. Подключение такого встраиваемого светильника не составит для вас никакого труда и займет минимальное количество времени.

Светодиодные лампы 220 Вольт в настоящее время весьма распространены и вы легко подберете лампу с подходящим для вашего светильника или люстры цоколем или патроном. Для подключения этой лампы не нужен дополнительный блок питания, ее подключают напрямую к электросети как обычные лампы накаливания, галогенные или энергосберегающие лампы. Такой светодиодный светильник будет радовать вас качеством долгое время.

Понравилась статья? Поделиться с друзьями:

Схемы подключения светодиодов к 220В и 12В

Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В. Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение. Давно собираюсь сделать плавный искусственный рассвет , чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.

Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.

Содержание

  • 1. Типы схем
  • 2. Обозначение на схеме
  • 3. Подключение светодиода к сети 220в, схема
  • 4. Подключение к постоянному напряжению
  • 5. Самый простой низковольтный драйвер
  • 6. Драйвера с питанием от 5В до 30В
  • 7. Включение 1 диода
  • 8. Параллельное подключение
  • 9. Последовательное подключение
  • 10. Подключение RGB LED
  • 11. Включение COB диодов
  • 12. Подключение SMD5050 на 3 кристалла
  • 13. Светодиодная лента 12В SMD5630
  • 14. Светодиодная лента RGB 12В SMD5050

Типы схем

Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:

  1. светодиодный драйвер со стабилизированным током;
  2. блок питания со стабилизированным напряжением.

В первом варианте применяется специализированный  источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.

Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения  необходимо использовать токоограничивающий резистор.
Расчет резистора для светодиода можно сделать на специальном калькуляторе.

Калькулятор учитывает 4 параметра:

  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи;
  • количество вольт на выходе блока питания.

Разница кристаллов

Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления. Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и  затем понижаем напряжение до тех пор, когда они будут едва светиться. Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.

Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены.  Так же будет повышенный нагрев, усиленная деградация, ниже надежность.

Обозначение на схеме

Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.

Подключение светодиода к сети 220в, схема

Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.

Схема драйвера для светодиодов бывает двух видов:

  1. простая на гасящем конденсаторе;
  2. полноценная с использованием микросхем стабилизатора;

Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется. Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают. Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.

Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а  в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была  не с питанием.

Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера. Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока. Единственное нельзя превышать указанную  мощность.

Подключение к постоянному напряжению

..

Далее будут рассмотрены  схемы подключения светодиодов к постоянному напряжению. Наверняка у вас дома найдутся блоки питания со стабилизированный  полярным напряжением на выходе. Несколько примеров:

  1. 3,7В – аккумуляторы от телефонов;
  2. 5В – зарядные устройства с USB;
  3. 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
  4. 19В – блоки от ноутбуков, нетбуков, моноблоков.

Самый простой низковольтный драйвер

Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.

Входное до 37В, до 1,5 Ампера для корпуса указанного на картинке.

Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.

Драйвера с питанием от 5В до 30В

Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие.  Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.

В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.

Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.

Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.

Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.

Включение 1 диода

Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.

Параллельное подключение

При параллельном соединении  желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность. Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся. На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.

Рациональность применений каждого способа  рассчитывают исходя из требований к изделию.

Последовательное подключение

Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт.  В длинной цепочке из 60-70 LED на каждом  падает 3В, что и позволяет подсоединять напрямую  к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

Такое соединение применяют в любой светотехнике:

  1. светодиодные лампах для дома;
  2. led светильники;
  3. новогодние гирлянды на 220В;
  4. светодиодные ленты на 220.

В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

Соблюдайте осторожность, если видите длинную последовательную цепочку, к тому же на них не всегда есть заземление.  Мой сосед схватил кукурузу голыми руками и потом рассказывал увлекательные стихи из нехороших слов.

Подключение RGB LED

Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.

Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.

Включение COB диодов

Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.

Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.

Подключение SMD5050 на 3 кристалла

От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов  белого света, поэтому имеет 6 ножек.  То есть он равен трём SMD2835, сделанным на этих же кристаллах.

При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.

При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.

Светодиодная лента 12В SMD5630

Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.

 

Светодиодная лента RGB 12В SMD5050

В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.

Как подключить светодиодный светильник к 220 В: схема и правила

Осветительные лед-элементы прочно вошли в быт современного человека – их применяют и как подсветку, и как основные источники света в жилых помещениях.

В отличие от обычной лампочки накаливания они потребляют в разы меньше электроэнергии и при этом способны работать несколько десятков тысяч часов подряд.

Однако существуют некоторые нюансы в их установке.

Поэтому рассмотрим, как своими руками подключить стандартный светодиодный светильник к бытовой сети с напряжением в 220В, какие виды схем можно использовать, какие виды ламп применяются и каковы их особенности.

Подключение светильников на 220 В

В отличие от стандартной лампы накаливания, светодиодный светильник требует питания только постоянным током. Поэтому чтобы подключить его от бытовой сети в 220В требуется специальный преобразовательный блок. Приборы, выпускаемые современными производителями, рассчитанные на такой номинал, имеют в своем составе преобразователь, поэтому их можно включать напрямую в розетку.

Существуют три способа, как подключить светодиодный светильники к бытовой сети в 220 В:

  1. Последовательный.
  2. Параллельный.
  3. Лучевой.

У каждого из них есть свои особенности монтажа, плюсы и минусы в применении в различных условиях и технические параметры. Рассмотрим их подробно.

Последовательный

Последовательная схема подключения стандартных светодиодных ламп, предназначенных для сети в 220В, предполагает соединение всех светильников между собой одним проводником. Суть в том, что в начало этой цепочки подается фаза, а к ее концу – ноль. Таким способом она замыкается и каждый из приборов работает в общей системе.

Преимущество такого последовательного подключения заключается в возможности существенно сэкономить на проводке. Для соединения всех светильников требуется одножильный провод, а если в сети 220В используется заземление, то двухжильный, вместо трехжильного кабеля. Недостаток – если одна из люстр перегорит, выключится вся схема, и потребуется поиск вышедшего из строя элемента для его ремонта или замены.

Алгоритм последовательного подключения светодиодного светильника:

  1. Выполнить монтаж светильников в соответствии с планом.
  2. Подключить электроприборы освещения проводкой по последовательному способу.
  3. Подвести жилу с фазой от выключателя к первой люстре.
  4. Проложить и от распределительной коробки нулевой проводник к последнему осветительному прибору.
  5. Проверить надежность и правильность всех соединений проводки, завершить установку электрооборудования.
  6. Подключить напряжение сети 220В, проверить исправность приборов.

Фазный провод к выключателю и нулевой к последнему светильнику в схеме может подходить как напрямую от электрощитка, так и от ближайшей распределительной коробки.

При выборе последовательного метода следует учитывать общее распределение напряжения на каждый источник света. По этой причине в такую систему не ставят более шести светильников, так как яркость их будет значительно снижаться.

Важно! Нельзя путать правило подключения фазы и нуля в выше приведенном методе. Если подсоединить к последнему прибору фазу, а от выключателя ноль, то вся схема светильников будет находиться под напряжением 220В, что далеко не безопасно в бытовых условиях!

Параллельный

В отличие от вышеописанного случая, параллельная схема требует подключать к каждому светодиодному светильнику два проводника – фазу и ноль (или три, если есть заземление) от сети 220В. Недостатком этого способа является повышенный расход кабеля или провода. С другой стороны – каждый прибор освещения будет проявлять заявленную изготовителем световую силу.

Чтобы подключить светодиодный светильник по параллельной цепочке от 220В, нужно выполнять следующий ряд действий:

  1. Выполнить установку всех осветительных приборов по ранее разработанной планировке.
  2. Подвести к первому фонарю провод от выключателя с фазой, затем от этого проводника подвести к следующему и т. д. – до последнего.
  3. Аналогичным образом от распределительной коробки нужно подключить нулевую жилу и, если есть, заземляющий проводник.
  4. Фаза к выключателю и ноль и земля к светильникам подводятся либо от распредмодуля, либо от электрощитка.
  5. Завершить монтажные процедуры, проверить правильность и надежность собранной электросхемы.
  6. Включить сеть 220В и проверить работоспособность установленных приборов.

Если в одном помещении существует несколько функциональных областей, устанавливать светодиодные светильники лучше группами. Для этого необходимо подключить их через двух- или трехклавишный выключатель.

Лучевой

Лучевое подключение – это частная разновидность параллельной системы. Чтобы подключить светодиодные светильники этим способом, необходимо в центр расположения приборов (например, когда они размещены по периметру зала) подвести кабель. Далее от распредмодуля к каждой люстре или их группе подводится провод с фазой, нулем и, если требуется, землей.

В начале главного кабеля устанавливается выключатель для управления группой светильников. Если планируется управлять каждой из них отдельно, схема существенно усложняется – добавляются проводники, выключатели. В случае, когда необходимо менять яркость, время и цвет, в систему также можно монтировать диммеры.

Особенности подключения ламп на 12В

Чтобы правильно подключить светодиодные светильники с рабочим номиналом в 12В к сети с напряжением в 220В, необходимо учесть несколько факторов:

  1. Бытовой ток имеет переменное значение, для низковольтовых лед-элементов нужен постоянный. Поэтому в начале схемы потребуется установить специальный трансформатор.
  2. Перед покупкой модуля, понижающего напряжение, надо грамотно рассчитать его мощность. Для этого подсчитывается точное количество используемых 12-вольтовых светодиодных светильников и их суммарная мощность. Например, если их количество будет 5 по 10 Вт каждая, значит общая требуемая мощность равняется 50 Вт. При этом к расчетному значению обязательно добавляется 20%-ый буфер. В данном случае это 10 Вт. Таким образом, общая мощность трансформатора должна быть не менее 60 Вт.
  3. При отсутствии достаточно опыта не пытаться собрать понижающий модуль самостоятельно. Для максимальной безопасности и надежности лучше приобретать заводское устройство с гарантированными характеристиками и сроком службы.

Подключить светодиодные светильники на 12В в сеть 220В можно по вышеописанным механизмам – параллельным и последовательным. В первом случае нужно обязательно использовать понижающий и выпрямляющий трансформатор, так как на каждую лампу будет подаваться одинаковое постоянное напряжение. Другое дело, когда все приборы соединяются друг за другом.

Важно! Несмотря на то, что в низковольтовых лэд-элементах в последовательной схеме осуществляется распределение всего напряжения в сети 220В, значение тока остается переменным. Поэтому потребуется установка выпрямителя. С его помощью на один конец цепочки светодиодных светильников будет подаваться плюс, на другой – минус.

Для тех, кто имеет хороший опыт в радиотехнике, собрать понижающе-выпрямляющее устройство не представляет особой сложности. Для того чтобы подключить светодиодные светильники номиналом 12В к бытовой сети 220В, используются две схемы:

  1. Упрощенная на гасящем конденсаторе.
  2. Более стабильная с микросхемой.

Первая дешевая и простая. Ее основной недостаток – возможная пульсация светового потока и неточные параметры электронных компонентов. Вторая версия сводит недостатки вышеприведенной на нет. Однако она более сложна в устройстве и дороже, но при этом более стабильна и надежна.

При выборе места монтажа трансформатора, выпрямителя и других электротехнических устройств необходимо учитывать влажность окружающей среды. Если их контакта с водой не избежать, лучше приобретать модели с влагозащищенным, герметичным корпусом.

Основные выводы

Подключить светодиодные светильники к бытовой электросети с напряжением в 220В можно по трем вариантам:

  1. Последовательной.
  2. Параллельной.
  3. Лучевой.

Последовательный способ распределения ламп позволяет сэкономить на проводке и сократить монтажные работы по ее укладке и восстановлению поверхности стен. Его главный недостаток – зависимость всех приборов друг от друга – если один перегорит, выйдут из строя все. Параллельная схема лишена этого минуса. Однако платой за это является больший расход проводников и необходимость подключения к каждой люстре по две-три жилы.

Еще один плюс такого способа – возможность использовать полную заданную светосилу лэд-элемента, чего не дает последовательная схема, где напряжение распределяется между всеми светильниками поровну. Лучевой метод – это разновидность параллельного, где все подсоединяемые фонари находятся примерно на равном расположении от центра – распредмодуля. Применяется, когда, например, лампы нужно установить по периметру потолочной поверхности.

В бытовую сеть на 220В также можно подключить светодиодные светильники на 12В. Однако нужно учесть, что они рассчитаны на постоянный ток. Поэтому для последовательной цепочки потребуется выпрямитель, а для параллельной в добавок понижающий трансформатор.

Предыдущая

СветодиодыКак подобрать и установить светодиодный драйвер своими руками

Следующая

СветодиодыТаблица сравнения светового потока светодиодов и ламп накаливания и другие показатели эффективности освещения

Описание серии

и параллельных цепей

Надеюсь, те, кто ищет практическую информацию об электрических схемах и подключении светодиодных компонентов, первыми нашли это руководство. Вполне вероятно, что вы уже читали здесь страницу Википедии о последовательных и параллельных схемах, возможно, несколько других результатов поиска Google по этой теме, но все еще неясны или желаете получить более конкретную информацию, касающуюся светодиодов. За годы обучения, обучения и разъяснения клиентам концепции электронных схем мы собрали и подготовили всю важную информацию, которая поможет вам понять концепцию электрических цепей и их связь со светодиодами.

Перво-наперво, не позволяйте, чтобы электрические схемы и компоненты проводки светодиодов казались устрашающими или сбивающими с толку — правильное подключение светодиодов может быть простым и понятным, если вы следите за этим постом. Давайте начнем с самого основного вопроса…

Какой тип цепи мне следует использовать?
Один лучше другого… Последовательный, Параллельный или Последовательный / Параллельный?

Требования к освещению часто диктуют, какой тип схемы может быть использован, но если есть выбор, наиболее эффективным способом использования светодиодов высокой мощности является использование последовательной схемы с драйвером светодиодов постоянного тока.Последовательная схема помогает обеспечить одинаковое количество тока для каждого светодиода. Это означает, что каждый светодиод в цепи будет иметь одинаковую яркость и не позволит одному светодиоду потреблять больше тока, чем другому. Когда каждый светодиод получает одинаковый ток, это помогает устранить такие проблемы, как тепловой выход из строя.

Не волнуйтесь, параллельная схема по-прежнему является жизнеспособным вариантом и часто используется; позже мы обрисуем этот тип схемы.

Но сначала давайте рассмотрим схему серии :

Часто называемый «гирляндным» или «замкнутым» током в последовательной цепи следует один путь от начала до конца, при этом анод (положительный) второго светодиода соединен с катодом (отрицательным) первого.На изображении справа показан пример: Для подключения последовательной цепи, подобной показанной, положительный выход драйвера подключается к положительному выводу первого светодиода, а от этого светодиода выполняется соединение от отрицательного к положительному полюсу второго. Светодиод и так далее, до последнего светодиода в цепи. Наконец, последнее соединение светодиода идет от отрицательного вывода светодиода к отрицательному выходу драйвера постоянного тока, создавая непрерывную петлю или гирляндную цепь.

Вот несколько пунктов для справки о последовательной цепи:

  1. Одинаковый ток течет через каждый светодиод
  2. Полное напряжение цепи представляет собой сумму напряжений на каждом светодиоде
  3. При выходе из строя одного светодиода вся схема не работает.
  4. Цепи серии
  5. проще подключать и устранять неисправности
  6. Различное напряжение на каждом светодиоде — это нормально

Питание последовательной цепи:

Концепция петли к настоящему времени не проблема, и вы определенно можете понять, как ее подключить, но как насчет питания последовательной цепи.

Второй маркер выше гласит: «Общее напряжение цепи — это сумма напряжений на каждом светодиоде». Это означает, что вы должны подать как минимум сумму прямых напряжений каждого светодиода. Давайте посмотрим на это, снова используя приведенную выше схему в качестве примера, и предположим, что светодиод представляет собой Cree XP-L, работающий от 1050 мА с прямым напряжением 2,95 В. Сумма трех из этих прямых напряжений светодиодов равна 8,85 В, постоянного тока, . Таким образом, теоретически 8,85 В — это минимально необходимое входное напряжение для управления этой схемой.

В начале мы упоминали об использовании драйвера светодиода с постоянным током, потому что эти силовые модули могут изменять свое выходное напряжение в соответствии с последовательной схемой. Поскольку светодиоды нагреваются, их прямое напряжение изменяется, поэтому важно использовать драйвер, который может изменять свое выходное напряжение, но сохранять тот же выходной ток. Чтобы получить более полное представление о драйверах светодиодов, загляните сюда. Но в целом важно убедиться, что ваше входное напряжение в драйвере может обеспечивать выходное напряжение, равное или превышающее 8.85V мы рассчитали выше. Некоторым драйверам требуется вводить немного больше, чтобы учесть питание внутренней схемы драйвера (драйвер BuckBlock требует накладных расходов 2 В), в то время как другие имеют функции повышения (FlexBlock), которые позволяют вводить меньше.

Надеюсь, вы сможете найти драйвер, который сможет дополнить вашу светодиодную схему последовательно включенными диодами, однако существуют обстоятельства, которые могут сделать это невозможным. Иногда входного напряжения может быть недостаточно для питания нескольких последовательно включенных светодиодов, или, может быть, светодиодов слишком много для подключения последовательно, или вы просто хотите ограничить стоимость драйверов светодиодов.Какой бы ни была причина, вот как понять и настроить параллельную схему светодиодов.

Параллельная цепь:

Если последовательная схема получает одинаковый ток к каждому светодиоду, параллельная схема получает одинаковое напряжение на каждый светодиод, а общий ток на каждый светодиод представляет собой общий выходной ток драйвера, деленный на количество параллельных светодиодов.

Опять же, не волнуйтесь, здесь мы увидим, как подключить параллельную светодиодную схему, и это должно помочь связать идеи воедино.

В параллельной схеме все положительные соединения связаны вместе и обратно к положительному выходу драйвера светодиода, а все отрицательные соединения связаны вместе и обратно к отрицательному выходу драйвера.Давайте посмотрим на это на изображении справа.

В примере, показанном с выходным драйвером 1000 мА, каждый светодиод будет получать 333 мА; общий выход драйвера (1000 мА), деленный на количество параллельных цепочек (3).

Вот несколько пунктов для справки о параллельной цепи:

  1. Напряжение на каждом светодиоде одинаковое
  2. Полный ток — это сумма токов, протекающих через каждый светодиод.
  3. Общий выходной ток распределяется через каждую параллельную цепочку
  4. Требуется точное напряжение в каждой параллельной цепочке, чтобы избежать перегрузки по току

Теперь давайте немного повеселимся, объединим их вместе и наметим схему серии / параллельной цепи :

Как следует из названия, последовательная / параллельная цепь объединяет элементы каждой цепи.Начнем с последовательной части схемы. Допустим, мы хотим запустить в общей сложности 9 светодиодов Cree XP-L на 700 мА каждый с напряжением 12 В постоянного тока ; прямое напряжение каждого светодиода при 700 мА составляет 2,98 В постоянного тока . Правило номер 2 из маркированного списка последовательной цепи доказывает, что 12 В постоянного тока недостаточно для последовательного включения всех 9 светодиодов (9 x 2,98 = 26,82 В, постоянного тока, ). Тем не менее, 12 В постоянного тока достаточно для работы трех последовательно соединенных (3 x 2,98 = 8,94 В постоянного тока ). И из правила № 3 параллельной схемы мы знаем, что общий выходной ток делится на количество параллельных цепочек.Итак, если бы мы использовали BuckBlock на 2100 мА и три параллельных ряда по 3 последовательно соединенных светодиода, то 2100 мА было бы разделено на три, и каждая серия получила бы 700 мА. На изображении в качестве примера показана эта установка.

Если вы пытаетесь настроить светодиодную матрицу, этот инструмент планирования светодиодных схем поможет вам решить, какую схему использовать. На самом деле он дает вам несколько различных вариантов различных последовательных и последовательных / параллельных цепей, которые будут работать. Все, что вам нужно знать, это ваше входное напряжение, прямое напряжение светодиодов и количество светодиодов, которые вы хотите использовать.

Падение нескольких светодиодных цепочек:

При работе с параллельными и последовательными / параллельными цепями следует помнить, что если цепочка или светодиод перегорят, светодиод / цепочка будет отключена из цепи, так что дополнительная токовая нагрузка, которая шла на этот светодиод, будет раздать остальным. Это не большая проблема для массивов большего размера, поскольку ток будет рассеиваться в меньших количествах, но как насчет схемы с двумя светодиодами на цепочку? Затем ток будет удвоен для оставшегося светодиода / цепочки, что может быть более высокой нагрузкой, чем светодиод может выдержать, что приведет к перегоранию и разрушению вашего светодиода! Обязательно помните об этом и постарайтесь создать такую ​​настройку, которая не испортит все ваши светодиоды, если один из них перегорит.

Другая потенциальная проблема заключается в том, что даже когда светодиоды поступают из одной производственной партии (одного бункера), прямое напряжение все еще может иметь допуск 20%. Варьирование напряжений в отдельных цепочках приводит к тому, что ток не делится поровну. Когда одна струна потребляет больше тока, чем другая, перегруженные светодиоды нагреваются, и их прямое напряжение будет больше изменяться, что приведет к более неравномерному распределению тока; это называется тепловым разгоном. Мы видели, как многие схемы, настроенные таким образом, работают хорошо, но требуется осторожность.Для получения дополнительной информации об этой концепции и способах ее избежать (текущее зеркало) есть отличная статья на сайте LEDmagazine.com.

Общие сведения о драйверах светодиодов от LEDSupply

Драйверы светодиодов

могут сбивать с толку светодиодную технологию. Существует так много разных типов и вариаций, что временами это может показаться немного подавляющим. Вот почему я хотел написать небольшой пост с объяснением разновидностей, их различий и вещей, на которые следует обратить внимание при выборе драйвера (ов) светодиодов для вашего освещения.

Что такое драйвер светодиода, спросите вы? Драйвер светодиода — это электрическое устройство, которое регулирует мощность светодиода или цепочки светодиодов. Это важная часть светодиодной цепи, и работа без нее приведет к отказу системы.

Использование одного из них очень важно для предотвращения повреждения светодиодов, поскольку прямое напряжение (V f ) мощного светодиода изменяется в зависимости от температуры. Прямое напряжение — это количество вольт, которое светоизлучающий диод требует для проведения электричества и зажигания.По мере увеличения температуры прямое напряжение светодиода уменьшается, в результате чего светодиод потребляет больше тока. Светодиод будет продолжать нагреваться и потреблять больше тока, пока светодиод не перегорит сам себя, это также известно как термический побег. Драйвер светодиода — это автономный источник питания, выходы которого соответствуют электрическим характеристикам светодиода (-ов). Это помогает избежать теплового разгона, поскольку драйвер светодиода с постоянным током компенсирует изменения прямого напряжения, обеспечивая при этом постоянный ток к светодиоду.

На что следует обратить внимание перед выбором драйвера светодиода

  • Какие типы светодиодов используются и сколько?
    • Узнать прямое напряжение, рекомендуемый ток возбуждения и т. Д.
  • Нужен ли мне драйвер светодиода постоянного тока или драйвер светодиода постоянного напряжения?
    • Здесь мы сравниваем постоянный ток с постоянным напряжением.
  • Какой тип энергии будет использоваться? (Постоянный ток, переменный ток, батареи и т. Д.)
  • Какие ограничения по месту?
    • Работаете в ограниченном пространстве? Не слишком много напряжения для работы?
  • Каковы основные цели приложения?
    • Размер, стоимость, эффективность, производительность и т. Д.
  • Нужны какие-то специальные функции?
    • Диммирование, импульсное, микропроцессорное управление и т. Д.

Прежде всего, вы должны знать…

Существует два основных типа драйверов: те, которые используют входное питание постоянного тока низкого напряжения (обычно 5–36 В постоянного тока), и те, которые используют входное питание переменного тока высокого напряжения (обычно 90–277 В переменного тока). Драйверы светодиодов, которые используют высоковольтное питание переменного тока, называются автономными драйверами или драйверами светодиодов переменного тока. В большинстве приложений рекомендуется использовать драйвер светодиода с низким напряжением постоянного тока.Даже если ваш вход представляет собой переменный ток высокого напряжения, использование дополнительного импульсного источника питания позволит использовать входной драйвер постоянного тока. Рекомендуются низковольтные драйверы постоянного тока, поскольку они чрезвычайно эффективны и надежны. Для небольших приложений доступно больше опций регулирования яркости и вывода по сравнению с высоковольтными драйверами переменного тока, поэтому у вас есть больше возможностей для работы в вашем приложении. Однако, если у вас есть большой проект общего освещения для жилого или коммерческого освещения, вы должны увидеть, какие драйверы переменного тока могут быть лучше для этого типа работы.

Вторая вещь, которую вы должны знать

Во-вторых, вам нужно знать ток возбуждения, который вы хотите подать на светодиод. Более высокие токи возбуждения приведут к большему количеству света от светодиода, а также потребуют большей мощности для освещения. Важно знать характеристики своего светодиода, чтобы знать рекомендуемые токи возбуждения и требования к радиатору, чтобы не сжечь светодиод слишком большим током или избыточным нагревом. Наконец, хорошо знать, что вы ищете от своего осветительного приложения.Например, если вы хотите регулировать яркость, вам нужно выбрать драйвер с возможностью регулировки яркости.

Немного о затемнении

Регулировка яркости светодиодов зависит от используемой мощности; поэтому я рассмотрю варианты диммирования постоянного и переменного тока, чтобы мы могли лучше понять, как регулировать яркость всех приложений, будь то постоянный или переменный ток.

Регулировка яркости постоянного тока

Низковольтные драйверы с питанием от постоянного тока можно легко уменьшить несколькими способами. Самым простым решением для этого является использование потенциометра.Это дает полный диапазон затемнения от 0 до 100%.

Потенциометр 20 кОм

Обычно это рекомендуется, когда у вас есть только один драйвер в вашей цепи, но если несколько драйверов диммируются от одного потенциометра, значение потенциометра можно найти из — KΩ / N — где K — значение вашего потенциометра, а N количество используемых вами драйверов. У нас есть подключенные BuckPucks, которые поставляются с потенциометром с поворотной ручкой 5K для регулирования яркости, но у нас также есть потенциометр 20K, который можно легко использовать с нашими драйверами BuckBlock и FlexBlock.Просто подключите провод заземления затемнения к центральному штырю, а провод затемнения к одной или другой стороне (выбор стороны просто определяет, каким образом вы поворачиваете ручку, чтобы уменьшить яркость).

Второй вариант регулировки яркости — использование настенного светорегулятора 0–10 В, например, нашего низковольтного регулятора яркости A019. Это лучший способ диммирования, если у вас несколько устройств, поскольку диммер 0-10 В может работать с несколькими драйверами одновременно. Просто подключите диммерные провода прямо ко входу драйвера, и все готово.

Диммирование переменного тока

Для высоковольтных драйверов переменного тока существует несколько вариантов регулировки яркости в зависимости от вашего драйвера. Многие драйверы переменного тока работают с регулировкой яркости 0-10 В, как мы уже говорили выше. У нас также есть светодиодные драйверы Mean Well и Phihong, которые предлагают диммирование TRIAC, поэтому они работают со многими передними и задними диммерами. Это полезно, поскольку позволяет светодиодам работать с очень популярными системами затемнения в жилых помещениях, такими как Lutron и Leviton.

Сколько светодиодов можно запустить с драйвером?

Максимальное количество светодиодов, которые вы можете запустить от одного драйвера, определяется делением максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов.При использовании драйверов LuxDrive максимальное выходное напряжение определяется путем вычитания 2 вольт из входного напряжения. Это необходимо, потому что драйверы нуждаются в накладных расходах 2 вольта для питания внутренней схемы. Например, при использовании драйвера Wired 1000mA BuckPuck с входом 24 В у вас будет максимальное выходное напряжение 22 В.

Что мне нужно для питания?

Это приводит нас к определению того, какое входное напряжение нам нужно для наших светодиодов. В конце концов, входное напряжение равно нашему максимальному выходному напряжению для нашего драйвера после того, как мы учтем служебное напряжение схемы драйвера.Убедитесь, что вы знаете минимальное и максимальное входное напряжение для драйверов светодиодов. В качестве примера мы возьмем Wired 1000mA BuckPuck, который может принимать входное напряжение от 7 до 32 В постоянного тока. Чтобы определить, каким должно быть ваше входное напряжение для приложения, вы можете использовать эту простую формулу.

V o + (V f x LED n ) = V дюйм

Где:

В o = Накладные расходы по напряжению для драйверов — 2, если вы используете драйвер DC LuxDrive или 4, если вы используете драйвер AC LuxDrive

В f = прямое напряжение светодиодов, которые вы хотите запитать

LED n = количество светодиодов, которые вы хотите запитать

В в = Входное напряжение на драйвер

Технические характеристики продукта со страницы продукта Cree XPG2

Например, если вам нужно запитать 6 светодиодов Cree XPG2 от источника постоянного тока и вы используете проводную шайбу BuckPuck, указанную выше, то V в должно быть не менее 20 В постоянного тока на основе следующего расчета.

2 + (3,0 х 6) = 20

Определяет минимальное необходимое входное напряжение. Нет никакого вреда в использовании более высокого напряжения вплоть до максимального номинального входного напряжения драйвера, поэтому, поскольку у нас нет источника питания на 20 В постоянного тока, вы, вероятно, будете использовать источники питания 24 В постоянного тока для работы этих светодиодов.

Теперь это помогает нам убедиться, что напряжение работает, но для того, чтобы найти правильный источник питания, нам также необходимо определить мощность всей цепи светодиода.Расчет мощности светодиода:

В f x Управляющий ток (в амперах)

Используя 6 светодиодов XPG2 сверху, мы можем определить наши ватты.

3,0 В x 1 А = 3 Вт на светодиод

Общая мощность цепи = 6 x 3 = 18 Вт

При расчете мощности блока питания, подходящей для вашего проекта, важно предусмотреть 20% «амортизатора» при расчете мощности. Добавление этой 20% -ной подушки предотвратит перегрузку источника питания.Перегрузка блока питания может привести к мерцанию светодиодов или преждевременному отказу блока питания. Просто рассчитайте подушку, умножив общую мощность на 1,2. Таким образом, для нашего примера выше нам потребуется не менее 21,6 Вт (18 x 1,2 = 21,6). Ближайший общий размер блока питания будет 25 Вт, поэтому в ваших интересах получить блок питания на 25 Вт и выходное напряжение 24 В.

Что делать, если у меня недостаточно напряжения?

Использование LED Boost Driver (FlexBlock)

Драйверы светодиодов FlexBlock — это повышающие драйверы, что означает, что они могут выдавать более высокое напряжение, чем то, что на них подается.Это позволяет подключать больше светодиодов последовательно с одним драйвером светодиода. Это очень полезно в приложениях, где ваше входное напряжение ограничено, и вам нужно получить

FlexBlock На

больше мощности для светодиодов. Как и в случае с драйвером BuckPuck, максимальное количество светодиодов, которое вы можете подключить с помощью одного последовательно подключенного драйвера, определяется делением максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов. FlexBlock может быть подключен в двух различных конфигурациях и может варьироваться в зависимости от входного напряжения.В режиме Buck-Boost (стандартный) FlexBlock может обрабатывать светодиодные нагрузки, которые находятся выше, ниже или равны напряжению источника питания. Вы найдете максимальное выходное напряжение драйвера в этом режиме по следующей формуле:

48 В постоянного тока — В в

Итак, при использовании источника питания 12 В постоянного тока и светодиодов XPG2 сверху, сколько мы могли бы работать с 700 мА FlexBlock? Максимальное выходное напряжение составляет 36 В постоянного тока (48–12), а прямое напряжение XPG2, работающего при 700 мА, составляет 2,9, поэтому, разделив 36 В постоянного тока на это, мы видим, что этот драйвер может питать 12 светодиодов.В режиме Boost-Only FlexBlock может выдавать до 48 В постоянного тока от всего лишь 10 В постоянного тока. Таким образом, если вы были в режиме Boost-Only, вы могли включить до 16 светодиодов (48 / 2,9). Здесь мы рассмотрим использование повышающего драйвера FlexBlock для более глубокого питания ваших светодиодов.

Проверка мощности для входных драйверов переменного тока большой мощности

Теперь с драйверами входа переменного тока они выделяют определенное количество ватт для работы, поэтому вам нужно определить мощность ваших светодиодов. Вы можете сделать это по следующей формуле:

[Vf x ток (в амперах)] x LEDn = мощность

Итак, если мы пытаемся запитать те же 6 светодиодов Cree XPG2 на 700 мА, ваша мощность будет…

[2.9 x 0,7] x 6 = 12,18

Это означает, что вам нужно найти драйвер переменного тока, который может работать до 13 Вт, как наш светодиодный драйвер Phihong 15 Вт.

ПРИМЕЧАНИЕ: При разработке приложения важно учитывать минимальное выходное напряжение автономных драйверов. Например, приведенный выше драйвер имеет минимальное выходное напряжение 15 вольт. Поскольку минимальное выходное напряжение больше, чем у нашего одиночного светодиода XPG2 (2,9 В), для работы с этим конкретным драйвером вам потребуется соединить не менее 6 из них последовательно.

Инструменты для понимания и поиска правильного драйвера светодиода

Итак, теперь у вас должно быть довольно хорошее представление о том, что такое драйвер светодиода и на что нужно обращать внимание при выборе драйвера с источником питания, достаточным для вашего приложения. Я знаю, что вопросы по-прежнему будут, и для этого вы можете связаться с нами по телефону (802) 728-6031 или [email protected]

У нас также есть этот инструмент выбора драйверов, который помогает рассчитать, какой драйвер будет лучше всего, введя спецификации вашей схемы.

Если ваше приложение требует нестандартного размера и вывода, обратитесь в LEDdynamics. Их подразделение LUXdrive быстро разработает и изготовит нестандартные светодиодные драйверы прямо здесь, в Соединенных Штатах.

Спасибо за внимание, и я надеюсь, что этот пост поможет всем, кто интересуется, что такое светодиодные драйверы.

BuckBlock DC LED Driver

Выходной ток: 2100 мА, 1400 мА и 1000 мА Диапазон входного напряжения: 10Vdc-32Vdc
Затемнение: 0-10 В Защита выхода: Короткое замыкание и разрыв цепи
Защита входа: Обратная полярность с Polarifet Размер: 2.0 дюймов (Д) X 1,2 дюйма (Ш) X 0,38 дюйма (В)
Внешнее управление: Аналоговый / цифровой контроль интенсивности Управление потенциометром: 0-100% интенсивность
КПД: 90% Подключение: Провода 18 AWG

Модули питания светодиодов BuckBlock ™ серии LuxDrive ™ A009 представляют собой высокомощные драйверы постоянного тока с широким диапазоном мощности для питания светодиодов высокой яркости (HB) при постоянных высоких выходных токах.В тех случаях, когда стандартные блоки питания подают на выход фиксированное напряжение, BuckBlock спроектирован для выработки фиксированного тока. Выходное напряжение будет регулироваться по мере необходимости для поддержания указанного выходного тока с различными падениями прямого напряжения светодиодов. BuckBlock имеет схему измерения тока с быстрым откликом, позволяющую устройству мигать или стробировать светодиоды, а выход BuckBlock включает внешнее затемнение с использованием обычных диммеров низкого напряжения 0-10 В. Форм-фактор BuckBlock чрезвычайно низкопрофильный, полностью герметизирован и поставляется с шестидюймовыми цветными выводами 18AWG, что делает установку в ограниченном пространстве быстрой и простой.

Выбор продукции

Деталь
Номер
Вход постоянного тока (В DC ) Выход Управление
Диммирование
(В)
Соединение
Тип
Мин. Макс. Ток
мА
Допуск
(±)
КПД
(%)
Максимальное напряжение
A009-D-V-1000 10 32 1000 10% 90 80% от Vin 0-10 (6) 18AWG 6 «Провода
A009-D-V-1400 10 32 1400 10% 90 75% от Vin 0-10 (6) 18AWG 6 «Провода
A009-D-V-2100 10 32 2100 10% 90 50% от Vin 0-10 (6) 18AWG 6 «Провода

Абсолютные максимальные рейтинги

Параметр Максимальная производительность
Вход затемнения, порог включения 1.7 В ± 5%
Вход регулирования яркости, полный по порогу 9 В ± 5%
Диапазон регулировки внешнего горшка 0%, 5-100%
Время нарастания выходной мощности <1,5 мс
Время спада мощности <100 s = "" td = "">
Ток покоя (DIM = 0 В) <4.5 ma = "" td = "">
Температура хранения -40 ° C — 125 ° C
Рабочая температура -40 ° С — 80 ° С

Информация о приложении: Высокоэффективный светодиодный силовой модуль BuckBlockTM — это высокоэффективный преобразователь постоянного тока в постоянный, который обеспечивает фиксированный выходной ток путем изменения выходного напряжения, необходимого для поддержания заданного тока.Поскольку прямое напряжение светодиодов может изменяться в зависимости от нескольких факторов окружающей среды, а также от возраста светодиода, важно использовать этот тип драйвера в светодиодной системе. Более высокие выходные токи идеальны для управления несколькими цепочками светодиодов или мощных светодиодных модулей. Схема измерения тока с быстрым откликом позволяет использовать устройство в приложениях, где требуется мигание или пульсация светодиодов. Доступно несколько опций, позволяющих использовать со многими типами светодиодов и в различных режимах работы.

Привод с фиксированным током: Когда провода регулятора яркости (фиолетовый / серый) остаются неподключенными, A009 предназначен для подачи номинального тока на один или несколько переходов светодиодов. Например, блок с номиналом 2100 мА будет управлять до четырех белых светодиодов 2100 мА, соединенных последовательно при 24 В постоянного тока. Из-за природы понижающего стабилизатора входное напряжение всегда должно быть выше, чем полное прямое падение напряжения на переходе (-ах) светодиодов, соединенных последовательно. Таким образом, для последовательной колонны из четырех соединений, имеющей среднее прямое падение 3.15 В каждое, необходимое минимальное входное напряжение будет 24 В постоянного тока. Стандартный источник питания 24 В постоянного тока — хороший выбор для этого приложения. См. Стр. 3 для получения информации о максимальных номинальных значениях Vout / Vin для различных приводных токов.

На рисунках 10 и 11 показаны блоки 1400 мА и 2100 мА, управляющие несколькими светодиодами. Обратите внимание, что параллельные цепочки светодиодов могут управляться напрямую без дополнительных схем, необходимых для распределения тока. Природа самих светодиодов будет обеспечивать достаточное разделение тока, если параллельные цепочки содержат три или более переходов каждая и имеют одинаковую длину.

Регулируемый ток — внешнее управление — модель «V»: На рисунках 14 и 15 показано, как легко регулировать яркость модуля питания светодиодов A009 BuckBlockTM High Output с высокой выходной мощностью. На рисунке 14 показана простейшая конфигурация диммирования с использованием потенциометра 20 кОм. Это дает диапазон затемнения от 0 до 100%. Если несколько модулей A009 должны быть уменьшены с помощью одного потенциометра, значение потенциометра должно быть приблизительно (20KÎ © / N), где N — количество модулей.

На рисунке 15 показан настенный диммер на 0–10 В, такой как LEDdynamics A019 Low Voltage Dimming Control, используемый для управления яркостью светодиода.Это предпочтительный выбор для регулирования яркости нескольких устройств, поскольку диммер 0-10 В может работать с несколькими драйверами. Вход 0-10 В также может быть запитан коммерческим контроллером освещения, который имеет токовые выходы 0-10 В, что позволяет интегрировать светодиоды с другими формами освещения в больших автоматизированных системах.

Для больших систем, в которых несколько удаленных модулей BuckBlock будут затемнены вместе, важно использовать провод большего сечения (например, 18AWG) для прокладки линий DIM по схеме звездообразной проводки (где каждый модуль проходит весь путь назад до диммер).Это поможет нейтрализовать любые падения напряжения на проводах DIM, которые могут привести к тому, что некоторые лампы будут тускнеть не так, как другие.

Для более расширенного управления вход 0-10 В может иметь широтно-импульсную модуляцию (ШИМ). На рисунке 18 показано, как легко выполнить сопряжение с микроконтроллером с помощью транзистора 2N3904 или аналогичного. Рекомендуется частота ШИМ 200 Гц. Эта конфигурация также может использоваться для стробирования или импульса светодиодов с помощью логического сигнала TTL или CMOS.

В дополнение к конфигурациям, описанным выше, BuckBlock также может управляться цифро-аналоговым преобразователем.Цифро-аналоговый преобразователь должен иметь возможность потреблять не менее 1 мА тока со входа 0–10 В BuckBlock. Если цифро-аналоговый преобразователь не может потреблять ток, следует использовать повторитель напряжения с выходом с открытым коллектором между цифро-аналоговым преобразователем и входом 0–10 В.

Если в цепи управления затемнением, используемой с BuckBlock, есть потенциал, превышающий 10 В, ток на входе DIM необходимо ограничить до 10 мА или меньше. См. Рисунок 8.

Внешнее включение / выключение: Если требуется ручное включение / выключение, потенциометр на Рисунке 14 можно заменить кнопочным или тумблером.Выходной ток будет равен нулю, а входной ток упадет до уровня покоя, когда переключатель замкнут. На рисунках 16 и 17 показано внешнее управление затемнением в сочетании с управлением включением / выключением.

Управление температурой: BuckBlock может работать со многими конфигурациями светодиодной нагрузки без дополнительного теплоотвода при температуре окружающей среды 25 ° C. В ситуациях с повышенными температурами окружающей среды, например, внутри закрытого прибора, может потребоваться дополнительный теплоотвод.Если температура драйвера (измеренная по метке T на этикетке) превышает 60 ° C, рекомендуется дополнительный теплоотвод. Если температура драйвера превышает 80 ° C, требуется дополнительный теплоотвод.

Лучшая поверхность для отвода тепла от BuckBlock — это задняя сторона (противоположная стороне с надписью). Модуль может быть прикреплен к радиатору с термопастой и монтажным кронштейном, который плотно прижимает устройство к радиатору, или с помощью двусторонней ленты, которая обеспечивает как тепловой путь, так и механический монтаж.При использовании ленты (такой как 3M F9469PC, лента с очень высоким сцеплением (VHB), подходящая для постоянного монтажа), использование более тонкой разновидности (толщиной 0,005 дюйма или меньше) поможет отвести тепло через ленту к радиатору. Следует соблюдать осторожность при установке модуля BuckBlock с лентой VHB, так как высокая прочность сцепления очень затрудняет снятие или повторное расположение модуля.

Если BuckBlock становится слишком горячим во время использования, он снижает выходной ток для ограничения рассеиваемой мощности. Если температура продолжит расти, драйвер выключится, пока температура не упадет до безопасного уровня.

Подключения: Во всех случаях управляемые светодиоды должны располагаться как можно ближе к выходу светодиода A009. Провод 18AWG должен подходить для большинства проводов, но если требуются длинные провода, следует рассмотреть вариант более толстого сечения

Провода подачи питания также должны быть короткими. Если источник питания расположен в нескольких футах от устройства, на входных клеммах может потребоваться конденсатор емкостью 100 мкФ или более, 50 В, как показано на Рисунке 20.

Примечание: Выше представлены основные характеристики продукта, а не полное техническое описание производителя.Пожалуйста, просмотрите .pdf для получения полных спецификаций.

Простая схема светодиодной лампы из лома. Использует 5 светодиодов и потребляет всего 50 мА

Энергосберегающая светодиодная лампа из вашего мусорного бака.

Эта схема разработана г-ном Ситараманом Субраманианом, и мы очень рады опубликовать ее здесь. В этой статье он показывает метод преобразования сломанной / неработающей КЛЛ в энергосберегающую светодиодную лампу.

Это просто схема светодиодной лампы, которая может работать от сетевого напряжения.Цепочка из пяти светодиодов управляется емкостным источником питания без трансформатора. В цепи 0,47 мкФ / 400 В полиэфирный конденсатор С1 снижает сетевое напряжение. R1 — это спускной резистор, который выводит накопленный заряд из C1, когда вход переменного тока выключен. Резисторы R2 и R3 ограничивают бросок тока при включении цепи. Диоды D1 – D4 образуют мостовой выпрямитель, который выпрямляет пониженное напряжение переменного тока, а C2 действует как конденсатор фильтра. Наконец, стабилитрон D1 обеспечивает регулировку, а светодиоды возбуждаются.

Фото.

Принципиальная схема.

Слова Ситхарамана о схеме : Я посылаю вам настольную лампу, сделанную из неработающей энергосберегающей лампы с разбитыми трубками. КЛЛ переделали в светодиодную лампу. Большинство компонентов будет доступно в одной коробке для лома. Также можно использовать несколько компонентов, имеющихся в печатной плате CFL.

Процедура

1. Осторожно снимите разбитые очки

2.Осторожно откройте сборку

3. Снять и утилизировать электронику

4. Соберите схему в матричном ПК или на листе ламината толщиной 1 мм.

5. Вырежьте круглый лист ламината (ножницами)

6. Отметьте положение 6 круглых отверстий на листе

7. Просверлите отверстия, чтобы светодиоды встали заподлицо с шестью отверстиями

8. Нанесите немного клея, чтобы удерживать светодиодный узел в положении

9.Закрываем сборку

10. Убедитесь, что внутренние провода не касаются друг друга.

11. Теперь проверьте на 230 В переменного тока

Ваша красивая компактная настольная лампа / комнатная лампа для пуджи / проходная лампа готова к использованию.

Двухсторонние светодиодные трубчатые лампы с прямым проводом 2 лампы, электрические 101

В двухпроводных светодиодах с прямым проводом линия подключается к патронам на одном конце светильника, а на другом — к нейтрали.С этими светодиодными трубками можно использовать шунтированные или не шунтированные патроны . При использовании шунтированных патронов, отличных от , провода обычно нужно подключать только к одной стороне патрона с большинством светодиодных трубок (см. Инструкции по подключению).

Осторожно! Прямая проводка приведет к тому, что патроны будут запитаны линейным напряжением при включении выключателя света. Всегда отключайте питание светильника при установке или замене трубок в светильниках с прямым подключением.

Табличка с модификацией приспособления должна поставляться с трубкой. Поместите его на крышку балласта в соответствии с инструкциями.

Мгновенный пуск балласта 2 лампы

Заводская проводка

Светодиодный прямой провод с двойным проводом-

Схема подключения 2 лампы Устройство для мгновенного запуска

Отрежьте провода от балласта. Снимите балласт с приспособления (или оставьте его на месте). Используя оранжевые соединители для проводов, обрежьте провода примерно до 1/2 дюйма.Можно использовать соединители для проводов аналогичного размера.

Отдельные провода патронов (синие) подключены к линии.

Общие провода (красные) подключены к нейтрали.

Эти соединения можно поменять местами. Индивидуальный к нейтральному и общий к линии.

Балласты для быстрого пуска 2 лампы

Заводская проводка

Светодиодный прямой провод с двойным проводом —

Схема подключения 2 лампы Крепление для быстрого пуска

Отрежьте провода от балласта.Снимите балласт с приспособления (или оставьте его на месте). Используйте разъем желто-коричневого провода для линии и разъем оранжевого провода для нейтрали. Обрежьте провода примерно до 1/2 дюйма для нейтрали и от 5/8 до 3/4 дюйма для линии. Можно использовать соединители для проводов аналогичного размера.

Отдельные провода патронов (синий и красный) подключены к линии.

Общие провода (желтые) подключены к нейтрали.

Эти соединения можно поменять местами. Индивидуальный к нейтральному и общий к линии.

Светодиодные трубчатые лампы

Двойной провод с прямым проводом — Светодиодные лампы с закругленными углами 4 лампы

Светодиодные лампы с прямым проводом с одинарным концом

Что внутри и светодиодная лампа

от ЛЕЛАНД ТЕШЛЕР, исполнительный редактор

Сюрприз: заглянув внутрь пяти светодиодных ламп, предназначенных для замены ламп накаливания мощностью 60 Вт, можно увидеть, какие режимы проектирования варьируются от абсолютно простых до поразительно сложных.

Среднестатистический потребитель может подумать, что когда дело доходит до лампочек, одна примерно такая же, как и другая. Этот вид мог быть точным, когда в каждой розетке была лампа накаливания. Это, конечно, не так для светодиодных ламп, разработанных в качестве замены ламп накаливания.

Мы пришли к такому выводу после того, как разобрали пять светодиодных ламп, продаваемых как эквиваленты ламп накаливания мощностью 60 Вт. Все пять выбранных нами ламп получили высокие оценки журнала Consumer Reports. Но на этом общность остановилась.Когда мы вошли внутрь, мы обнаружили совершенно разные подходы к технологиям строительства, управлению температурным режимом и проектированию электроники.

Начнем с лампы под названием E27 A19 LED от Home EVER Inc. из Лас-Вегаса. Механика лампочки и ее электроники предельно просты. Двусторонняя печатная плата, похоже, была припаяна оплавлением. Два провода соединяют плату с металлической пластиной, на которой находится 30 светодиодов. Еще два провода идут к проводам розетки. Все четыре провода выглядят так, как если бы они были спаяны вручную.

Пластиковый корпус преобразователя постоянного / переменного тока Home EVER выдвинулся из нижней части радиатора. Плата преобразователя (правая) находится в пластиковом корпусе.

Лампа построена вокруг радиатора высотой 2 дюйма, который весит 2 унции и выглядит как отливка из металла. В основании лампы находится пластиковый корпус, в котором находится преобразователь постоянного / переменного тока. Электрические подключения к патрону лампы находятся на одном конце корпуса. Другой конец крепится к радиатору двумя маленькими винтами.

Радиатор и пластиковое основание лампы Home EVER удерживают преобразователь постоянного / переменного тока с удаленными металлическими резьбами.> Здесь соединение опорной ноги по-прежнему подключено к преобразователю.

Дополнительные приспособления к радиатору — это матовая поликарбонатная лампа, в которую заключены светодиоды, и металлическая пластина диаметром 2 дюйма, на которой находятся светодиоды. Пластиковая лампа, по-видимому, вставляется в радиатор, а светодиодная пластина крепится тремя винтами. Между светодиодной пластиной и радиатором нанесена пара точек теплопроводности.

Конструкция преобразователя постоянного / переменного тока проста. Единственные компоненты, не относящиеся к SMD, — это два больших конденсатора, импульсный резистор на входе и трансформатор.Подключение платы к основанию винта и к плате светодиодов осуществляется дискретными проводами, но подключение к контакту ножки лампы было выполнено машинным способом. Однако электрическое соединение с металлической резьбой — это просто отрезок оголенного провода, зажатого между пластиковым корпусом и внутренней поверхностью резьбы.

Электроника преобразователя переменного / постоянного тока — голая. Диодный мост на входе — четыре дискретных диода. На плате есть единственная микросхема. Это источник питания с понижающей топологией, предназначенный для обеспечения постоянного тока и производимый компанией Bright Power Semiconductor (BPS) в Китае.Чип, получивший название BP2812, включает полевой МОП-транзистор на 600 В. В спецификации указан рабочий ток микросхемы на уровне 200 мкА.

На плате Home EVER видны четыре диода, составляющие выпрямительный мост и микросхему BP2812 (внизу). На другой стороне платы (вверху) находятся компоненты управления энергией и плавкий предохранитель на входе.

«Типичная прикладная схема», указанная в спецификации BP2812, очень близка к реальной схеме, которую мы нашли на печатной плате светодиода. Семь резисторов входят в простые сети, которые обрабатывают напряжение Vcc, измеряют пиковый ток понижающей индуктивности и регулируют входное напряжение на ИС.Пять конденсаторов выполняют рутинную работу по фильтрации линии переменного тока, байпас переменного тока для выводов Vcc и датчиков линии, а также понижающую топологию. Встроенный предохранитель отключает питание всей цепи в случае слишком большого потребления тока.

Судя по графике на сайте BPS, похоже, что BPS сам собрал плату. Там есть изображения примеров плат для нескольких других светодиодных приложений, которые очень похожи на это.

Микросхема, питающая светодиодную лампу Home EVER, по сути, представляет собой источник постоянного тока, питающий встроенный MOSFET.Эталонная схема от производителя микросхем Bright Power Semiconductor близка к той, что мы нашли на печатной плате.

Следует отметить, что влияние температуры на работу светодиода не учитывается в преобразователе постоянного / переменного тока. Светодиоды излучают меньше света при повышении их температуры. Обычно это не проблема при небольших изменениях температуры. Чувствительность глаза к свету логарифмическая, и глаз не особенно чувствителен к небольшим изменениям яркости. Нет ничего необычного в том, что световой поток светодиода падает на 10% при повышении температуры перехода от комнатной до 150 ° C.

Но ток светодиода также можно уменьшить при более высоких температурах, чтобы уменьшить потребность в теплоотводе. Тем не менее, нет датчика температуры, который мы могли бы увидеть в преобразователе переменного / постоянного тока домашней лампы EVER. А схемы диммирования нет.

Но в целом светодиодная лампа, вероятно, хорошо работает там, где не требуется регулировка яркости.

Osram
Светодиодная лампа Osram Sylvania мощностью 60 Вт примечательна тем, что имеет относительно небольшой состоящий из двух частей радиатор.Одна часть представляет собой башню в форме пятиугольника высотой 1 дюйм, которая служит основой для шести светодиодных плат, пять из которых имеют форму пятиугольника, а шестая находится на вершине башни пятиугольника. Другой — цилиндрический литой радиатор длиной 0,75 дюйма, который, по-видимому, защелкивается в верхней части пластикового купола, в котором размещены светодиоды. Цилиндрический литой радиатор и башня вместе весят 1,3 унции.

Вид на светодиодную лампу Osram с отрезанным пластиковым шаром, открывающий башню в форме пятиугольника, на которой расположены светодиоды. Видно, что провода от платы преобразователя постоянного / переменного тока припаяны к верхней пластине.

Основание устройства представляет собой цельный пластиковый корпус, в котором находится монтажная плата преобразователя переменного / постоянного тока. Два провода соединяют его с пятиугольной башней с 18 светодиодами, по три на каждой грани. Соединения между платами, похоже, были припаяны оплавлением. Но дискретные провода между печатной платой и светодиодной сборкой, похоже, были припаяны вручную. Точно так же соединения с цоколем лампы представляют собой дискретные провода, один из которых зажат между металлической резьбой, а другой — машиной, установленной на ножке лампы.

Заливочный материал, окружающий плату преобразователя переменного / постоянного тока лампы Osram и пластиковый корпус, из которого она была извлечена.

По причинам, которые не совсем ясны, разработчики лампы Osram решили закрепить плату преобразователя переменного / постоянного тока. Относительно небольшой радиатор на этой плате по сравнению с другими конструкциями, которые мы видели, может указывать на то, что заливка предназначена для улучшения рассеивания тепла, хотя заливочный материал не полностью заполняет пустое пространство между электронными компонентами и внешней оболочкой.Однако заливка действительно усложнила процесс расшифровки схемы.

Эталонная схема SSL21082AT кажется близкой к той, что мы нашли на печатной плате Osram. Чип имеет вход для резистора NTC, но мы не обнаружили его ни на печатной плате, ни на металлических пластинах, к которым крепятся светодиоды.

Основная плата для светодиодной лампы Osram двусторонняя. Он содержит две микросхемы, одна из которых представляет собой диодный мост для входа переменного тока, а другая — микросхему драйвера SSL21082AT от NXP Semiconductors. Функции, реализованные на микросхеме NXP, включают регулирование яркости, защиту от перегрева и контроль перегрева светодиодов, защиту от короткого замыкания на выходе и режим перезапуска в случае отключения электроэнергии.Эта ИС имеет встроенный внутренний переключатель высокого напряжения и работает как понижающий преобразователь с граничной проводимостью (BCM).

Основной радиатор светодиодной лампы Osram представляет собой отливку цилиндрической формы, которая показана здесь в виде четырех частей после извлечения из корпуса лампы. Металлическая резьба крепится к пластиковому корпусу, на котором крепится плата преобразователя переменного / постоянного тока, которая видна здесь.

BCM — это квазирезонансный метод, используемый для повышения энергоэффективности. Основная идея BCM заключается в том, что ток индуктора начинается с нуля в каждый период переключения.Когда силовой транзистор повышающего преобразователя включен на фиксированное время, пиковый ток катушки индуктивности пропорционален входному напряжению. Форма волны тока треугольная; поэтому среднее значение в каждом периоде переключения пропорционально входному напряжению.

После того, как герметизирующий материал был удален с печатной платы лампы Osram, на печатной плате стала видна микросхема драйвера SSL21082AT от NXP Semiconductors. Другая микросхема на плате — это мостовой выпрямитель. Конденсаторы для управления энергией и катушки индуктивности установлены на другой стороне платы.

Запасы энергии в катушке индуктивности при включенном переключателе. Ток катушки индуктивности равен нулю, когда полевой МОП-транзистор включен. Амплитуда нарастания тока в катушке индуктивности пропорциональна падению напряжения на катушке индуктивности и времени, в течение которого переключатель MOSFET находится во включенном состоянии. Когда полевой МОП-транзистор выключен, энергия в катушке индуктивности направляется к выходу. Ток светодиода зависит от пикового тока через дроссель и от угла диммера. Новый цикл начинается, когда ток индуктора становится равным нулю.

3M
Светодиод 3M имеет особый вид благодаря белой цилиндрической колонне высотой 2 дюйма, видимой под полупрозрачным пластиковым куполом. Колонка — это просто металлический радиатор; очевидно, это не имеет ничего общего с рассеянием света.

Светодиодная лампа 3М со снятым пластиковым глобусом. Белый столбец является теплоотводом и мало влияет на светоотдачу. Светодиоды расположены вокруг обода пластиковой колбы в металлическом радиаторе.

Светодиоды расположены на гибкой печатной плате, прикрепленной к другому 2-дюймовому разъему.-высокий теплоотвод, который также служит опорой для цоколя лампы. Пластиковая втулка идет в нижней части радиатора, чтобы удерживать резьбу металлических винтов и поддерживать контакт ножек в нижней части основания. Радиатор и колонка вместе весят 2,4 унции.

Цоколь лампы 3M состоит из пластиковой втулки вокруг радиатора, к которой крепятся металлические резьбы и ножки. Электрические соединения находятся на гибкой цепи, удерживающей светодиоды и преобразователь постоянного / переменного тока. Здесь виден контакт, который загибается за боковую часть пластиковой втулки, чтобы войти в контакт с металлической резьбой винта, и второй контакт, который касается стойки на контакте ступни (справа).

Гибкая печатная плата, на которой расположены светодиоды, также содержит схему драйвера переменного / постоянного тока. Это CL8800 от Microchip Technology. Эталонный дизайн состоит из CL8800, шести резисторов и мостового выпрямителя (устройство Fairchild). От двух до четырех дополнительных компонентов являются дополнительными для различных уровней защиты от переходных процессов. Эталонный дизайн Microchip очень близок к тому, что мы нашли в лампочке 3M.

Эталонная схема для Microchip CL8800 близка к схеме на светодиодной лампе 3M, хотя лампа 3M включает дополнительную RC-цепь (здесь не показана) для регулирования фазового освещения.

Схема драйвера делит цепочку из 25 светодиодов на два набора по пять, один набор из четырех и один набор из шести. Мы не уверены, почему компания 3M разделила количество светодиодов таким образом. Однако интересна их ориентация. Они располагаются на выступе, образованном радиатором, и ориентированы прямо вверх. Прозрачный шар из карбоната помещается на тот же выступ, поэтому световой поток светодиода фактически направлен к краю самого пластикового шара, а не проходит через шар изнутри корпуса.

Крупный план гибкой схемы на светодиодной лампе 3M, которая удерживает как схему преобразователя переменного / постоянного тока, так и светодиоды.

Схема драйвера светодиода довольно проста и размещена на гибкой схеме без использования герметика, который мог бы мешать. Согласно паспорту Microchip, шесть линейных регуляторов тока потребляют ток на каждом ответвлении и последовательно включаются и выключаются, отслеживая входное синусоидальное напряжение. Микросхема минимизирует напряжение на каждом регуляторе при проводке, обеспечивая высокий КПД.

Выходной ток на каждом ответвлении индивидуально настраивается резистором. RC-цепь, состоящая из резистора и трех параллельно включенных конденсаторов, на входе мостового выпрямителя обеспечивает диммирование фазы. Два других компонента обеспечивают защиту от переходных процессов при подключении к линии переменного тока. Всего в гибкой схеме 13 дискретных компонентов, которые обеспечивают защиту от переходных процессов, диммирование фаз и задают токи в цепочках светодиодов.

Feit Electric Co.
Лампа от Feit Electric имела самую странную ориентацию среди светодиодов из всех, что мы исследовали. Пластина диаметром 1 7⁄8 дюйма, на которой крепятся 36 светодиодов, частично скрыта в собранной колбе круглой пластиковой деталью с отверстием диаметром 1 дюйм посередине. Эта деталь устанавливается поверх светодиодной пластины. Итак, глядя на собранную лампочку, можно увидеть пластиковую деталь и всего пять светодиодов, видимых в центре пластины под отверстием в ее середине.

Заливочный материал на печатной плате лампы Feit, видимый здесь у основания радиатора, также выступает в качестве структурного элемента, удерживающего опору на месте.Три винта крепили светодиодную пластину к радиатору светодиодной лампы Feit. На обратную сторону светодиодной пластины, видимую здесь, была нанесена термопаста между теплоотводом и поверхностями светодиодной пластины.

Мы не понимаем, почему Feit установил пластиковую деталь поверх большинства своих светодиодов. Изделие блокирует большую часть излучаемого света. (У нас нет способа количественно оценить количество света, проходящего через пластик. Но неофициальные тесты показывают, что он почти не проникает.) Таким образом, подавляющее большинство излучаемых люменов исходит от пяти светодиодов в центре пластины.

Светодиодная лампа Feit помещала пластиковый диск поверх всех 36 светодиодов, кроме пяти. Мы не знаем почему.

Остальная часть механической конструкции лампы менее загадочна. Светодиодная пластина крепится к верхней части массивного литого металлического радиатора весом 3,8 унции с помощью трех винтов. Радиатор служит основным корпусом лампы. Схема преобразователя переменного / постоянного тока помещается в пластиковый цилиндр, который вставляется в основание радиатора и прикрепляется к нему двумя винтами.

После снятия заливочного материала на печатной плате светодиодной лампы Feit с одной стороны были обнаружены ИС диодного моста и драйвер светодиода SSL2103T от NXP Semiconductors, а с другой — большие элементы накопления энергии и силовые полевые МОП-транзисторы.

Электроника залита в пластиковый цилиндр, который служит его корпусом. Заливочный материал обширен и заполняет цилиндр. Он также служит конструктивным элементом, поддерживающим резьбовое основание лампы и контактную ножку. Печатная плата, на которой установлена ​​электроника, двусторонняя и простирается почти до основания цоколя лампы. Отрицательный вывод к плате удерживается заливочным материалом на резьбе металлических винтов. Два провода идут от платы к плате светодиода и кажутся припаянными вручную.Сама плата припаяна оплавлением.

Заливочный материал закрыл некоторые детали на печатной плате, но на плате находятся два силовых полевых МОП-транзистора, микросхема диодного моста, пять больших конденсаторов, трансформатор и по крайней мере 22 дискретных компонента, состоящих из резисторов, маленьких колпачков и диодов. Входной мостовой выпрямитель кажется защищенным предохранителем.

Основной микросхемой является драйвер светодиода SSL2103T от NXP Semiconductors. SSL2103 — это, по сути, обратный преобразователь, который работает в сочетании со схемой диммера с отсечкой фазы непосредственно от выпрямленной сети.Он реализует диммирование с помощью интегральной схемы, которая оптимизирует кривую диммирования. Выходы привода доступны для резистивного переключения утечки.

Хотя заливочный материал скрывает некоторые детали подключения, схема кажется близкой к эталонным проектам NXP для микросхемы. Напряжение сети выпрямляется, буферизуется и фильтруется во входной секции и подключается к первичной обмотке трансформатора. Переданная энергия накапливается в конденсаторе и фильтруется перед запуском цепи светодиодов.

Печатная плата также включает два силовых полевых МОП-транзистора. Кажется, что один из них является частью схемы регулирования яркости, которая разделяет и фильтрует выпрямленное напряжение сети, чтобы обеспечить вход для генерации кривой регулирования яркости. Выходной сигнал управления сбросом от микросхемы NXP управляет полевым МОП-транзистором для переключения резисторов сброса, которые участвуют в таймере функции диммирования. Другой полевой МОП-транзистор является главным переключателем обратноходового трансформатора.

Схема преобразователя переменного / постоянного тока Feit была близка к эталонной схеме, которую NXP Semiconductors предоставляет для своего преобразователя SSL2103.

Также имеется буферная схема, состоящая из двух конденсаторов и катушки индуктивности. Схема накапливает энергию, чтобы преобразователь мог непрерывно передавать мощность на светодиодную цепочку, несмотря на любые колебания напряжения в сети. Он также фильтрует ток пульсации, генерируемый преобразователем, чтобы уменьшить любые проводимые в сети излучения.

Наконец, другая часть схемы состоит из конденсатора, выпрямительного диода, резистора, ограничивающего пиковый ток, и защитного стабилитрона, и используется для генерации внешнего источника VCC для ИС.

Philips Lighting Co.
Один примечательный момент в лампе Philips касается теплоотвода. У других ламп, которые мы исследовали, были металлические радиаторы весом от 1,3 до 3,8 унции. Лампа Philips справляется с тепловыми проблемами без дополнительного теплоотвода. Единственный компонент, который распространяет тепло, — это диск диаметром 2,5 дюйма, на который крепятся 26 светодиодов, 13 сбоку. Более того, можно ожидать, что дизайнеры расположили светодиоды на диске так, чтобы они не устанавливались прямо напротив друг друга — такое расположение также способствовало бы распределению тепла.Но светодиоды по обе стороны от диска расположены прямо напротив друг друга. Похоже, что светодиодный нагрев просто не был проблемой в этой конструкции.

Одна из причин — наличие термистора с отрицательным температурным коэффициентом (NTC) на плате светодиода. Но точно проследить схему температурной компенсации не удалось, поскольку плата драйвера имеет три слоя, один из которых скрыт. Дальнейшее усложнение анализа схемы заключается в том, что две шестиконтактные ИС, кажется, обрабатывают преобразование переменного тока в постоянное, и ни одна из них не отмечена логотипом производителя или номером детали.

Поскольку основные ИС невозможно идентифицировать, мы можем только предполагать, как работает драйвер светодиода. Наличие на печатной плате трансформатора, двух больших конденсаторов и силового npn-транзистора (от STMicroelectronics) указывает на то, что преобразователь имеет конструкцию обратного хода. Мы предполагаем, что схема температурной компенсации заключается в смещении переключателя, подающего ток на светодиоды от обратноходового трансформатора. Кажется, что два транзистора обрабатывают ток светодиода. Всего мы насчитали 32 небольших дискретных компонента, состоящих из резисторов, диодов и конденсаторов.Компоненты платы завершали микросхема мостового выпрямителя и три других силовых конденсатора.

Светодиодная лампа Philips не имела радиатора, кроме двусторонней пластины, на которой крепились светодиоды. Одна причина: температурная компенсация. На этом снимке светодиодной пластины виден резистор NTC.

Оказывается, механическая конструкция светодиодной лампы без радиатора может быть довольно простой (а некоторые могут назвать ее элегантной). Лампа Philips представляет собой пластиковый корпус, который закрывает светодиодную пластину и печатную плату драйвера, а также поддерживает металлическую резьбу и контактную ножку.

Диодный мост и силовой npn-транзистор видны на одной стороне печатной платы светодиодной лампы Philips. На другой стороне находятся компоненты накопителя энергии и две неопознанные ИС, обеспечивающие температурную компенсацию, диммирование и преобразование мощности.

Форм-фактор отличается от других лампочек за счет двусторонней светодиодной пластины. Лампа Philips — это не столько лампочка, сколько диск. Вместо того, чтобы заключать светодиоды в прозрачный шарообразный корпус, устройство Philips представляет собой плоский профиль с пластиком, закрывающим двустороннюю светодиодную пластину.Кажется, что корпус просто защелкивается поверх светодиодной пластины и печатной платы драйвера.

В светодиодной лампе нет ничего особенного, если она может быть изготовлена ​​без радиатора. Лампа Philips в основном состоит из печатной платы и светодиодной пластины, а также защелкивающегося пластикового корпуса, который также поддерживает контактную ножку. Контакт для ножки прикрепляется к печатной плате на лампе Philips с проводкой, видимой здесь. Контакт с металлической резьбой винта осуществляется посредством проволоки, зажатой между резьбой и пластиковым корпусом.

А поскольку лампа Philips не имеет радиатора, она довольно легкая.Но его дискообразный контур может показаться немного странным потребителям, привыкшим ввинчивать предметы, имеющие форму сфер, в розетки. И он излучает большую часть своего света с двух сторон, определяемых ориентацией светодиодных пластин. Он зависит от рассеивания через пластиковый корпус для освещения в других направлениях.

DIY Светодиодная лампа (светодиодная лампа)

Светодиодные лампы становятся все более распространенными и заменяют лампы CFL. По мере того, как стоимость светодиодных ламп становится все ниже, люди постепенно переходят на светодиодные лампы в своих домах и офисах.В этом проекте мы попробуем сделать светодиодную лампу своими руками или светодиодную лампу своими руками, используя старый корпус (корпус) светодиодной лампы.

В этой светодиодной лампочке, сделанной своими руками, очень важна конструкция драйвера светодиода. Как правило, у нас есть два способа разработки драйвера светодиода: с использованием импульсного источника питания или обычного линейного регулятора на основе трансформатора.

Но для этой самодельной светодиодной лампы мы будем спроектировать безтрансформаторный источник питания, который будет выступать в качестве драйвера светодиода. На самом деле, этот тип блока питания для светодиодных ламп становится все более распространенным (ну, по крайней мере, для светодиодов меньшей мощности).

Предупреждение: Эта самодельная светодиодная лампа работает напрямую от основного источника питания, то есть 230 В переменного тока. Вы должны быть очень осторожны при работе с источником переменного тока.

Предупреждение: Проектирование блока питания без трансформатора без знания того, как работают компоненты, может быть фатальным.

Схема электрических цепей светодиодной лампы DIY

Компоненты, необходимые для сборки светодиодной лампы DIY

  • C1 — 135J Металлический пленочный конденсатор 400 В
  • B1 — Мостовой выпрямитель (4 диода могут быть подключены в режиме двухполупериодного выпрямителя)
  • C2 — Электролитический конденсатор 22 мкФ, 35 В
  • R1 — Резистор 100 кОм (1/4 Вт)
  • Светодиод от 1 до 12 — Светодиоды 8 мм

ПРИМЕЧАНИЕ: Используйте только металлический пленочный конденсатор с номиналом выше 400 для C1.

Описание компонентов

Конденсатор с номиналом X

Основным компонентом безтрансформаторного источника питания для светодиодных ламп DIY является конденсатор с номиналом X. Это металлический пленочный конденсатор, который часто используется в качестве предохранительного конденсатора.

Конденсатор номиналом X помещается между линией и нейтралью. Если этот конденсатор выходит из строя из-за перенапряжения, выход из строя будет коротким, и избыточный ток приведет к срабатыванию предохранителя, что позволит избежать поражения электрическим током.

Схема самодельной светодиодной лампы

Сначала основное питание подается на металлический пленочный конденсатор.Другой конец конденсатора подключен к входу переменного тока мостового выпрямителя. Для большей безопасности подключите резистор 100 Ом 1 Вт последовательно с конденсатором номиналом X, который будет действовать как предохранитель (на схеме не показан).

ПРИМЕЧАНИЕ: Если у вас нет мостового выпрямителя, вы можете подключить 4 PN переходных диода (например, 1N4007) в режиме двухполупериодного выпрямителя.

Другой вход переменного тока мостового выпрямителя подключен к нейтрали источника питания переменного тока. Выпрямленный выход подается на конденсатор (C2).К конденсатору последовательно подключены 12 светодиодов диаметром 8 мм.

Резистор R1 действует как спускной резистор (он разряжает конденсатор в случае сбоя питания или отказа светодиода).

ПРИМЕЧАНИЕ: Мы разобрали поврежденную светодиодную лампочку, и после реконструкции схемы она была похожа на разработанную нами. Основное отличие состоит в том, что они использовали SMD-компоненты для светодиодов и мостов, а мы использовали сквозные компоненты (по понятным причинам).

Дизайн печатной платы светодиодной лампы «Сделай сам»

Для разработки макета печатной платы светодиодной лампы мы использовали Eagle CAD. На следующем изображении показана компоновка печатной платы светодиодной лампы. Мы сделали печатную плату, используя метод переноса тонера, как упоминалось в этом руководстве: Как сделать свою собственную печатную плату в домашних условиях .

Сборка светодиодной лампы

Соберите все компоненты согласно схеме и припаяйте их. У нас есть пустой светодиодный корпус от старой светодиодной лампы.После сборки платы мы установили плату в корпусе светодиода со всеми проводами.

Работа светодиодной лампы

Теперь мы увидим работу этой простой светодиодной лампы, сделанной своими руками.

Светодиодам для работы требуется очень меньший ток. Обычно в обычном регулируемом источнике питания на основе трансформатора мы будем регулировать ток с помощью последовательных резисторов. Но в блоке питания без трансформатора ток регулируется или ограничивается конденсатором с номиналом X.

Поскольку этот конденсатор включен последовательно с источником переменного тока, общий ток, доступный в цепи, ограничен реактивным сопротивлением конденсатора.

Реактивное сопротивление конденсатора можно рассчитать по следующей формуле:

X C = 1 / 2πFC Ом, где F — частота источника питания, C — емкость конденсатора.

В нашем случае мы использовали конденсатор емкостью 1,3 мкФ. Следовательно, реактивное сопротивление этого конденсатора равно

X C1 = 1 / (2 * π * 50 * 1.3 * 10 -6 ) = 2449,7 ≈ 2450 Ом.

Следовательно, ток через этот конденсатор определяется как I = V / X C1 Ампер = 230/2450 = 93,8 мА.

Теперь ограниченный по току переменный ток подается на мостовой выпрямитель. На выходе моста будет 230 В постоянного тока. Это подается на конденсатор фильтра номиналом 35 В. Но размах пульсаций напряжения на конденсаторе C2 составляет около 44 В.

Это выдается на 12 последовательно включенных светодиодов, поэтому каждый светодиод потребляет около 3,7 В, что равно номинальному напряжению 8-мм светодиода.

Что касается мощности, общая выходная мощность светодиодов составляет около 4 Вт.

Важное примечание: Этот проект — просто демонстрация того, как сконструировать светодиодную лампочку и как она работает.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *