Материал не пропускающий тепло – Какой материал не проводит тепло — VashSlesar.ru

Содержание

Какой материал не проводит тепло — VashSlesar.ru

В настоящее время, трудно себе представить какое либо жилое помещение без теплоизоляционных материалов. Теплоизоляционные материалы не только сохраняют оптимальную температуру в вашем доме, они еще помогают вам экономить деньги за счет того, что вам придется меньше отапливаться в зимнее время. Сейчас, на строительном рынке существуют множество самых различных теплоизоляционных материалов. Как правило, у каждого из них есть свои особенности и недостатки.

В основном теплоизоляционные материалы по способу теплоизоляции делятся на два вида: отражающая теплоизоляция и соответственно не отражающая. К отражающей теплоизоляции относятся материал, который за счет своих уникальных свойств отражает тепло, тем самым не дает ему выйти из помещения. К не отражающим относится материал, который практически не пропускает через себя тепло, тем самым сохраняя его в нужном месте. По своему составу такой утеплитель делится на органический и не органический.

К неорганической теплоизоляции можно отнести: стекловату, минеральную вату, пенно стекло, пенно бетон и минерала ватные плиты. В основном такую теплоизоляцию производят из базальтовых расплавов. Как правило, она не горюча, устойчива к высоким температурам, обладает высокими теплоизолирующими свойствами. Но есть у нее и недостаток. В основном неорганические теплоизоляционные материалы чрезмерно впитывают влагу, поэтому их необходимо обрабатывать специальным составом. Еще они сильно подержанны усадке.

На сегодняшний день самым популярным из неорганических теплоизоляционных материалов является пеностекло. Пеностекло, это, пожалуй, самый уникальный и перспективный теплоизоляционный материал. Оно, также как и самое обычное стекло не горит, совершенно не токсично, не впитывает влагу и совершенное не стареет. Благодаря своей технологии производства пеностекло имеет отличные теплоизоляционные характеристики, оно не подвержено механическим повреждениям, а срок его службы составляет не менее 100 лет.

Еще одним неорганическим теплоизоляционным материалом является пенно бетон. Пено бетон обладает практически такой же прочностью, как и обычный бетон, но имеет более высокие теплоизоляционные свойства. К тому же он гораздо легче обычного бетона. Как правило, пена бетон применяют для строительства небольших одноэтажных помещений.

К органическим теплоизоляционным материалам относятся: пенополистирол, пенополиуретан, пенополиэтилен, фольгированная теплоизоляция и так далее.

Пенополистирол это очень легкий материал. Как правило, он изготавливается путем вспенивания гранул полистирола нагретым воздухом или паром. Он имеет ячеистую структуру и на 90 процентов состоит из воздуха. Так как воздух является неплохим теплоизолятором, то пенополистирол отлично справляется со своей функцией теплоизолятора. В простонародье пенополистирол еще называют просто пенопласт. Пенопласт практически не горит, не портится со временем и совсем не впитывает влагу. Единственным минусом этого теплоизоляционного материала является то, что он достаточно хрупкий и может сломаться при небольшом воздействии физической силы. Ну а в целом пенополистирола неплохой теплоизоляционный материал, который часто используется в строительстве как жилых, так и любых других помещений.

Пенополиэтилен это полиэтилен, который вспенивают с помощью газа, а именно бутана. По своим свойствам Пенополиэтилен чем-то похож на пенопласт, но в отличие от него он очень прочен, гибок и его очень трудно сломать. Он так же как и пенопласт, практически не впитывает воду, совершенно не токсичен и имеет отличные теплоизоляционные качества. Также производство пенополиэтилена немного дешевле, чем производство других теплоизоляционных материалов. Все это делает пенополиэтилен самым практичным и распространенным теплоизоляционным материалом и его использование при утепление дома дает гарантированное тепло. Также на его основе изготавливается другой теплоизоляционный материал под названием ”фольгированная теплоизоляция”. Она изготавливается путем термического присоединения к пенополиэтилену алюминиевой фольги. Алюминиевая фольга припаивается с обеих сторон пенополиэтилена, тем самым его теплоизоляционные свойства повышаются в несколько раз. Благодаря алюминиевой фольге, тепло не проходит и отталкивается от теплоизоляции, тем самым создается так называемый эффект термоса. Фольгированная теплоизоляция является сравнительно новым теплоизоляционным материалом, который стремительно завоевывает строительный рынок.

Еще одним органическим теплоизоляционным материалом является пенополиуретан. Пенополиуретан, так же как и пенополистирол и пенополиэтилен относится к ряду пенопластов, то есть газонаполненного пластмасса. Его получают при реакции полиизоционата и жидкого полиола. Он также имеет ячеистую структуру и на 95 процентов состоит из воздуха. Благодаря тому, что его получают при реакции двух компонентов, его можно наносить или же распылять еще в жидком виде в труднодоступные места. Он также имеет большой срок службы и не подвержен механическим повреждением, не боится влаги и не плесневеет. Часто пенополиуретаном утепляют канализационные трубы и другую сантехнику.

При выборе качественного теплоизоляционного материала потребитель должен принимать во внимание целый ряд параметров, среди которых неизменно присутствует показатель теплопроводности. Высокой или низкой должна быть теплопроводность, что такое «лямбда», на какие показатели теплопроводности ориентироваться – ответы на эти и другие самые распространенные вопросы, возникающие при покупке утеплителя, вы найдете в данной статье.

Слово «теплопроводность» или еще более запутанное «лямбда» знакомо каждому школьнику из курса физики за восьмой класс. Однако со временем информация, которой мы не пользуемся, забывается. Попробуем освежить в памяти эти несложные и очень полезные знания.

Теплопроводность, как уже было сказано выше, — одно из ключевых понятий в современном строительстве, особенно когда речь заходит о теплоизоляционных материалах. От теплопроводности зависит толщина вашей стены или кровли, вес всего дома, а следовательно, и прочность (несущая способность) фундамента, долговечность конструкций и многое другое.

Современное определение теплопроводности – понятие комплексное. И состоит из нескольких составных частей, отвечающих за перенос тепла (теплообмен).

На первый взгляд формула кажется пугающей, но на самом деле все просто.

Суммарная или итоговая теплопроводность состоит из теплопроводности за счет конвекции, теплопроводности твердой и газообразной фазы, а также теплопроводности, учитывающей теплообмен за счет излучения.

Запутались еще сильнее? Тогда по порядку. Разберем каждый элемент этой формулы более подробно.

Теплообмен (или теплопередача) – это способ изменения внутренней энергии без совершения работы над телом или самим телом.

Теплопередача всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой.

Из курса физики нам известно, что теплообмен включает в себя три вида передачи тепла: теплопроводность, конвекцию и излучение.

Теплопроводность — явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их
непосредственном контакте.

Если вы опустите ложку в стакан с горячим напитком, нагреется не только та часть ложки, которая погружена в жидкость, но и та ее часть, которая находится над водой.

Теплопроводность различных веществ неодинакова, она может быть плохой (низкой) и хорошей (высокой). Хорошая теплопроводность у металлов. Плохая — у шерсти, дерева и пластиков. Самым плохим проводником тепла является вакуум.

Для примера вспомните кухонную посуду: кастрюли и сковородки. Вы вряд ли станете снимать металлическую кастрюлю, полную вкусного супа, с горячей плиты голыми руками, потому что существует реальная опасность обжечь руки. Вместо этого вы используете кухонное полотенце, силиконовые или тряпичные прихватки, то есть те материалы, которые плохо проводят тепло.

Именно поэтому «правильные» кастрюли и сковородки снабжены пластмассовыми или деревянными ручками, плохо проводящими тепло. Вспомнить хотя бы старую бабушкину сковородку с деревянной ручкой: сковородка горячая, а за ручку схватиться можно безо всяких прихваток.

Как объясняется это явление? Рассмотрим на примере нагревания металлического стержня (или ложки из примера со стаканом).

В металле, как и во всех твердых телах, молекулы совершают колебательные движения около некоторых положений равновесия. Скорость колебательного движения молекул металла при нагревании увеличивается в той части, которая ближе расположена к пламени или источнику тепла. Эти молекулы, взаимодействуя с соседними молекулами, передают им часть своей энергии. В результате чего повышается температура отрезка стержня. Затем увеличивается скорость колебательного движения молекул в следующих отрезках стержня и так далее, до тех пор, пока не прогреется весь стержень. Именно поэтому вакуум обладает самой плохой теплопроводностью: в нем практически отсутствуют молекулы, которые бы передавали энергию друг другу. Важно отметить, что сами молекулы, передавая кинетическую энергию, не меняют свое местоположение, то есть само вещество не перемещается.

С первым понятием разобрались, посмотрим, что же дальше.

Следующая составляющая теплопроводности – это конвекция. У многих из вас на слуху такой прибор, как «конвектор». А вот почему он так называется, наверное, знает далеко не каждый. Хотя логично предположить, что название свое он получил за принцип работы – конвекцию.

Из курса физики следует, что конвекция — это перенос энергии струями жидкости или газа. Если в случае с теплопроводностью при теплообмене происходит перенос энергии, то при конвекции происходит перенос именно вещества.

Конвекторы (как и любые другие отопительные приборы) нагревают окружающий воздух, вследствие чего температура в комнате повышается и вам становится тепло. При этом струи теплого воздуха поднимаются вверх, а струи холодного опускаются вниз. Аналогично происходит процесс нагревания воды в чайнике: горячая вода поднимается, а холодная опускается на ее место. Этот же принцип заложен в отопительной системе для обогрева домов.

Различают два вида конвекции: естественная и вынужденная.

Нагревание воздуха в комнате солнечными лучами – это пример естественной конвекции. А вот если воздух нагревается тепловым вентилятором, то это уже вынужденная конвекция. Вентилятор заставляет воздух в комнате двигаться, при этом нагревая его до необходимой температуры. В качестве других примеров конвекции можно привести холодные и теплые морские течения, а также образование и движение облаков и ветров.

Переходим к следующей составляющей: излучение (лучистый теплообмен).

Излучение – это способ переноса энергии от одного тела к другому в виде электромагнитных волн. Как правило, это инфракрасное (IR) излучение. Этот принцип заложен еще в одном уникальном приборе – инфракрасном обогревателе.

Принцип его работы построен на том, что любое нагретое тело является источником излучения. Самый впечатляющий пример – Солнце. Пример поменьше – костер, распространяющий тепло на достаточно большое расстояние. В случае с обогревателем окружающие предметы нагреваются за счет электромагнитного излучения и в комнате становится тепло.

Этот вид теплообмена отличается тем, что может происходить и в вакууме. Ведь солнечная энергия как-то доходит до Земли.

Примечательно, что темные тела лучше поглощают и отдают энергию. Если необходимо максимально нагреть материал, его окрашивают в черный цвет. В качестве примера можно привести солнечные коллекторы (водонагреватели), которые устанавливаются на крышах домов. Эти устройства позволяют собирать тепло от солнца и нагревать теплоноситель, который затем передает тепло внутрь дома для обогрева помещений или нагрева воды.

Хуже всего поглощают энергию светлые материалы или материалы с отражающей способностью. Способность светлых тел хорошо отражать лучистую энергию учитывают в самых разных сферах: при строительстве самолетов, при возведении высотных зданий в жарких странах, даже при выборе цвета одежды в теплое время года. На окнах часто применяют металлизированные пленки, которые частично отражают солнечное тепло и спасают помещение от перегрева.

С базовыми принципами разобрались. Пришло время вернуться к нашей формуле.

Её разбор проведем на примере теплоизоляционного материала из пенополиизоцианурата (ПИР/PIR) — LOGICPIR .

LOGICPIR – это инновационный утеплитель, обладающий уникальными показателями теплопроводности – всего 0,021 Вт/м*К, позволяющий добиться максимальной экономии пространства при минимальной толщине теплоизоляции. Кроме того, PIR-плиты не впитывают влагу, тем самым предотвращая образование конденсата и надежно защищая ваш дом от появления плесенных грибов, клещей и бактерий, представляющих опасность для здоровья. LOGICPIR относится к новому поколению полиуретанов, окружающих нас повсеместно: начиная от деталей интерьера автомобилей, матрацев и обуви и заканчивая медициной, где самая поразительная сфера их применения – изготовление протезов для сердечно-сосудистой системы. Стоит ли говорить, что материал экологически безопасен, что подтверждено целым рядом сертификатов и заключений.

Итак, вернемся к теплопроводности.

Структурная и газовая теплопроводность – это теплопроводность компонентов, из которых состоит материал, а именно:

  • твердой фазы – теплопроводности полимерного каркаса с множеством ячеек с очень тонкими, но прочными стенками;
  • газообразной фазы – теплопроводность газа, который находится в ячейках.

Если сравнивать теплоизоляцию PIR с пеностеклом или пенобетоном, то по структуре эти материалы схожи. Все они ячеистые и наполнены газом. Однако теплопроводности этих материалов будут отличаться.

Стекло и бетон, в отличие от пластиков, проводят тепло интенсивнее, соответственно, пеностекло и пенобетон обладают большей теплопроводностью и их показатели в качестве теплоизоляторов несколько хуже. Даже полимеры отличаются друг от друга теплопроводностью.

Как было сказано ранее, представленные материалы ячеистые и в каждом находятся какие-то газы. В пеностекле и пенобетоне это, как правило, окружающий воздух, в PIR – инертные газы. Хуже всего тепло проводят инертные газы, содержание молекул в 1 м3 очень маленькое, расстояние между молекулами очень большое, поэтому передать энергию между молекулами довольно сложно. Намного лучше тепло проводит воздух, поскольку он состоит из смеси разных газов, молекул очень много и все они друг с другом взаимодействуют.

Конвекционную составляющую у мелкоячеистой теплоизоляции обычно не рассматривают, поскольку размер ячеек теплоизоляции PIR ничтожно мал (меньше 1мм) и газ в этих ячейках неподвижен.

Последняя составляющая – излучение. Снизить ее влияние можно за счет применения дополнительных материалов, способных отражать тепловой поток. Для этого можно окрасить материал, скажем, в белый цвет. В случае с теплоизоляционными плитами PIR за отражение тепла отвечает фольга, которая покрывает материал с обеих сторон. Помимо функции отражения тепла фольга также несет защитную функцию с точки зрения утечки вспенивающего газа. По своим свойствам фольга является практически идеальным пароизоляционным материалом, а значит, способна задерживать миграции газов во внешнюю среду из ячеек теплоизоляции.

В процессе эксплуатации легкие инертные газы замещаются на более тяжелый окружающий воздух с хорошей теплопроводностью. Это происходит у всех пористых материалов за счет диффузных процессов.

Рассмотрим в качестве примера обычный воздушный шарик, наполненный гелием, который можно сравнить с одной ячейкой вспененной теплоизоляции. Новый шарик все время стремится улететь высоко в небо. Если утром он еще висел под потолком, то со временем он постепенно опустится и будет висеть в центре комнаты, а еще через несколько часов лежать на полу. Т.е. все это время газ за счет диффузии медленно выходит из шарика, и тот теряет свою «летучесть».

Так же и с теплоизоляцией. «Шарики» (ячейки), которые ближе всего расположены к границе с окружающим воздухом постепенно изменяют свой газовый состав. Однако те «шарики», которые находятся глубоко в материале, делают это очень медленно или не делают вовсе, поскольку инертному газу очень сложно пройти огромное количество стенок соседних «шариков» и вырваться наружу.

Кроме того, поверхность теплоизоляции покрыта фольгой, препятствующей выходу газа, соответственно, теплопроводность материала (ее газовая составляющая) сохраняется.

Итоговую формулу теплопроводности PIR можно записать в виде:

Подведем итог. Теплоизоляция – это очень важный показатель. От нее зависит, насколько теплым будет ваш дом. У наиболее эффективной теплоизоляции все ее составляющие () должны быть как можно ниже. У современной изоляции на примере LOGICPIR это достигается за счет применения инертных газов, полимеров и специальных покрытий, отражающих тепловой поток. Уверены, что теперь вы не только сможете безошибочно выбрать теплоизоляционный материал, отвечающий самым высоким требованиям, но и поможете своим детям сдать физику на высший балл.

Спасибо компании «Технониколь» за помощь в подготовке материала

Решили сделать свое жилище энергоэффективным, чтобы тратить меньше средств на его отопление, или просто утеплить стены, чтобы сделать проживание в нем более комфортным, но при этом не знаете, на каком материале остановить свой выбор? Ведь хочется, чтобы он был качественным, не пропускал воду, не слишком утяжелял конструкцию, был паропроницаемым, не боялся грибка и плесени и при этом – желательно не слишком дорогим, не оказывал негативных влияний на жизнедеятельность человека, а лучше – был натуральным. Представленные на современном рынке теплоизоляционные материалы поражают своим разнообразием, среди которого нелегко сделать правильный выбор. В рамках данной статьи мы определимся, на какие характеристики следует обратить внимание, какие достоинства и недостатки имеют те или иные виды материалов и из чего они сделаны.

Содержание

Для начала давайте выясним, для чего нужны такие материалы и что они собой представляют.

Основной функцией теплоизоляционного материала является предотвращение потери тепла из изолируемого помещения, например, в холодное время года, и проникновению тепла внутрь – жарким летом. Передача тепла обусловлена движением молекул, которое невозможно остановить полностью, но можно снизить. Так, в неподвижном сухом воздухе молекулы движутся медленнее всего. Именно это свойство и было взято в основу производства теплоизоляционных материалов, представляющих собой воздух, упакованный различными способами: в порах, ячейках, капсулах.

Характеристики теплоизоляционных материалов

Выбирая тот или иной изоляционный материал, следует обратить внимание на несколько основополагающих характеристик.

Коэффициент теплопроводности (лямбда – λ) – главный показатель для теплоизоляционных материалов. Он показывает количество теплоты, которое проходит сквозь материал, имеющий толщину 1 м и площадь 1 м2 , за один час при условии, что разница температур на противоположных поверхностях составляет 10 °С. Например, коэффициент теплопроводности сухого воздуха составляет 0,023 Вт/(м*С). На величину теплопроводности влияют другие характеристики материала: пористость, влажность, температура, химический состав и другие.

Пористость – процент воздушных пор в общем объеме изделия. Может составлять 50% и более. В некоторых ячеистых пластмассах доходит до 90 – 98 %. Поры могут быть открытыми, закрытыми, мелкими или крупными. Очень важным является их равномерное распределение внутри материала.

Влажность – количество влаги, содержащейся в материале. Данный параметр влияет на теплопроводность. Так как вода очень хорошо проводит тепло, материал, насыщенный водой – мокрый, не будет выполнять свои функции.

Водопоглощение – способность материала впитывать воду при прямом контакте с ней. Очень важный момент для наружной изоляции, которая может находиться под осадками, для внутренней изоляции в помещениях с повышенным уровнем влажности. Если материал будет впитывать воду, его свойства будут падать.

Паропроницаемость – количество водяного пара, проходящее через материал, толщиной 1 м и площадью 1 м2, за 1 час при условии, что температура одинакова с обеих сторон материала, а разность парциального давления пара равна 1 Па. Данный параметр влияет на необходимость обустройства дополнительной пароизоляции.

Плотность материала влияет на его массу. По ней можно высчитать, насколько будет утяжелена конструкция, если использовать тот или иной материал определенной толщины.

Биостойкость определяет, возможно ли развитие грибков, плесени и другой патогенной флоры на поверхности или внутри структуры материала.

Теплоемкость материала важна в регионах с частой сменой температур. Она показывает количество тепла, которое может аккумулировать теплоизоляция.

Существуют и другие характеристики: огнестойкость, прочность, морозостойкость, прочность на изгиб и показатели пожарной безопасности. При выборе материала на них также стоит обратить внимание, а также на еще один показатель, не имеющий прямого отношения к конкретному теплоизоляционному материалу:

Коэффициент U – способность конструкции пропускать тепло. Будь то стены, потолок или пол, в зависимости от материалов, из которых они выполнены, могут пропускать тепло в разном количестве и с разной скоростью. Данный коэффициент является комбинированной величиной, в расчет которой входят все использованные послойно материалы и воздушные промежутки между ними. От значения коэффициента U конкретного здания или конструкции будет зависеть, какой теплоизоляционный материал можно использовать, и какая требуется толщина этого материала.

Теплоизоляционные материалы для стен

На сегодняшний день производство теплоизоляционных материалов налажено, как из неорганического сырья, так и органического. Рассмотрим их отдельно по причине их различного влияния на окружающую среду и человека, а также условий утилизации.

Теплоизоляционные материалы из неорганического сырья

Минеральная вата является, пожалуй, самым распространенным материалом на данный момент. Производится из минерального сырья: доломитов, базальтов и других ископаемых. Полученные в результате расплавления минералов волокна скрепляются связующим веществом, в качестве которого часто выступает фенолформальдегидная смола. Легкость производства обусловила низкую цену на данный материал.

Преимущества минеральной ваты:

  • Хорошие теплоизолирующие свойства.
  • Практически не впитывает влагу.
  • Морозостойкая.
  • Может служить дополнительной звукоизоляцией.
  • Не горит.
  • Долговечная.
  • Не меняет своих характеристик.
  • Не подвержена гниению.
  • «Дышит».
  • Недостаточно прочная.
  • Требует пароизоляции.
  • Требует гидроизоляции.
  • Фенолформальдегид – токсичное вещество.
  • Требует специальной утилизации.

Форма выпуска: рыхлая вата, маты, цилиндры, плиты с разной плотностью (легкие, мягкие, полужесткие, жесткие).

Каменная вата производится из горной породы диабаза путем расплавления и превращения жидкой массы в волокна. Такой материал на 99 % состоит из воздуха и только на 1 % из горной породы. Используется для утепления стен и других конструкций повсеместно.

Преимущества каменной ваты:

  • Обеспечивает звукоизоляцию.
  • Не горит.
  • Не подвержена гниению.
  • Препятствует распространению огня. Плавится при температуре 1000 °С.
  • Энергоемкий процесс производства.
  • Требует специальной утилизации.

Пеностекло (ячеистое стекло) производится из стеклянного порошка путем его спекания с газообразователями. Воздух занимает 80 – 95 % материала.

  • Прочное. Можно вбивать гвозди.
  • Водостойкое.
  • Морозостойкое.
  • Не горит.
  • Не подвержено гниению.
  • Долговечное.
  • Не «дышит» (требуется дополнительная вентиляция).
  • Дорогое.

Перлит – вулканическая порода. При нагревании увеличивается в несколько раз, из-за чего процесс производства напоминает создание попкорна. Используется для теплоизоляции с середины прошлого века.

  • Экологически чистый материал.
  • Не горит.
  • Не поглощает влагу.
  • Не оседает.
  • Устойчив к гниению и влиянию патогенной флоры
  • Прост в использовании (можно засыпать или задувать в пустоты).
  • Утилизируется компостированием (улучшает качества почвы).
  • Может высыпаться из пустот во время прокладки в стенах труб или кабелей.

К теплоизоляционным материалам из неорганического сырья также относятся различные теплоизоляционные бетоны: газобетон, ячеистый бетон, пенобетон. А также бетоны с заполнителями: керамзитобетон, перлитобетон, полистиролбетон.

Полимерная теплоизоляция

Экструдированный пенополистирол имеет цельную, прочную микроструктуру. Ячейки закрыты, непроницаемы и заполнены воздухом. Ни вода, ни воздух не могут проникать из ячейки в ячейку.

Преимущества экструдированного пенополистирола:

  • Хорошие показатели теплопроводности.
  • Инертен по отношению к большинству веществ.
  • Не впитывает влагу.
  • Прочнее пенопласта.
  • Горючий (в процессе горения выделяет токсичные вещества).
  • Не «дышит».

Полистирольные пенопласты представляют собой маленькие шарики, скрепленные между собой. Могут производиться как прессовым, так и беспрессовым способом.

Преимущества полистирольных пенопластов:

  • Недорогие.
  • Прочные.
  • Хорошо теплоизолируют.
  • Удобны в монтаже.
  • Под действием солнечных лучей желтеют и распадаются.
  • Не «дышат».
  • Горят.
  • При проникновении влаги разрушается структура.

Пенополиуретан представляет собой жидкий теплоизолирующий материал. При смешении ингредиентов с воздухом образуется мелкодисперсный аэрозоль, который можно напылять на поверхность с любой геометрией.

  • Потрясающая эластичность материала.
  • Устойчив к грибкам и плесени.
  • Можно утеплять неровные поверхности.
  • Легкий монтаж, не занимающий много времени.
  • Не имеет стыков.
  • Горит, выделяя токсичные вещества.
  • Не «дышит».
  • Для монтажа требуется специальная установка.
Теплоизоляционные материалы из органического сырья

Бумага используется для утепления с середины прошлого столетия. Такие материалы представляют собой гранулы, полученные из газет и другой макулатуры. Для задувания этих гранул в пустоты в стенах необходима помощь специалистов.

Преимущества теплоизоляционных материалов на основе бумаги:

  • Не горят (обрабатываются нейтральными солями).
  • Отталкивают воду.
  • Хорошо заполняют полости.
  • Легкие в использовании.
  • Не приносят вреда окружающей среде.
  • Утилизируются обычным компостированием.
  • Устойчивы к грибкам.
  • Не требуют дополнительной пароизоляции.
  • Ограниченная сфера применения из-за специфической формы изделия – гранул.

Лен используется в качестве утеплителя довольно редко, в основном теми, кто заботится об окружающей среде и своем здоровье. Причина неповсеместного распространения материалов из льна – высокая цена. Хотя со временем прогнозируют ее снижение.

Преимущества льняных утеплителей:

  • Превосходные изоляционные качества.
  • Не требуют дополнительной пароизоляции.
  • Утилизируются сжиганием или компостированием.
  • Абсолютно натуральные.
  • Устойчивы к грибкам и микроорганизмам.
  • Трудно режутся.
  • Необходима дополнительная противопожарная защита.

Древесное волокно (целлюлозная вата) на данный момент считается одним из самых известных органических теплоизоляционных материалов. Представляет собой древесный материал, измельченный до состояния ваты. Производится как в сыпучем виде, так и в плитах. Используется для задувания в полости стен.

Преимущества целлюлозной ваты:

  • Повышенные теплоизоляционные свойства.
  • Служит звукоизоляцией.
  • Проста и удобна в применении.
  • Компостируется.
  • Подвержена гниению и грибку.
  • Не может быть использована для изоляции полых стен старых зданий.
  • Для повышения огнеупорных качеств добавлен полифосфат аммония.

Пробковая теплоизоляция производится из коры пробкового дуба без использования синтетических веществ. Пробка является еще одним абсолютно натуральным утеплителем, как и лен.

  • Не гниет.
  • Не поддается усадке.
  • Прочная на сжатие и изгиб.
  • Легкая.
  • Долговечная.
  • Инертна к большинству веществ.
  • Не горит (но тлеет).
  • Во время тления не выделяет вредных веществ.
  • Обработана противогорючими пропитками.

Сравнение теплоизоляционных материалов

Перед тем как выбирать материал для утепления, желательно проконсультироваться со специалистами. Исходя из материала стен, их толщины и условий эксплуатации (климата), они посоветуют, какие материалы могут подойти в конкретном случае и какова должна быть их толщина. Если Вы не услышали в списке предложенных вариантов тот материал, которые хотели бы использовать, уточните этот нюанс. Возможно, данный материал просто выпал из внимания специалиста, а может он категорически не подходит для данной конструкции.

Выделить однозначно лучший теплоизоляционный материал невозможно. Все они в той или иной степени хороши для конкретных целей. Выбор зависит в первую очередь от теплоизоляционных свойств и от личных предпочтений и финансовых возможностей.

Например, обустраивая абсолютно экологичный дом из дерева, будет абсурдным использовать для утепления пенополистрол или пенопласт. Имеет смысл обратить внимание на натуральные материалы: лен, бумагу, целлюлозу и пробку.

В строительстве современных многоэтажных домов повсеместно используется пенопласт и другие полимерные материалы, так как их цена невелика, они просты в монтаже и имеют хорошие показатели теплопроводности. Но о влиянии таких материалов на жизнедеятельность человека в основном никто не задумывается. Застройщикам достаточно того, что производитель заверил в безопасности продукта.

В представленной таблице использования теплоизоляционных материалов:

Серым цветом обозначен правильный выбор;

Желтым цветом обозначены варианты, которые следует осуществлять с учетом пожарной безопасности;

Красный цвет — нельзя использовать.

Как видно из таблицы, любой из представленных в статье материалов хорош на своем месте: некоторые лучше использовать для утепления стен, другие – полов, третьи – чердаков и крыш. Даже для устройства теплоизоляции внутри здания или снаружи подойдут разные материалы.

vashslesar.ru

Материал не пропускающий холод

В настоящее время, трудно себе представить какое либо жилое помещение без теплоизоляционных материалов. Теплоизоляционные материалы не только сохраняют оптимальную температуру в вашем доме, они еще помогают вам экономить деньги за счет того, что вам придется меньше отапливаться в зимнее время. Сейчас, на строительном рынке существуют множество самых различных теплоизоляционных материалов. Как правило, у каждого из них есть свои особенности и недостатки.

В основном теплоизоляционные материалы по способу теплоизоляции делятся на два вида: отражающая теплоизоляция и соответственно не отражающая. К отражающей теплоизоляции относятся материал, который за счет своих уникальных свойств отражает тепло, тем самым не дает ему выйти из помещения. К не отражающим относится материал, который практически не пропускает через себя тепло, тем самым сохраняя его в нужном месте. По своему составу такой утеплитель делится на органический и не органический.

К неорганической теплоизоляции можно отнести: стекловату, минеральную вату, пенно стекло, пенно бетон и минерала ватные плиты. В основном такую теплоизоляцию производят из базальтовых расплавов. Как правило, она не горюча, устойчива к высоким температурам, обладает высокими теплоизолирующими свойствами. Но есть у нее и недостаток. В основном неорганические теплоизоляционные материалы чрезмерно впитывают влагу, поэтому их необходимо обрабатывать специальным составом. Еще они сильно подержанны усадке.

На сегодняшний день самым популярным из неорганических теплоизоляционных материалов является пеностекло. Пеностекло, это, пожалуй, самый уникальный и перспективный теплоизоляционный материал. Оно, также как и самое обычное стекло не горит, совершенно не токсично, не впитывает влагу и совершенное не стареет. Благодаря своей технологии производства пеностекло имеет отличные теплоизоляционные характеристики, оно не подвержено механическим повреждениям, а срок его службы составляет не менее 100 лет.

Еще одним неорганическим теплоизоляционным материалом является пенно бетон. Пено бетон обладает практически такой же прочностью, как и обычный бетон, но имеет более высокие теплоизоляционные свойства. К тому же он гораздо легче обычного бетона. Как правило, пена бетон применяют для строительства небольших одноэтажных помещений.

К органическим теплоизоляционным материалам относятся: пенополистирол, пенополиуретан, пенополиэтилен, фольгированная теплоизоляция и так далее.

Пенополистирол это очень легкий материал. Как правило, он изготавливается путем вспенивания гранул полистирола нагретым воздухом или паром. Он имеет ячеистую структуру и на 90 процентов состоит из воздуха. Так как воздух является неплохим теплоизолятором, то пенополистирол отлично справляется со своей функцией теплоизолятора. В простонародье пенополистирол еще называют просто пенопласт. Пенопласт практически не горит, не портится со временем и совсем не впитывает влагу. Единственным минусом этого теплоизоляционного материала является то, что он достаточно хрупкий и может сломаться при небольшом воздействии физической силы. Ну а в целом пенополистирола неплохой теплоизоляционный материал, который часто используется в строительстве как жилых, так и любых других помещений.

Пенополиэтилен это полиэтилен, который вспенивают с помощью газа, а именно бутана. По своим свойствам Пенополиэтилен чем-то похож на пенопласт, но в отличие от него он очень прочен, гибок и его очень трудно сломать. Он так же как и пенопласт, практически не впитывает воду, совершенно не токсичен и имеет отличные теплоизоляционные качества. Также производство пенополиэтилена немного дешевле, чем производство других теплоизоляционных материалов. Все это делает пенополиэтилен самым практичным и распространенным теплоизоляционным материалом и его использование при утепление дома дает гарантированное тепло. Также на его основе изготавливается другой теплоизоляционный материал под названием ”фольгированная теплоизоляция”. Она изготавливается путем термического присоединения к пенополиэтилену алюминиевой фольги. Алюминиевая фольга припаивается с обеих сторон пенополиэтилена, тем самым его теплоизоляционные свойства повышаются в несколько раз. Благодаря алюминиевой фольге, тепло не проходит и отталкивается от теплоизоляции, тем самым создается так называемый эффект термоса. Фольгированная теплоизоляция является сравнительно новым теплоизоляционным материалом, который стремительно завоевывает строительный рынок.

Еще одним органическим теплоизоляционным материалом является пенополиуретан. Пенополиуретан, так же как и пенополистирол и пенополиэтилен относится к ряду пенопластов, то есть газонаполненного пластмасса. Его получают при реакции полиизоционата и жидкого полиола. Он также имеет ячеистую структуру и на 95 процентов состоит из воздуха. Благодаря тому, что его получают при реакции двух компонентов, его можно наносить или же распылять еще в жидком виде в труднодоступные места. Он также имеет большой срок службы и не подвержен механическим повреждением, не боится влаги и не плесневеет. Часто пенополиуретаном утепляют канализационные трубы и другую сантехнику.

С наступлением холодов многие начинают задумываться о том, почему при горячих батареях в доме все равно холодно? Причину долго искать не нужно: одна из самых основных причин теплопотерь заключается в низком термическом сопротивлении наружных стен, через которые убегает ценное тепло. К сожалению, в наших краях большая часть года приходится на холодную погоду, поэтому защита от мороза – одна из самых важных задач, если вы хотите провести зиму в комфортных условиях. Кроме того, хорошая оизоляция не помешает и в теплое время года. Дом, в котором хорошо изолированы стены и крыша, будет стойко выдерживать жару.

При этом важно не забывать, что надёжно защитить жилое помещение от холода можно только при комплексном подходе, когда и стены и окна создают хороший теплоизоляционный барьер. Если вы сомневаетесь в надежности вашей теплоизоляции, можно определить источники тепловых потерь при помощи тепловизионной съёмки. Она поможет выявить утечки тепла и определиться с мероприятиями по их устранению. Часто небольшие инвестиции в дополнительную теплоизоляцию могут в разы уменьшить затраты на отопление и окупиться в течение 2–3 лет. Давайте вместе с экспертами homify более детально рассмотрим основные источники потери тепла и способы максимально эффективно защитить дом от холода.

Tеплоизоляционные материалы

ДубльДом в березовой чаще

Невозможно спасти дом от холода за счёт простого увеличения толщины стен. Чтобы обеспечить необходимый уровень сохранения тепла, толщина стен из железобетона должна быть не менее 6 м, а из кирпича – не менее 2,3 м. Поэтому и используют теплоизоляционные материалы.

Один из самых распространенных способов отделки – это утепление фасадов домов снаружи различными утеплителями. Таким образом вы убъете сразу двух зайцев: защитите стены от негативных погодных влияний, получите стены, способные удерживать тепло и заодно декорируете фасад. Однако для начала нужно верно выбрать материал, с помощью которого можно эффективно утеплить дом. При выборе утеплителя для фасада снаружи обратите внимание на устойчивость к механическим повреждениям и на стойкость к грызунам, способным в считанные месяцы превратить утеплитель в решето. Подойдите к делу рационально: так, например, нет никакого смысла использовать для утепления всех сторон дома материалы одинаковой толщины. Для южной стены будет достаточно утеплителя средней толщины, поскольку на нее попадает наибольшее количество солнечного тепла.

При проведении капитального ремонта помещений одним из самых актуальных становится вопрос о достаточной теплоизоляции. Как правило, отопительные приборы не справляются с поставленной задачей, огромные межпанельные швы пропускают холод, шум, влагу, которые со временем приводят состояние помещения в негодность. Чтобы защитить жилье от холода, шума, повышенной влажности, необходимо приобрести качественный утеплитель.

Что такое Изолон

Изолон – отличный тепло- и шумоизоляционнный материал, который незаменим при проведении многих видов ремонтных работ. Этот материал представляет собой вспененное полотно, которое имеет закрытую структуру ячеек. Именно такая структура Изолона позволяет ему хорошо поглощать звуки, и не пропускать холод и влагу.

Изолон применяется для уплотнения стыков дверей, окон, для улучшения звукоизоляции в автомобилях, в качестве подложки под наливной пол и другие напольные покрытия, в качестве защитной пленки для транспортировки любых предметов, в качестве прокладочного материала в некоторых изделиях (сумках, рюкзаках), в качестве защитного покрытия металлических труб для борьбы с коррозией и в некоторых других направлениях.

Виды Изолона по молекулярному строению

Существует два вида Изолона, которые имеют отличия в молекулярном строении:

  • Изолон ППЭ – пенополиэтилен, который имеет сшитую молекулярную основу. Материал вспенивается при помощи реагента порофора, который не выделяет при разложении вредных веществ;
  • Изолон НПЭ – несшитый газонаполненный полиэтилен, который вспенивается бутаном и производится под высоким давлением.

Отличия Изолона ППЭ и НПЭ

Отличия этих двух видов Изолона видны и невооруженным взглядом, к тому же они имеют разные сферы применения. Внешне Изолон НПЭ имеет более крупные ячейки и менее эластичный на ощупь. Его нежелательно применять при точечной нагрузке, так как наполненные воздухом ячейки могут лопнуть, лишая материал его шумопоглощающих и теплоизоляционных свойств. Крупные ячейки способствуют образованию довольно неровной поверхности материала, что может затруднять процесс его приклеивания и последующего выравнивания поверхности.

Чаще всего этот тип Изолона используется при проведении упаковочных работ, а также при необходимости создания амортизационной прокладки. Благодаря более простому способу производства НПЭ стоит на порядок дешевле пенополиэтилена со сшитой молекулярной основой.

ППЭ стоит немного дороже, но его технические характеристики во многом выигрывают. Он более прочный и эластичный, лучше приспособлен к перепадам температур окружающей среды и механическому воздействию, а также он более долговечен. Данный материал имеет идеально гладкую поверхность, благодаря чему он является более простым в монтаже. При приклеивании материала затрачивается в несколько раз меньше клея, чем при монтаже НПЭ.

Преимущества применения утеплителя Изолона

  • этот утеплитель экологически чист и не приносит вреда здоровью человека, даже при непосредственном контакте с кожей;
  • материал паронепроницаем и негигроскопичен, устойчив к воздействию влаги;
  • является качественным изолятором тепла и успешно справляется с шумопоголощением;
  • можно работать с материалом в широком температурном диапазоне: от -60 до 125°С;
  • выдерживает любые условия окружающей среды и стоек к УФ-излучению;
  • тонкий слой материала не «крадет» внутреннее пространство помещения;
  • практически невесомый Изолон не утяжеляет конструкцию.

Что лучше: Изолон, Пенофол или Сплен

Помимо Изолона на строительном рынке большой популярностью пользуются такие теплоизоляционные материалы как Пенофол и Сплен. Обычному покупателю бывает сложно разобраться, в чем их принципиальные отличия, и какой материал лучше, ведь внешне они выглядят почти одинаково.

Пенофол представляет собой вспененный полиэтилен, который покрыт с одной или двух сторон плотной фольгой, которая необходима для отражения солнечной энергии. Специалисты утверждают, что Пенофол несколько уступает по показателям фольгированному Изолону, который имеет более высокую плотность, более качественные тепло- и шумоизоляционные свойства, имеет гладкую поверхность и более долговечный. К тому же, современный Пенофол производится из газовспененного полиэтилена, который менее прочный, чем фольгированный Изолон, произведенный из Изолона ППЭ.

Сплен представляет собой пенополиэтилен с липким слоем, благодаря которому материал легко приклеивается к поверхности. Он идентичен Изолону и выполняет те же функции, однако может стоить несколько дороже простого Изолона. Стоимость самоклеющегося Изолона с фольгированной основой будет выше, чем у Сплена без фольгированного слоя. Сплен применяется чаще всего для шумоизоляции автомобиля.

iobogrev.ru

Огнестойкий (огнеупорный) негорючий утеплитель: виды и применение

Для теплоизоляции помещений строительных объектов, трубопроводов, вентиляционных коробов инженерных коммуникаций используют как горючие, так и негорючие утеплители различных видов.

Определение негорючему огнестойкому утеплителю дает ГОСТ 30244-94, указывающий, что такой материал при воздействии источника зажигания горит открытым огнем не больше 10 с, а при испытаниях в лабораторной печи теряет не более 50% массы, создавая прирост температуры в ней не больше 50 ℃.

Все утеплители, не удовлетворяющие хотя бы одному из перечисленных условий, относятся к горючим, не огнестойким материалам.

Типы огнестойкой теплоизоляционной продукции

Виды

В отличие от сгораемых видов утеплителей, таких как опилки, маты, изготовленные из отходов переработки древесины, применяемых из-за их быстрого разрушения под воздействием влаги только внутри зданий, многие виды огнестойких теплоизоляционных материал также используют при монтаже навесных фасадных систем, в наружных стеновых панелях снаружи строительных объектов.

Существует несколько основных видов огнестойких утеплителей, подразделяющихся в зависимости от области их применения:

  • Для стен, перекрытий как деревянных домов, так и строительных объектов, возведенных из кирпича, керамических блоков, железобетонных готовых, монолитных конструкций, в том числе изготовленных из огнеупорного (огнестойкого) бетона. В таких случаях используется как традиционная минеральная вата, так и более современный огнезащитный базальтовый материал, не впитывающий влагу и негорючий, в виде рулонов, матов, плит.
  • Для дымохода, печей отопления жилых домов, бань чаще всего используют негорючий фольгированный материал из различных видов минеральных ват, имеющий повышенный коэффициент отражения тепловой энергии от слоя металлической фольги. А также за счет повышенной плотности негорючего утеплителя, используемого для этих целей в качестве заполнения участков термоизоляции перекрытий, прилегающих к дымовым трубам; элементов противопожарных разделок, отступок.
  • Для термической изоляции, огнезащиты металлических конструкций вентиляционных воздуховодов; участков трубопроводных сетей, как транспортирующих теплоносители, включая воду, так и горючие жидкости, газовые смеси.
  • Для двигателя, автотранспортного, железнодорожного средства, речного/морского судна/корабля, стационарных теплогенерирующих, вырабатывающих электроэнергию установок как для ограничения расхода тепловой энергии, нагрева смежных конструкций, отсеков, так в качестве надежной звукоизоляции, отсекающей громкий шум от работающих машин, механизмов.
  • Для заполнения внутренних пустот, в конструкциях противопожарных перегородок, полотен огнестойких ворот, дверей, люков, используемых для защиты проемов в строительных преградах огню, дымовым потокам, что позволяет доводить предел их стойкости к огню до требуемых противопожарными нормами значений.

Такое деление на виды довольно условно, ведь большинство рулонных, плитных, листовых огнестойких утеплителей, в отличие от сыпучих, жидких вспенивающихся теплоизоляционных материалов, не подверженных горению, могут использоваться для термической, звуковой изоляции как помещений строительных объектов, участков их инженерных коммуникаций, так и двигательных отсеков транспортных средств, тепло-электрогенерирующих установок.

Состав и свойства

Основными параметрами огнестойких теплоизоляционных материалов являются:

  • Материал изготовления, в большинстве случаев определяющий вид огнестойкого утеплителя, способы его применения на объектах строительства, участках инженерных коммуникаций.
  • Толщина товарных огнестойких утеплителей, что зависит как от области их применения – для утепления отдельных видов строительных конструкций или участков трубопроводов, вентиляционных воздуховодов, так от свойств основного материала, использованного для их производства.
  • Плотность, удельный вес, определяющие общую нагрузку на строительные конструкции, что зачастую критически важно для междуэтажных перекрытий жилых, общественных зданий.

В перечень основных материалов, используемых при промышленном производстве негорючих, огнестойких теплоизоляционных изделий, входят следующие природные, искусственно полученные вещества:

  • Минеральная вата, называемая также шлаковатой, стекловатой, которую получают из кварцевого песка, отходов объектов металлургии, энергетики. Это наиболее давно используемый материал, обладающий невысокой стоимостью, но требующий защитных средств для работников, укладывающих его; осторожности при обращении с ним из-за опасности повреждения кожных покровов, глаз, органов дыхания.
  • Базальтовый теплоизоляционный, огнезащитный материал, получаемый расплавом природного минерала базальта, получением из него сверхтонких негорючих волокон. Более высокая стоимость этого огнестойкого утеплителя компенсируется безопасностью обращения с ним, возможностью использовать его как внутри, так и снаружи строительных объектов в различных по климату регионах, в том числе с высокой влажностью воздушной среды.
  • Пеностекло, получаемое в процессе спекания смеси измельченного стеклянного боя, крошки с каменным углем в качестве газообразующего агента в технологическом процессе производства. Полученный материал абсолютно не горюч, обладает высоким пределом стойкости к огню, низким коэффициентом теплопроводности. Его часто использует для термической изоляции помещений с высокой влажностью среды, например, подвалов, технических подполий, производственных участков с мокрым технологическим процессом.
  • Керамзит, вермикулит, перлит – эта тройка сыпучих материалов давно используется для теплоизоляции межэтажных перекрытий, чердачных помещений, служит добавкой в «теплые» стяжки основания полов в жилых, общественных помещениях.
  • Велит – современный негорючий утеплитель, имеющий пористую структуру, что производится из цементно-известкового сырья путем его вспенивания. По структуре, свойствам относится к пористым огнестойким бетонам, имея низкую плотность – до 140 кг/м3, так как до 90% его внутреннего объема – это воздух.
  • Стеклопор – гранулированный пожаростойкий материал, получаемый в процессе вспучивания силикатов в результате резкого охлаждения расплава натриевых, калиевых стекол. Чаще всего его используют не в виде сыпучего материала, а как добавку в заливную теплоизоляцию межэтажных перекрытий строительных объектов, а также при производстве штучных огнестойких теплоизоляционных изделий.
  • Огнестойкая пена, производимая на основе жидкого полиуретана с добавками веществ-антипиренов, придающими ей огнезащитные свойства.

Как несложно заметить, утеплитель негорючий в основном производится на основе природных, искусственных материалов минерального, неорганического происхождения, изначально являющихся негорючими.

Такая теплоизоляционная продукция имеет сертификаты пожарной безопасности, где их способность к горению указана НГ, то есть негорючие, в то время как подавляющее большинство утеплителей, полученных на предприятиях органического химического синтеза, например, различные виды пенопластов, пеноизолов; «экологическая вата» на основе переработанного целлюлозного вторичного сырья с добавками антипиренов, в лучшем случае являются трудногорючими, имея маркировку Г1.

Естественно, такие утеплители, несмотря на рекламные заверения некоторых производителей, представителей торговых организаций, ни в коей мере не могут претендовать на «звание» огнестойких утеплителей.

Свойства, дополнительно требуемые заказчиками – проектировщиками, строителями, организациями, эксплуатирующими здания, инженерные сооружения, коммуникации, которыми должен обладать пожаростойкий негорючий материал, который используют в качестве огнестойкого утеплителя:

  • Низкая теплопроводность, обуславливающая высокие теплоизоляционные параметры.
  • Влагостойкость, гигроскопичность.
  • Способность к надежной звукоизоляции стен, перегородок, перекрытий, выделяющих защищаемые помещения.
  • Безопасность применения, отсутствие выделения опасных для человека летучих веществ как при нормальных условиях эксплуатации, так и при сильном нагреве, в том числе при возникновении пожара внутри строительного объекта, где использован для утепления, звукоизоляции огнестойкий утеплитель.
  • Высокая плотность при относительно небольшом удельном весе.
  • Механическая прочность.
  • Неизменность геометрических размеров, долговечность эксплуатации без потери огнестойких, теплоизоляционных параметров.
  • Невысокая стоимость, что особенно важно для владельцев, заказчиков строительства частных деревянных домов.
  • Простота работ по монтажу, укладке огнестойкого утеплителя, в том числе без найма сторонних специалистов.

Классификация

Часто классифицируют негорючий огнестойкий утеплитель по его агрегатному состоянию, внешнему виду, внутренней структуре, в зависимости от которых он может быть:

  • Каркасный, в том числе многослойный, армированный негорючими материалами, часто используемый в качестве элементов конструктивной огнезащиты несущих металлических конструкций строительных объектов.
  • Рулонный, позволяющий обертывать им как различные по форме, сечению элементы строительных конструкций, так и участки трубопроводов, вентиляционных коробов, которые необходимо защитить от промерзания, возможного воздействия огня при возникновении возгорания.
  • Плитный, а также в виде отдельных теплоизоляционных матов, специально разработанных проектировщиками, производителями типоразмеров, что облегчает их монтаж, установку внутрь строительных конструкций, например, перегородок между помещениями.
  • Сыпучий, в том числе искусственно вспученный, ячеистый, что значительно повышает его теплоизоляционные свойства.
  • Жидкий вспенивающийся материал, застывающий при полимеризации, высыхании после нанесения на строительные конструкции, участки трубопроводных сетей, вентиляционных систем объектов защиты, чаще всего называемый огнестойкой пеной.

Выбор того или иного класса негорючих, огнестойких утеплителей определяется как проектными решениями, так и опытом использования в гражданском, промышленном строительстве при возведении, ремонте различных объектов.

Нормативные документы

Непосредственное отношение к производству, сертификационным испытаниям серийной продукции, стойких к огню теплоизоляционных материалов, возможности их использования для снижения пожарной опасности защищаемых объектов имеют следующие нормы, стандарты:

  • ГОСТ 4640-2011 о производстве минеральной ваты – исходного материала для изготовления огнестойких утеплителей, способных эксплуатироваться в температурном диапазоне – 180 до 700℃.
  • ГОСТ 21880-2011 о технологии изготовления прошивных огнестойких матов из минеральной ваты.
  • ГОСТ 32313-2011 – то же о каркасных плитных плитах, матах, фольгированных цилиндрах из минеральной ваты, выдерживающих температурное воздействие до 1000℃.
  • ГОСТ 32314-2012 – о видах огнестойких утеплителей, производимых из разных видов минеральных ват, применяемых при возведении строительных объектов.
  • ГОСТ 30244-94 – об испытаниях на горючесть. Стандарт не применим к тем классам негорючих утеплителей, что выпускаются в виде гранул, готовых жидких растворов.
  • НПБ 244-97 – о параметрах пожарной опасности теплоизоляционных материалов.

А также СП 112.13330.2011 – о ПБ строительных объектов, СП 4.13130.2013 – об ограничении развития пожара внутри защищаемых объектов, СП 2.13130.2012 – об обеспечении их стойкости к огню, в части применения огнестойких утеплителей при проектировании, устройстве противопожарных преград, изготовлении огнестойких заполнений проемов в них; общего снижения пожарной опасности зданий, строений в результате использования негорючих видов утеплителей.

Область применения

Пожаростойкий негорючий утеплитель используется при возведении, капитальном ремонте, проведении реконструкции разного вида, назначения строительных объектов – от частных надворных построек, жилых, дачных домов до высотных общественных, жилых зданий; производственных цехов, складских комплексов.

Ввиду влагостойкости, не подверженности к биологическому разрушению большинства видов огнестойких теплоизоляционных материалов их с гарантией длительного срока службы применяют при монтаже снаружи ограждающих конструкций строительных объектов; внутри, в том числе в помещениях с высокой влажностью среды, имеющими категории по взрывопожарной опасности.

Достоинства и недостатки

Кроме очевидного снижения пожарной опасности строительных объектов, применение огнестойких утеплителей дает и другие преимущества:

  • Увеличивается срок службы многих строительных конструкций, например, перегородок, перекрытий, без необходимости их вскрытия для замены пришедшего в негодность утеплителя, изготовленного из органических материалов.
  • Более длительная, безопасная эксплуатация участков инженерных сетей, коммуникаций жизнеобеспечения объектов, защищенных огнестойкими утеплителями, в том числе проходящих транзитом через пожароопасные производственные, складские помещения.
  • Использование огнестойких теплоизоляционных материалов резко снижает возможность возникновения пожара от печного оборудования.

К недостаткам можно лишь отнести несколько завышенную стоимость отдельных марок огнестойких утеплителей, однако, учитывая огромное предложение аналогичной по техническим параметрам продукции на рынке – это не проблема для заказчиков, покупателей.

fireman.club

Современные теплоизоляционные материалы

Теплоизоляция — своеобразный барьер, не дающий тепловой энергии перетекать из одного объема в другой. Вопросы теплоизоляции домов сегодня особенно актуальны. Затраты на утепление окупаются за 3-4 сезона и далее «работают в плюс». Главный враг теплосбережения — сквозняки, потоки воздуха, выносящие тепло. Теплоизоляционные свойства утеплителей основаны на сложной структуре волокна, максимально затрудняющей свободное перемещение воздуха внутри материала. Утепляя дом, в первую очередь стоит уплотнить оконные и дверные створы, теплоизолировать перекрытия. Затем переходить к теплоизоляции наружных стен.

Рассмотрим основные характеристики теплоизоляционных материалов.

Коэффициент теплопроводности. Зависит от влажности материала (вода проводит тепло лучше, чем воздух, и материал не будет выполнять теплоизолирующую функцию, если он мокрый), температуры, химического состава утеплителя, структуры, пористости.

Пористость — доля объема пор в общем объеме материала. Определяет такие свойства, как плотность, прочность, газопроницаемость, теплопроводность.

Плотность материала — отношение его массы к занимаемому объему.

Паропроницаемость.

Влажность — содержание влаги в материале.

Водопоглощение — способность материала впитывать и удерживать влагу в порах при прямом контакте с водой.

Био- и огнестойкость. Показатели пожарной безопасности: Г (горючесть), В (воспламеняемость), РП (распространение пламени по поверхности), Д (дымообразующая способность), Т (токсичность продуктов горения).

Прочность. Предел прочности при сжатии — 0.2-2.5 МПа. Материалы с показателем выше 2.5 МПа относят к категории теплоизоляционных-конструктивных и используют для несущих ограждающих конструкций.

Предел прочности при изгибе (показатель для плит, сегментов, скорлуп) и предел прочности при растяжении (для матов) нужны, чтобы определить, достаточна ли прочность материала при транспортировке, складировании, монтаже.

Температуростойкость — температура, выше которой материал изменяет свою структуру, теряет механическую прочность и разрушается, а органические материалы могут загореться.

Морозостойкость — способность многократно выдерживать изменения температур от стадии замораживания до стадии оттаивания, без видимых признаков нарушения структуры.

Спектр представленных на рынке теплоизоляционных материалов включает минеральную вату, пеностекло, пенопласт, пенополиуретан и экструдированный пенополистирол.

Минеральная вата. Благодаря высокой пористости (до 95% объема занимают воздушные пустоты) имеет хорошие тепло- и звукоизоляционные свойства. Относится к негорючим строительным материалам, эффективно препятствует распространению пламени, морозостойка, имеет стабильные физические и химические характеристики. При монтаже необходима паро- и гидроизоляционная пленка.

Минераловатные утеплители выпускают в виде прошивных матов и плит. Маты представляют собой полотна минеральной ваты, прошитые специальными огнеупорными нитями на основу или без нее. Минераловатные маты выдерживают температуры до 700 град.С, не горят, не выделяют вредных веществ. Они принимают форму основания, плотно прилегают к поверхности, сокращая утечку тепла. Используются для теплоизоляции трубопроводов, технологического оборудования, горизонтальных ненагруженных строительных конструкций.

Для теплоизоляции вертикальных и горизонтальных нагруженных строительных конструкций используют минераловатные плиты. Их изготавливают из минераловатного полотна, пропитанного для прочности синтетическим связующими, с гидрофобизирующими добавками или без них.

Минераловатные плиты, как и маты, устойчивы к действию высоких температур и большинству химических агрессивных веществ. В зависимости от плотности, их разделяют на мягкие, полужесткие, жесткие и плиты повышенной жесткости.

Пеностекло получается в результате спекания стеклянного порошка с газообразователями. Пористость материала — 80-95% дает хорошие показатели теплоизоляции. Пеностекло прочное, водостойкое, не горит, не боится перепадов температур.

Пенопласт представляет целое семейство утеплителей: пенополистиролы, ПВХ, пенополиуретаны и др. Наиболее распространены полистирольные пенопласты. Структура материала представляет маленькие скрепленные между собой шарики. Пенопласты — прочные, недорогие утеплители. Удобны в работе, имеют высокие теплоизолирующие свойства, практически не имеют нижней границы применения. Нуждаются в защите от влаги, которая при замораживании разрушает структуру утеплителя.

Пенополиуретан экономит время монтажа, образует сплошной изоляционный слой без стыков и позволяет утеплять неровные поверхности. Может применяться при температуре от -250 град.С до +180 град.С.

Экструдированный пенополистирол. Микроструктура материала представляет собой закрытые ячейки, наполненные газом. Материал более прочный, чем пенопласт, имеет более низкое водопоглощение, не разрушается под действием солнца и атмосферных осадков, не вступает в реакцию с большинством веществ.

Аналогом пенополиуретана является пенополиизоцианурат (PIR). При сохранении всех положительных качеств полиуретана (низкая теплопроводность, малая плотность, хороший предел прочности при сжатии, паро- и влагонепроницаемость), PIR обладает и повышенной огнестойкостью, не поддерживает горение и затухает без источников огня. Материал применяется в качестве наполнителя сэндвич-панелей. Вес таких панелей ниже, чем у аналогов с минераловатным сердечником. Это снижает нагрузку на несущие конструкции, что важно при строительстве на вечной мерзлоте. PIR экологически безопасен и может использоваться на объектах с повышенными санитарными требованиями. Обладает высокой стойкостью к агрессивным природным и техногенным факторам.

www.eremont.ru

Теплоизоляционные материалы | Строительный портал

Решили сделать свое жилище энергоэффективным, чтобы тратить меньше средств на его отопление, или просто утеплить стены, чтобы сделать проживание в нем более комфортным, но при этом не знаете, на каком материале остановить свой выбор? Ведь хочется, чтобы он был качественным, не пропускал воду, не слишком утяжелял конструкцию, был паропроницаемым, не боялся грибка и плесени и при этом – желательно не слишком дорогим, не оказывал негативных влияний на жизнедеятельность человека, а лучше – был натуральным. Представленные на современном рынке теплоизоляционные материалы поражают своим разнообразием, среди которого нелегко сделать правильный выбор. В рамках данной статьи мы определимся, на какие характеристики следует обратить внимание, какие достоинства и недостатки имеют те или иные виды материалов и из чего они сделаны.

Содержание

  1. Характеристики теплоизоляционных материалов
  2. Теплоизоляционные материалы для стен
  3. Сравнение теплоизоляционных материалов

Для начала давайте выясним, для чего нужны такие материалы и что они собой представляют.

Основной функцией теплоизоляционного материала является предотвращение потери тепла из изолируемого помещения, например, в холодное время года, и проникновению тепла внутрь – жарким летом. Передача тепла обусловлена движением молекул, которое невозможно остановить полностью, но можно снизить. Так, в неподвижном сухом воздухе молекулы движутся медленнее всего. Именно это свойство и было взято в основу производства теплоизоляционных материалов, представляющих собой воздух, упакованный различными способами: в порах, ячейках, капсулах.

 

Характеристики теплоизоляционных материалов

 

Выбирая тот или иной изоляционный материал, следует обратить внимание на несколько основополагающих характеристик.

Коэффициент теплопроводности (лямбда – λ) – главный показатель для теплоизоляционных материалов. Он показывает количество теплоты, которое проходит сквозь материал, имеющий толщину 1 м и площадь 1 м2 , за один час при условии, что разница температур на противоположных поверхностях составляет 10 °С. Например, коэффициент теплопроводности сухого воздуха составляет 0,023 Вт/(м*С). На величину теплопроводности влияют другие характеристики материала: пористость, влажность, температура, химический состав и другие.

Пористость – процент воздушных пор в общем объеме изделия. Может составлять 50% и более. В некоторых ячеистых пластмассах доходит до 90 – 98 %. Поры могут быть открытыми, закрытыми, мелкими или крупными. Очень важным является их равномерное распределение внутри материала.

Влажность – количество влаги, содержащейся в материале. Данный параметр влияет на теплопроводность. Так как вода очень хорошо проводит тепло, материал, насыщенный водой – мокрый, не будет выполнять свои функции.

Водопоглощение – способность материала впитывать воду при прямом контакте с ней. Очень важный момент для наружной изоляции, которая может находиться под осадками, для внутренней изоляции в помещениях с повышенным уровнем влажности. Если материал будет впитывать воду, его свойства будут падать.

Паропроницаемость – количество водяного пара, проходящее через материал, толщиной 1 м и площадью 1 м2, за 1 час при условии, что температура одинакова с обеих сторон материала, а разность парциального давления пара равна 1 Па. Данный параметр влияет на необходимость обустройства дополнительной пароизоляции.

Плотность материала влияет на его массу. По ней можно высчитать, насколько будет утяжелена конструкция, если использовать тот или иной материал определенной толщины.

Биостойкость определяет, возможно ли развитие грибков, плесени и другой патогенной флоры на поверхности или внутри структуры материала.

Теплоемкость материала важна в регионах с частой сменой температур. Она показывает количество тепла, которое может аккумулировать теплоизоляция.

Существуют и другие характеристики: огнестойкость, прочность, морозостойкость, прочность на изгиб и показатели пожарной безопасности. При выборе материала на них также стоит обратить внимание, а также на еще один показатель, не имеющий прямого отношения к конкретному теплоизоляционному материалу:

Коэффициент U – способность конструкции пропускать тепло. Будь то стены, потолок или пол, в зависимости от материалов, из которых они выполнены, могут пропускать тепло в разном количестве и с разной скоростью. Данный коэффициент является комбинированной величиной, в расчет которой входят все использованные послойно материалы и воздушные промежутки между ними. От значения коэффициента U конкретного здания или конструкции будет зависеть, какой теплоизоляционный материал можно использовать, и какая требуется толщина этого материала.

 


Теплоизоляционные материалы для стен

 

На сегодняшний день производство теплоизоляционных материалов налажено, как из неорганического сырья, так и органического. Рассмотрим их отдельно по причине их различного влияния на окружающую среду и человека, а также условий утилизации.

 

Теплоизоляционные материалы из неорганического сырья

Минеральная вата является, пожалуй, самым распространенным материалом на данный момент. Производится из минерального сырья: доломитов, базальтов и других ископаемых. Полученные в результате расплавления минералов волокна скрепляются связующим веществом, в качестве которого часто выступает фенолформальдегидная смола. Легкость производства обусловила низкую цену на данный материал.

Преимущества минеральной ваты:

  • Хорошие теплоизолирующие свойства.
  • Практически не впитывает влагу.
  • Морозостойкая.
  • Может служить дополнительной звукоизоляцией.
  • Не горит.
  • Долговечная.
  • Не меняет своих характеристик.
  • Не подвержена гниению.
  • «Дышит».

Недостатки:

  • Недостаточно прочная.
  • Требует пароизоляции.
  • Требует гидроизоляции.
  • Фенолформальдегид – токсичное вещество.
  • Требует специальной утилизации.

Форма выпуска: рыхлая вата, маты, цилиндры, плиты с разной плотностью (легкие, мягкие, полужесткие, жесткие).

Каменная вата производится из горной породы диабаза путем расплавления и превращения жидкой массы в волокна. Такой материал на 99 % состоит из воздуха и только на 1 % из горной породы. Используется для утепления стен и других конструкций повсеместно.

Преимущества каменной ваты:

  • Обеспечивает звукоизоляцию.
  • Не горит.
  • Не подвержена гниению.
  • Препятствует распространению огня. Плавится при температуре 1000 °С.

Недостатки:

  • Энергоемкий процесс производства.
  • Требует специальной утилизации.

Пеностекло (ячеистое стекло) производится из стеклянного порошка путем его спекания с газообразователями. Воздух занимает 80 – 95 % материала.

Преимущества пеностекла:

  • Прочное. Можно вбивать гвозди.
  • Водостойкое.
  • Морозостойкое.
  • Не горит.
  • Не подвержено гниению.
  • Долговечное.

Недостатки:

  • Не «дышит» (требуется дополнительная вентиляция).
  • Дорогое.

Перлит – вулканическая порода. При нагревании увеличивается в несколько раз, из-за чего процесс производства напоминает создание попкорна. Используется для теплоизоляции с середины прошлого века.

Преимущества перлита:

  • Экологически чистый материал.
  • Не горит.
  • Не поглощает влагу.
  • Не оседает.
  • Устойчив к гниению и влиянию патогенной флоры
  • Прост в использовании (можно засыпать или задувать в пустоты).
  • Утилизируется компостированием (улучшает качества почвы).

Недостатки:

  • Может высыпаться из пустот во время прокладки в стенах труб или кабелей.

 

К теплоизоляционным материалам из неорганического сырья также относятся различные теплоизоляционные бетоны: газобетон, ячеистый бетон, пенобетон. А также бетоны с заполнителями: керамзитобетон, перлитобетон, полистиролбетон.

 


Полимерная теплоизоляция

Экструдированный пенополистирол имеет цельную, прочную микроструктуру. Ячейки закрыты, непроницаемы и заполнены воздухом. Ни вода, ни воздух не могут проникать из ячейки в ячейку.

Преимущества экструдированного пенополистирола:

  • Хорошие показатели теплопроводности.
  • Инертен по отношению к большинству веществ.
  • Не впитывает влагу.
  • Прочнее пенопласта.

Недостатки:

  • Горючий (в процессе горения выделяет токсичные вещества).
  • Не «дышит».

Полистирольные пенопласты представляют собой маленькие шарики, скрепленные между собой. Могут производиться как прессовым, так и беспрессовым способом.

Преимущества полистирольных пенопластов:

  • Недорогие.
  • Прочные.
  • Хорошо теплоизолируют.
  • Удобны в монтаже.

Недостатки:

  • Под действием солнечных лучей желтеют и распадаются.
  • Не «дышат».
  • Горят.
  • При проникновении влаги разрушается структура.

Пенополиуретан представляет собой жидкий теплоизолирующий материал. При смешении ингредиентов с воздухом образуется мелкодисперсный аэрозоль, который можно напылять на поверхность с любой геометрией.

Преимущества пенополиуретана:

  • Потрясающая эластичность материала.
  • Устойчив к грибкам и плесени.
  • Можно утеплять неровные поверхности.
  • Легкий монтаж, не занимающий много времени.
  • Не имеет стыков.

Недостатки:

  • Горит, выделяя токсичные вещества.
  • Не «дышит».
  • Для монтажа требуется специальная установка.

 

Теплоизоляционные материалы из органического сырья

Бумага используется для утепления с середины прошлого столетия. Такие материалы представляют собой гранулы, полученные из газет и другой макулатуры. Для задувания этих гранул в пустоты в стенах необходима помощь специалистов.

Преимущества теплоизоляционных материалов на основе бумаги:

  • Не горят (обрабатываются нейтральными солями).
  • Отталкивают воду.
  • Хорошо заполняют полости.
  • Легкие в использовании.
  • Не приносят вреда окружающей среде.
  • Утилизируются обычным компостированием.
  • Устойчивы к грибкам.
  • Не требуют дополнительной пароизоляции.

Недостатки:

  • Ограниченная сфера применения из-за специфической формы изделия – гранул.

Лен используется в качестве утеплителя довольно редко, в основном теми, кто заботится об окружающей среде и своем здоровье. Причина неповсеместного распространения материалов из льна – высокая цена. Хотя со временем прогнозируют ее снижение.

Преимущества льняных утеплителей:

  • Превосходные изоляционные качества.
  • Не требуют дополнительной пароизоляции.
  • Утилизируются сжиганием или компостированием.
  • Абсолютно натуральные.
  • Устойчивы к грибкам и микроорганизмам.

Недостатки:

  • Трудно режутся.
  • Необходима дополнительная противопожарная защита.

Древесное волокно (целлюлозная вата) на данный момент считается одним из самых известных органических теплоизоляционных материалов. Представляет собой древесный материал, измельченный до состояния ваты. Производится как в сыпучем виде, так и в плитах. Используется для задувания в полости стен.

Преимущества целлюлозной ваты:

  • Повышенные теплоизоляционные свойства.
  • Служит звукоизоляцией.
  • Проста и удобна в применении.
  • Компостируется.

Недостатки:

  • Подвержена гниению и грибку.
  • Не может быть использована для изоляции полых стен старых зданий.
  • Для повышения огнеупорных качеств добавлен полифосфат аммония.

Пробковая теплоизоляция производится из коры пробкового дуба без использования синтетических веществ. Пробка является еще одним абсолютно натуральным утеплителем, как и лен.

Преимущества пробки:

  • Не гниет.
  • Не поддается усадке.
  • Прочная на сжатие и изгиб.
  • Легкая.
  •  Долговечная.
  • Инертна к большинству веществ.
  • Не горит (но тлеет).
  • Во время тления не выделяет вредных веществ.

Недостатки:

  • Обработана противогорючими пропитками.

 

Сравнение теплоизоляционных материалов

 

Перед тем как выбирать материал для утепления, желательно проконсультироваться со специалистами. Исходя из материала стен, их толщины и условий эксплуатации (климата), они посоветуют, какие материалы могут подойти в конкретном случае и какова должна быть их толщина. Если Вы не услышали в списке предложенных вариантов тот материал, которые хотели бы использовать, уточните этот нюанс. Возможно, данный материал просто выпал из внимания специалиста, а может он категорически не подходит для данной конструкции.

Выделить однозначно лучший теплоизоляционный материал невозможно. Все они в той или иной степени хороши для конкретных целей. Выбор зависит в первую очередь от теплоизоляционных свойств и от личных предпочтений и финансовых возможностей.

Например, обустраивая абсолютно экологичный дом из дерева, будет абсурдным использовать для утепления пенополистрол или пенопласт. Имеет смысл обратить внимание на натуральные материалы: лен, бумагу, целлюлозу и пробку.

В строительстве современных многоэтажных домов повсеместно используется пенопласт и другие полимерные материалы, так как их цена невелика, они просты в монтаже и имеют хорошие показатели теплопроводности. Но о влиянии таких материалов на жизнедеятельность человека в основном никто не задумывается. Застройщикам достаточно того, что производитель заверил в безопасности продукта.

В представленной таблице использования теплоизоляционных материалов:

Серым цветом обозначен правильный выбор;

Желтым цветом обозначены варианты, которые следует осуществлять с учетом пожарной безопасности;

Красный цвет — нельзя использовать.

Как видно из таблицы, любой из представленных в статье материалов хорош на своем месте: некоторые лучше использовать для утепления стен, другие – полов, третьи – чердаков и крыш. Даже для устройства теплоизоляции внутри здания или снаружи подойдут разные материалы.

strport.ru

Отражающая теплоизоляция: виды, характеристики | Строй Советы

Содержание статьи:
Отражающие теплоизоляционные материалы: принцип действия
Преимущества и недостатки теплоотражающего утеплителя
Отражающая изоляция: виды и технология их применения

Пытливому уму мыслящего человека свойственно все подвергать сомнениям, а не слепо доверять утверждениям продавцов, производителей и уж тем более рекламных компаний, которые готовы на все, чтобы продвинуть продукцию на рынок. Так происходит практически с каждым вторым строительным материалом – имея несколько существенных достоинств, к ним приклеивают с десяток надуманных. Одним из таких черно-пропиаренных строительных материалов как раз является отражающая теплоизоляция. Именно о ней и пойдет речь в этой статье, в которой вместе с сайтом stroisovety.org мы отделим зерна от плевел и выявим реальные качества этого материала.

Самоклеющаяся фольгированная теплоизоляция фото

Отражающие теплоизоляционные материалы: принцип действия

Прежде чем подвергать сомнению утверждения производителей, в первую очередь необходимо ознакомиться с самим материалом и узнать, согласно какому принципу он сохраняет тепло. С точки зрения физики фольгированная теплоизоляция ничего сложного не представляет – она состоит из двух частей, на которые возлагаются свои обязанности.

  1. Фольга. В ее задачи входит отражение теплового излучения. Согласно законам физики 70% тепловой энергии находится в волновом спектре – по утверждению производителя, фольга, наклеенная поверх тонкого утеплителя, способна отразить до 95% этой волновой энергии. Удерживать остальные 5% призван сам утеплитель.
  2. Утеплитель. В большинстве случаев это вспененный полиэтилен, в его структуре находится масса небольших пузырьков воздуха, которые не позволяют остаткам тепла, передавшимся фольге, уходить, как говорится, в никуда.

    Технология применения отражающей теплоизоляции

Продолжая логику производителей, смело можно утверждать, что удерживая 70% всей тепловой энергии внутри помещения, отражающие теплоизоляционные материалы являются чуть ли не самыми эффективными. С одной стороны это так – судите сами, обмотав дом со всех сторон фольгированным утеплителем, вы получаете элементарный термос, в котором роль утеплителя отводится полости между колбой и корпусом, а функция отражателя возлагается на зеркальное напыление. Как, по-вашему, жить в термосе хорошо? Но это уже другой вопрос, поскольку практически все современные строительные материалы так или иначе создают внутри нашего жилища эффект термоса.

Фольгированная теплоизоляция фото

Преимущества и недостатки теплоотражающего утеплителя

С принципом работы данного утеплителя мы разобрались, теперь рассмотрим преимущества, которыми его наделяют продавцы и рекламные агенты. К таковым можно отнести следующее.

  1. Простота в использовании. С этим утверждением не согласиться нельзя – что может быть проще, чем крепление рулонного материала? Раскатал его по поверхности и пришпилил степлером или гвоздями. А некоторые виды данного материала вообще изготавливают на самоклеющейся основе.
  2. Компактность. Этот пункт также не подлежит сомнению, так как в отличие от других утеплителей (той же минеральной ваты), изолон имеет небольшую толщину, что позволяет помещать его даже в самые неглубокие полости.
  3. Широкая сфера применения. В общем-то, согласен, но некоторые моменты и приписываемые этому материалу способности не соответствуют действительности. Об этом чуть позже, а пока следует знать только то, что этот материал используют для утепления любых поверхностей при любых условиях эксплуатации.
  4. Безопасность и экологичность. Сами по себе полиэтилен и фольга никаких угроз для человека не несут. Но вопрос безвредности и экологичности с повестки дня снимать не следует – нужно понимать, чем грозит термос, который получается в результате кругового использования теплоотражающей изоляции. Как минимум, это комфортные условия для произрастания грибковых микроорганизмов – и не нужно говорить, что эта проблема решается с помощью качественной вентиляции. Попробуйте вентилировать пространство между стяжкой пола и плитой перекрытия. И так обстоят дела со стенами и потолком (хотя с последними немного проще).
  5. Высокие показатели теплопроводности. Здесь, как говорится, не попробуешь – не узнаешь. На бумаге можно писать все что угодно. Если судить реально из практики, то такая теплоизоляция справляется со своими задачами неплохо, но, опять же, если брать во внимание ее паронепроводимость, то с таким же успехом можно применять и более дешевую полиэтиленовую пленку.
  6. Низкая степень горючести. Это утверждение вообще не внушает доверия – сразу напрашивается вопрос, насколько низкая эта степень? И вспоминается, как полиэтилен горит ясным пламенем и скапывает расплавленными частицами на пол, распространяя огонь все дальше и дальше.
  7. Долговечность. Не согласиться с этим трудно – в природных условиях полиэтилен разлагается очень и очень долго. Но здесь следует смотреть не на этот момент, а на условия эксплуатации. К примеру, отражающая теплоизоляция для теплого пола. Соль, в обилии содержащаяся в цементном растворе, и фольга являются плохими соседями – уже спустя год первая просто разъест вторую и останется только незначительный и малоэффективный слой изолона.

В общем, не все то золото, что блестит. С такого рода строительными материалами нужно быть достаточно осторожным и в первую очередь обращать внимание не на их достоинства, а именно на недостатки, которые всплывают при их применении в тех или иных условиях. А о недостатках в основном предпочитают молчать.

Отражающая теплоизоляция для стен фото

Отражающая изоляция: виды и технология их применения

Все виды теплоотражающей теплоизоляции условно разделяют на три типа, которые маркируются буквами «A», «B» и «C».

  • Тип «А» – это теплоизоляционный материал, изготовленный из вспененного полиэтилена, с одной стороны которого нанесена фольга. В большинстве случаев это универсальный материал, который может устанавливаться на любые поверхности. Чаще всего его просто приклеивают специальным клеем или просто прибивают к деревянным поверхностям гвоздями или скобами. Его одностороннее покрытие говорит само за себя – используют такой материал в большинстве случаев для внутренней теплоизоляции и устанавливают его фольгой внутрь помещения.
  • Тип «B» – это тот же вспененный полиэтилен толщиной до 5мм, только покрытый фольгой с двух сторон. Именно двухстороннее покрытие и обуславливает его область применения – в большинстве случаев это стены холодильных камер, которые должны с одной стороны не пропускать тепло, а с другой не выпускать холод. Данный тип отражающего утеплителя также может использоваться при утеплении простенков, если возникает необходимость поддерживать в разных помещениях свою температуру.
  • Тип «С» – в отличие от типа «А», он имеет самоклеющуюся основу и ничем другим от него не отличается. Самоклеющаяся фольгированная теплоизоляция имеет только одно преимущество – с ней очень легко, а главное удобно работать.

Существуют и другие виды отражающей теплоизоляции – к примеру, достаточно часто отражатель устанавливается на базальтовую вату. Она может быть как односторонней, так и двухсторонней – такой утеплитель является отличным решением для теплоизоляции каркасных строений.

В заключение темы несколько слов о таком важном элементе, как алюминиевый скотч – без него сделать качественную теплоизоляцию из отражающих материалов не получится. С его помощью склеивают стыки между полосами или частями отражающей теплоизоляции, превращая тем самым утепляемое помещение в настоящий термос.

Алюминиевый скотч фото

Подводя итоги всему вышенаписанному, можно сказать только одно – отражающая теплоизоляция с одной стороны штука довольно полезная, а с другой требующая осторожного подхода. На мой взгляд, намного лучше использовать стандартный подход к утеплению – паропроницаемую минеральную вату или ее базальтовый аналог.

Автор статьи Александр Куликов

stroisovety.org

Современные теплоизоляционные материалы.

В настоящее время, трудно себе представить какое либо жилое помещение без теплоизоляционных материалов. Теплоизоляционные материалы не только сохраняют оптимальную температуру в вашем доме, они еще помогают вам экономить деньги за счет того, что вам придется меньше отапливаться в зимнее время. Сейчас, на строительном рынке существуют множество самых различных теплоизоляционных материалов. Как правило, у каждого из них есть свои особенности и недостатки.

В основном теплоизоляционные материалы по способу теплоизоляции делятся на два вида: отражающая теплоизоляция и соответственно не отражающая. К отражающей теплоизоляции относятся материал, который за счет своих уникальных свойств отражает тепло, тем самым не дает ему выйти из помещения. К не отражающим относится материал, который практически не пропускает через себя тепло, тем самым сохраняя его в нужном месте. По своему составу такой утеплитель делится на органический и не органический.

К неорганической теплоизоляции можно отнести: стекловату, минеральную вату, пенно стекло, пенно бетон и минерала ватные плиты. В основном такую теплоизоляцию производят из базальтовых расплавов. Как правило, она не горюча, устойчива к высоким температурам, обладает высокими теплоизолирующими свойствами. Но есть у нее и недостаток. В основном неорганические теплоизоляционные материалы чрезмерно впитывают влагу, поэтому их необходимо обрабатывать специальным составом. Еще они сильно подержанны усадке.

На сегодняшний день самым популярным из неорганических теплоизоляционных материалов является пеностекло. Пеностекло, это, пожалуй, самый уникальный и перспективный теплоизоляционный материал. Оно, также как и самое обычное стекло не горит, совершенно не токсично, не впитывает влагу и совершенное не стареет. Благодаря своей технологии производства пеностекло имеет отличные теплоизоляционные характеристики, оно не подвержено механическим повреждениям, а срок его службы составляет не менее 100 лет.

Еще одним неорганическим теплоизоляционным материалом является пенно бетон. Пено бетон обладает практически такой же прочностью, как и обычный бетон, но имеет более высокие теплоизоляционные свойства. К тому же он гораздо легче обычного бетона. Как правило, пена бетон применяют для строительства небольших одноэтажных помещений.

К органическим теплоизоляционным материалам относятся: пенополистирол, пенополиуретан, пенополиэтилен, фольгированная теплоизоляция и так далее.

Пенополистирол это очень легкий материал. Как правило, он изготавливается путем вспенивания гранул полистирола нагретым воздухом или паром. Он имеет ячеистую структуру и на 90 процентов состоит из воздуха. Так как воздух является неплохим теплоизолятором, то пенополистирол отлично справляется со своей функцией теплоизолятора. В простонародье пенополистирол еще называют просто пенопласт. Пенопласт практически не горит, не портится со временем и совсем не впитывает влагу. Единственным минусом этого теплоизоляционного материала является то, что он достаточно хрупкий и может сломаться при небольшом воздействии физической силы. Ну а в целом пенополистирола неплохой теплоизоляционный материал, который часто используется в строительстве как жилых, так и любых других помещений.

Пенополиэтилен это полиэтилен, который вспенивают с помощью газа, а именно бутана. По своим свойствам Пенополиэтилен чем-то похож на пенопласт, но в отличие от него он очень прочен, гибок и его очень трудно сломать. Он так же как и пенопласт, практически не впитывает воду, совершенно не токсичен и имеет отличные теплоизоляционные качества. Также производство пенополиэтилена немного дешевле, чем производство других теплоизоляционных материалов. Все это делает пенополиэтилен самым практичным и распространенным теплоизоляционным материалом и его использование при утепление дома дает гарантированное тепло. Также на его основе изготавливается другой теплоизоляционный материал под названием ”фольгированная теплоизоляция”. Она изготавливается путем термического присоединения к пенополиэтилену алюминиевой фольги. Алюминиевая фольга припаивается с обеих сторон пенополиэтилена, тем самым его теплоизоляционные свойства повышаются в несколько раз. Благодаря алюминиевой фольге, тепло не проходит и отталкивается от теплоизоляции, тем самым создается так называемый эффект термоса. Фольгированная теплоизоляция является сравнительно новым теплоизоляционным материалом, который стремительно завоевывает строительный рынок.

Еще одним органическим теплоизоляционным материалом является пенополиуретан. Пенополиуретан, так же как и пенополистирол и пенополиэтилен относится к ряду пенопластов, то есть газонаполненного пластмасса. Его получают при реакции полиизоционата и жидкого полиола. Он также имеет ячеистую структуру и на 95 процентов состоит из воздуха. Благодаря тому, что его получают при реакции двух компонентов, его можно наносить или же распылять еще в жидком виде в труднодоступные места. Он также имеет большой срок службы и не подвержен механическим повреждением, не боится влаги и не плесневеет. Часто пенополиуретаном утепляют канализационные трубы и другую сантехнику.

oborudka.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о