Расчет мини гэс: Гидротехническое бюро — Расчет мощности малых ГЭС

Содержание

Расчеты параметров ГЭС | Малая и микрогидроэнергетика

Для справки.
Теоретическая мощность «идеальной» ГЭС можно посчитать по формуле:

N= p * Q,
где N — мощность, в ваттах
p — давление перед турбиной, в паскалях
Q — расход воды, в м3 в секунду.

Давление 10 метрового столба воды составляет 1 атмосферу или 100 000 паскалей.
1 литр составляет 1/1000 м3

Например,
ГЭС, потребляющая 45 литров в секунду (0,045 м3/сек) и работающая на
перепаде 2 метра (20 000 паскалей), по вышеуказанной формуле может
выдать 900 Ватт.

Реальные турбинные колёса небольших мощностей выдают 30-50% от теоретического значения.

От данной отправной точки можно строить свои предположения. хватит ли Вам
вашего ручейка только на светодиодные лампочки или всё же на
электроинструмент и бетономешалку…

 

«Бесплотинные ГЭС

— их мощность можно примерно оценить как

N = 120* V(куб)*D (квадрат)

где N — мощность, ватт, V- скорость течения, в метрах в секунду, а D — диаметр колеса, в метрах.

Это
— для хорошо сделанного винта. Для колес по типу старых водяных мельниц
мощность считается по площади сечения лопаток, которая омывается водой.

Как
мне кажется, безплотинные ГЭС можно использовать при скоростях где-то
от 0,7-1 м/с, а такие скорости в центральной России встречаются довольно
редко (почти нигде). А если и встречаются, то там может оказаться
мелко. То есть, должно крупно повезти, чтобы была возможность
пользоваться такой установкой. Но я, например, знаю людей, которым
повезло.»

http://ecovillage.narod.ru/energy/energy.htm

За правильность формулы не ручаюсь (она, в отличии от плотинной ГЭС скорее эмпирическая), но сайт вполне адекватный.

Путём
модельного расчёта при скорости течения в 1 м/c (бОльшие скорости —
скорее экзотика для большинства рек) получаем на 1 кВт мощности станции
диаметр колеса ГЭС в 2,9 метра.

А вот если Вам повезло и скорость
течения у Вас в ручье уже хотя бы 2 м/с, то диаметр колеса киловаттной
станции ужмётся до 1 метра. Можно и плотину не ставить — а просто отобрать достаточный для Вашей ГЭС поток воды в обычную трубу.

Называется всё это чудо «Деривационная ГЭС».

Вот схемка: http://bse.sci-lib.com/particle007175.html

Используются
такие ГЭС в основном в горных районах, где, кроме функции получения
электроэнергии, служат ещё и для регуляции паводкового и ливневого

стока.

Например, на Западной Украине сейчас, по моим сведениям,
стоит брошенными около 70 малых ГЭС, построенных во время Сталина. При
желании могу найти человека с явками и паролями для интересующихся
возродить там любую из таких ГЭС.

На формулу расчёта мощности
способ подвода воды к гидроагрегату влияния не оказывает. Скорее, подвод
в трубе немного уменьшит напорный уровень ГЭС за счёт трения воды в
трубе.

Охрана подающих труб, безусловно, находится в ведении владельца ГЭС.

Так, например, при уклоне в 5% длина подводящего канала деривационной ГЭС с перепадом в 2 метра составит 40 метров.  Проблема в том, реки обычно не текут «по уклонам», а уже заранее выбрали весьма извилистые пути с минимальными уклонами.

Например,
в районе Днепропетровска река Днепр имеет отметку +51 метр при
расстоянии от устья в 480 км. А теперь посчитайте уклон в процентах…

И такую ситуацию Вы получите в 95% малых рек и ручьёв в европейской части России и Украины — за исключением Карпат и Кавказа.

 

Напорные Гидростанции для водосбросов, горных ручев, и рек произведено в России

 Гидроагрегаты для малых ГЭС предназначены для эксплуатации в широком диапазоне напоров и расходов с высокими энергетическими характеристиками. Наиболее ответственные узлы  под контролем наших специалистов серийно изготавливаются на конверсионных оборонных заводах с использованием новейших технологий, что позволяет обеспечить их высокое качество. В комплект поставки входят: турбина, генератор  и система автоматического управления.

 МикроГЭС — надежные, экологически чистые, компактные, быстроокупаемые источники электроэнергии для деревень, хуторов, дачных поселков, фермерских хозяйств, а также  мельниц, хлебопекарен, небольших производств в отдаленных, горных и труднодоступных районах, где нет поблизости линий электропередач, а строить такие линии сейчас и дольше, и дороже, чем приобрести и установить МикроГЭС.

    Гидростанция состоит из: водозаборного устройства, водовода, энергоблока, выпускного коллектора  и устройства автоматического регулирования, для малых мощностей система АКБ и инвертор.

Типы станций:

• Сетевые — электроэнергия генерируется сразу в существующую сеть с использованием устройство автоматического регулирования. Как правило применяется для станций большой мощности. 

• Накопительные — электроэнергия  накапливается на аккумуляторах, инвертором преобразуется в AC 220/380В. Используется для станций малой мощ от 0,3 кВт. Собирает энергию на АКБ в течении всего дня, с помощью инвертора позволяет получать требуемые мощности.

Типы применяемых турбин:

  • пропеллерные
  • ковшовые (Pelton)
  • диагональные
  • радиально осевые 
  • Turgo


 Имеется успешный опыт эксплуатации оборудования на перепадах уже существующих плотин, рек, каналов, систем водоснабжения и водоотведения промышленных предприятий и объектов городского хозяйства, очистных сооружений, оросительных систем и питьевых водоводов.

 Оборудование изготавливается серийно, отличается высокими технико-эксплуатационными показателями и доступными ценами.

расчет и успешная реализация проекта в фермерском хозяйстве.

Как была успешно реализована идея получать энергию от сливной трубы. Однажды фермеру из Карачаево-Черкесской республики пришла в голову такая замечательная идея. Из искусственного пруда, расположенного на склоне горы (предназначенного для разведения рыбы), через две трубы вытекает вода. Трубы длиной 50 м имеют диаметр 50 см, закопаны в склоне горы таким образом, что перепад высоты от уровня пруда до этих труб составляет 14 м. Расход воды доходит до 100 л/с.

Чтобы минимизировать затраты, были найдены: редуктор от косилки, металлическая катушка от кабеля, трехфазный генератор, отслужившие свой век и выброшенные, но еще вполне пригодные.

Потребности фермера в электрической энергии были преимущественно промышленными: электроинструмент, сварочное оборудование, инкубатор, промышленный сепаратор. Бытовые нужды, такие как телевизор или освещение, существенно меньше по мощности и востребованы в совсем другое время.

Рассчитав мощность потока падающего мини-водопада, получили следующее:

N= QH = 9,8м/с2*100л/с*14м = 13,7 кВт

Естественно, что вода, которая движется по трубе, уменьшает скорость из-за трения, кроме того уменьшение мощности обусловлено потерями в гидроколесе, генераторе, редукторе. В итоге, реальная мощность составила 4,6 кВт.

Водоналивное колесо было сделано из металлического барабана с диаметром 2,2 м (от кабеля). Барабан был разрезан, переварен, сделано расстояние между щечками в 300 мм. Вварены 18 перегородок под углом 45 градусов, заменены подшипники.

На гидроколесе смонтировали цепной редуктор, имеющий коэффициент передачи 4. С помощью карданного вала от Жигулей вращение от гидроколеса передается в помещение микро ГЭС. Здание станции сделали из пятитонного контейнера, внутри которого был установлен на станине редуктор, имеющий коэффициент 40 и трехфазный генератор, имеющий скорость вращения до 3000 об/мин.

Сбоку от генератора установлено компаундирующее устройство для регулировки тока возбуждения. В качестве блоков управления взяты блоки от старой кормодробилки. От микрогэс к фермерскому хозяйству была протянута линия эдектропередач длиной 150 м.

Таким образом, идея создания установки, работоспособной и несложно по конструкции, была реализована. Надеемся, что она окажется полезна читателям этой статьи.

Автономная мини-гидроэлектростанция (ГЭС) своими руками

Сила водного потока – это возобновляемый природный ресурс, позволяющий получать практически бесплатное электричество. Подаренная природой энергия предоставит возможность сэкономить на коммунальных услугах и решить проблему с подзарядкой техники.

Если рядом с вашим домом протекает ручей или река, ими стоит воспользоваться. Они смогут обеспечить электроэнергией участок и дом. А уж если построена гидроэлектростанция своими руками, экономический эффект возрастает в разы.

В представленной статье детально описаны технологии изготовления частных гидротехнических сооружений. Мы рассказали о том, что потребуется для устройства системы и подключения ее к потребителям. У нас вы узнаете о всех вариантах миниатюрных поставщиков энергии, собранных из подручных материалов.

Содержание статьи:

Гидроэлектростанции непромышленного назначения

Гидроэлектростанции – это сооружения, способные преобразовать энергию движения воды в электричество. пока активно эксплуатируются только на Западе. На территории нашей страны эта перспективная отрасль лишь делает первые робкие шаги.

Галерея изображений

Фото из

Получение электроэнергии при извлечении потенциала воды — одно из перспективных направлений «зеленой» энергетики. Ее плюсы заключаются в использовании неисчерпаемых бесплатных ресурсов планеты с нанесением наименьшего ущерба природной обстановке

К объектам, задействованным в сфере малой гидроэнергетики, относятся мини гидроэлектростанции, вырабатывающие от 3-100 кВт до 25 МВт

Для получения электричества при использовании энергии воды необязательно наличие бурной горной реки или сооружение большой плотины. Достаточно сузить русло небольшой речки или ручья

Турбину небольшой гидроэлектростанции сможет заставить вращаться даже относительно небольшой по объему канал, в который вода поступает из близлежащего водоема или речки

Небольшие ГЭС, устроенные прямо в потоке воды просты, но не позволяют регулировать силу и объем стока. Возможность регулировки обеспечит миниатюрное водохранилище

Наиболее перспективными для организации мини ГЭС являются горные ручьи с характерной разницей высот в русле. Однако подобные условия можно создать и для речки, текущей по равнинной местности

Повысить производительность миниатюрной ГЭС помогут всевозможные водообороты и завихрения, которые можно соорудить искусственно, путем заливки бетонных конструкций

Для увеличения КПД разработчиками малых гидроэлектростанций усовершенствуются турбины. К примеру, обычное колесо с лопастями заменяется многовитковым шнеком

Использование воды для получения электроэнергии

Один из традиционных вариантов малой гидроэнергетики

Сужение канала для извлечения энергии

Устройство направленного на лопасти канала

Приплотинный вариант с небольшим водохранилищем

Разница высоты в русле ручья или речки

Искусственно сооруженное завихрение

Шнековый тип турбины с повышенным КПД

Небольшими частными гидроэлектростанциями могут быть плотины на больших реках, вырабатывающие от десятка до нескольких сотен мегаватт или мини-ГЭС с максимальной мощностью в 100 кВт, которых вполне достаточно для нужд частного дома. Вот о последних и узнаем подробней.

Гирляндная станция с гидровинтами

Конструкция состоит из цепи роторов, закрепленных на гибком стальном тросе, перетянутом поперек реки. Сам трос исполняет роль вращательного вала, один конец которого фиксируется на опорном подшипнике, а второй – активирует вал генератора.

Каждый гидроротор «гирлянды» способен вырабатывать около 2 кВт энергии, правда, скорость водного потока для этого должна быть не менее 2,5 метров в секунду, а глубина водоема не превышать 1,5 м.

Принцип действия гирляндной ГЭС прост: напор воды раскручивает гидровинты, а те вращают трос и заставляют генератор вырабатывать энергию

Гирляндные станции с успехом использовались еще в середине прошлого века, но роль винтов тогда играли самодельные пропеллеры и даже консервные банки. Сегодня же производители предлагают несколько видов роторов для различных условий эксплуатации.

Они комплектуются лопастями разного размера, изготовленными из листового металла, и позволяют получить максимальный КПД от работы станции.

Но хотя в изготовлении этот гидрогенератор достаточно прост, его эксплуатация предполагает ряд специальных условий, не всегда осуществимых в реальной жизни. Такие сооружения перегораживают русло реки, и вряд ли соседи по берегу, не говоря уже о представителях экологических служб, разрешат использовать энергию потока для ваших целей.

Кроме того, в зимний период установку использовать можно только на незамерзающих водоемах, а в условиях сурового климата – консервировать или демонтировать. Поэтому гирляндные станции возводятся временно и преимущественно в безлюдной местности (например, около летних пастбищ).

Роторные станции мощностью от 1 до 15 кВт/час вырабатывают до 9,3 МВт за месяц и позволяют самостоятельно решить проблему с электрификацией в регионах, отдаленных от централизованных магистралей

Современный аналог гирляндной установки – погружные или наплывные рамные станции с поперечными роторами. В отличие от своей гирляндной предшественницы, эти конструкции не перегораживают всю реку, а задействуют только часть русла, причем установить их можно на понтоне/плоте или вовсе опустить на дно водоема.

Вертикальный ротор Дарье

Ротор Дарье – устройство турбины, которое получило название в честь своего изобретателя в 1931 г. Система состоит из нескольких аэродинамических лопастей, зафиксированных на радиальных балках, и работает за счет перепада давления по принципу «подъемного крыла», который широко задействован в кораблестроительстве и авиации.

Хотя такие установки больше используются для создания ветрогенераторов, они могут работать и с водой. Но в этом случае нужны точные расчеты, чтобы подобрать толщину и ширину лопастей в соответствии с силой водного потока.

Ротор Дарье напоминает «ветряк», только установленный под водой, причем работать он может вне зависимости от сезонных колебаний скорости потока

Для создания локальных гидростанций вертикальные роторы используется редко. Несмотря на неплохие показатели КПД и кажущуюся простоту конструкции, оборудование достаточно сложное в эксплуатации.

Перед началом работы систему нужно «раскрутить», зато и остановить запущенную станцию сможет только замерзание водоема. Поэтому используется ротор Дарье преимущественно на промышленных предприятиях.

Интересное решение в сфере проектирования малых ГЭС с вертикально работающей турбиной предложил австрийский изобретатель Франц Цотлётерер:

Галерея изображений

Фото из

Мини станция водоворотно-гравитационного действия

Сооружение отдельного канала с водоворотом

Турбина в центре вращения

Устройства для сбора вырабатываемой энергии

Веским плюсом водоворотных станций вполне обоснованно считается сохранение рыбных ресурсов. Работа вертикальной турбины не наносит вреда живым организмам реки. К тому же на стенках сооружений не задерживается тина из-за специфического движения потока воды.

Подводный винтовой пропеллер

По сути, это самый простой воздушный ветряк, только устанавливается он под водой. Размеры лопастей, чтобы обеспечить максимальную скорость вращения и минимум сопротивления, рассчитываются в зависимости от силы движения потока. Например, если скорость течения не превышает 2 м/сек, то ширина лопасти должна быть в пределах 2-3 см.

Подводный пропеллер несложно сделать своими руками, но он подходит только для глубоких и быстрых рек – на мелком водоеме вращающиеся лопасти могут нанести травмы рыбакам, купальщикам, водоплавающим птицам и животным

Такой ветряк устанавливается «навстречу» потоку, но его лопасти работают не за счет давления водного напора, а благодаря возникновению подъемной силы (по принципу самолетного крыла или винта корабля).

Водяное колесо с лопастями

Водяное колесо – один из простейших вариантов гидравлического двигателя, известный еще со времен Римской Империи. Эффективность его работы во многом зависит от типа источника, на котором его установили.

Подливное колесо может вращаться только благодаря скорости потока, а наливное – с помощью напора и веса воды, ниспадающей сверху на лопасти

В зависимости от глубины и русла водотока можно установить различные типы колес:

  • Подливные (или нижнебойные) – подойдут для мелководных рек с быстрым течением.
  • Среднебойные – располагаются в руслах с природными каскадами так, чтобы поток попадал приблизительно на середину вращающегося барабана.
  • Наливные (или верхнебойные) – устанавливаются под плотиной, трубой или в нижней части естественного порога, чтобы ниспадающая вода продолжила путь через вершину колеса.

Но принцип работы у всех вариантов один и тот же: вода попадает на лопасти и приводит в действие колесо, которое заставляет вращаться генератор для миниэлектростанции.

Производители гидрооборудования предлагают готовые турбины, лопасти которых специально адаптированы под определенную скорость водного потока. Но домашние умельцы изготавливают барабанные конструкции по старинке – из подручных материалов.

Ознакомиться с шагами сооружения простейшего варианта мини ГЭС поможет следующая фото-подборка:

Галерея изображений

Фото из

Шаг 1: Сужение русло и формирование перепада

Шаг 2: Раскрой деталей для сборки турбины

Шаг 3: Фиксация лопастей в самодельной турбине

Шаг 5: Установка опоры в русле ручья

Шаг 5: Установка турбины на опорную конструкцию

Шаг 6: Подключение генератора и аккумуляторов

Шаг 7: Устройство ременной передачи

Шаг 8: Тестирование устройства после сборки

Возможно, отсутствие оптимизации отразится на показателях КПД, зато себестоимость самодельного оборудования обойдется в разы дешевле покупного аналога. Поэтому водяное колесо наиболее популярный вариант для организации собственной мини-ГЭС.

Условия для установки гидроэлектростанции

Несмотря на заманчивую дешевизну энергии, вырабатываемую гидрогенератором, важно учесть особенности водного источника, ресурсы которого вы планируете задействовать для собственных нужд.

Ведь далеко не каждый водоток подойдет для эксплуатации мини-ГЭС, тем более круглогодичной, поэтому не помешает иметь в резерве возможность подключения к централизованной магистрали.

Несколько «за» и «против»

Основные плюсы индивидуальной гидроэлектростанции очевидны: недорогое оборудование, которое вырабатывает дешевое электричество, да еще и природе не вредит (в отличие от плотин, перекрывающих ток реки). Хотя абсолютно безопасной систему назвать нельзя – все-таки вращающиеся элементы турбин могут нанести травмы жителям подводного мира и даже людям.

Чтобы предупредить несчастные случаи, гидростанцию нужно оградить, а если система полностью скрыта водой – установить на берегу предупреждающий знак

Преимущества мини-ГЭС:

  1. В отличие от других «бесплатных» энергоисточников (солнечных батарей, ветрогенераторов), гидросистемы могут работать вне зависимости от времени суток и погоды. Единственное, что может им помешать – замерзание водоема.
  2. Для установки гидрогенератора необязательно наличие большой реки – те же водяные колеса с успехом можно использовать даже в мелких (но быстрых!) ручьях.
  3. Установки не выделяют вредных веществ, не загрязняют воду и работают практически бесшумно.
  4. Для монтажа мини-ГЭС мощностью до 100 кВт не нужно оформлять разрешительную документацию (хотя все зависит от местных властей и типа установки).
  5. Избыток электричества можно продавать в соседние дома.

Что касается недостатков – серьезной помехой для продуктивной эксплуатации оборудования может стать недостаточная сила течения. В этом случае придется возводить вспомогательные сооружения, что сопряжено с дополнительными затратами.

Если потенциальной энергии расположенной рядом реки при приблизительном расчете не хватит на выработку электричества в объеме, достаточном для практического применения, стоит обратить внимание на . Ветряк послужит эффективным дополнением.

Измерение силы водного потока

Первое, что нужно сделать, чтобы задуматься о виде и способе монтажа станции, – измерить скорость водного потока на облюбованном источнике.

Самый простой способ – опустить на стремнину любой легкий предмет (например, теннисный мячик, кусок пенопласта или рыбацкий поплавок) и засечь секундомером время, за которое он проплывет расстояние до какого-нибудь ориентира. Стандартная дистанция для «заплыва» – 10 метров.

Если водоем находится далековато от дома, можно построить отводной канал или трубопровод, и заодно и позаботиться о перепадах высоты

Теперь нужно пройденное расстояние в метрах разделить на количество секунд – это и будет скорость течения. Но если полученное значение будет меньше 1 м/сек, потребуется возвести искусственные сооружения, чтобы ускорить поток перепадами высот.

Это реально осуществить с помощью разборной плотины или неширокой сливной трубы. Но без хорошего течения от идеи с гидростанцией придется отказаться.

Изготовление ГЭС на основе водяного колеса

Разумеется, собрать «на коленке» и возвести махину, предназначенную для обслуживания предприятия или населенного пункта даже из десятка домов – идея из области фантастики. Но соорудить своими руками мини-ГЭС для экономии электричества – вполне реально. Причем задействовать можно как готовые комплектующие, так и подручные материалы.

Поэтому рассмотрим пошагово изготовление наиболее простого сооружения – водяного колеса.

Необходимые материалы и инструменты

Чтобы сделать своими руками мини-ГЭС, нужно подготовить сварочный аппарат, болгарку, дрель и набор вспомогательных инструментов – молоток, отвертку, линейку.

Из материалов понадобятся:

  • Уголки и листовой металл толщиной не менее 5 мм.
  • Трубы из ПВХ или оцинкованной стали для изготовления лопастей.
  • Генератор (можно использовать готовый покупной или сделать самому, как в данном примере).
  • Тормозные диски.
  • Вал и подшипники.
  • Фанера.
  • Полистироловая смола для заливки ротора и статора.
  • Медный провод на 15 мм для самодельного генератора.
  • Неодимовые магниты.

Учтите, что конструкция колеса будет постоянно контактировать с водой, поэтому металлические и деревянные элементы необходимо выбирать с защитой от влаги (или позаботится об их пропитке и покраске самостоятельно). В идеале, фанеру можно заменить пластиком, но деревянные детали проще достать и придать им нужную форму.

Сборка колеса и изготовление сопла

Основой для самого колеса могут стать два стальных диска одинакового диаметра (если есть возможность достать стальной барабан от кабеля – отлично, это намного ускорит процесс сборки).

Но если металла в подручных материалах не нашлось, можно вырезать круги и из водостойкой фанеры, хотя прочность и срок службы даже обработанного дерева не сравнится со сталью. Затем на одном из дисков нужно прорезать круглое отверстие под установку генератора.

После этого изготавливаются лопасти, а их понадобится не меньше 16 шт. Для этого оцинкованные трубы разрезаются вдоль на две или четыре части (зависит от диаметра). Затем места резки и саму поверхность лопастей нужно отшлифовать, чтобы уменьшить потери энергии при трении.

Лопасти устанавливаются под наклоном примерно в 40-45 градусов – это поможет увеличить площадь поверхности, на которую будет воздействовать сила потока

Расстояние между двумя боковыми дисками должно быть максимально приближено к длине лопастей. Чтобы наметить место для расположения будущих ступиц, рекомендуется сделать шаблон из фанеры, на котором будет обозначено место для каждой детали и отверстия для фиксации колеса к генератору. Готовую разметку можно прикрепить на внешней стороне одного из дисков.

Затем круги устанавливаются параллельно друг к другу с помощью стержней со сплошной резьбой, а лопасти привариваются или фиксируются болтами в нужных позициях. Барабан будет вращаться на подшипниках, а в качестве опоры используется рама из уголков или труб небольшого диаметра.

На этом этапе сборку барабана можно считать законченной, осталось оснастить его самодельным генератором и соплом, направляющим поток воды

Сопло предназначено для водных источников каскадного типа – такая установка позволит использовать энергию потока по максимуму. Изготавливается этот вспомогательный элемент путем выгибания листового металла с последующей сваркой швов, а после насаживается на трубу.

Однако если в вашей местности протекает равнинная река без порогов и других высотных препятствий, в этой детали нет необходимости.

Важно, чтобы ширина выходного отверстия сопла соответствовала ширине самого колеса, иначе часть потока будет идти «вхолостую», не попадая на лопасти

Теперь колесо нужно насадить на ось и установить на подпорку из сваренных или скрепленных болтами уголков. Осталось сделать генератор (или установить готовый) и можно отправляться к реке.

Генератор своими руками

Для изготовления самодельного генератора нужно сделать обмотку и заливку статора, для чего понадобятся катушки со 125-ю витками медной проволоки на каждой. После их соединения вся конструкция заливается полиэстеровой смолой.

Каждая фаза состоит из трех последовательно прикрепленных мотков, поэтому соединение можно сделать в форме звезды или треугольника с несколькими наружными выводами

Теперь нужно подготовить фанерный шаблон, совпадающий по размерам с тормозным диском.

На деревянном кольце выполняется разметка и делаются прорези для установки магнитов (в данном случае использовались неодимовые магниты толщиной 1,3 см, шириной 2,5 см и длиной 5 см). Затем полученный ротор также заливается смолой, а после просушки – присоединяется к барабану колеса.

Водяное колесо с ротором из тормозных дисков и генератором из мотков медной проволоки – окрашенное, презентабельное и готовое к эксплуатации

Последним монтируется алюминиевый кожух с амперметром, закрывающий выпрямители. Задача этих элементов – преобразовывать трехфазный ток в постоянный.

После установки колеса в поток небольшой речки с каскадом или отводной трубой, можно рассчитывать на производительность мини-ГЭС в 1,9А * 12В при 110 оборотах за минуту

Чтобы в колесо не попадали листья, песок и другой мусор, принесенный с потоком, желательно поставить перед устройством защитную сетку.

Также можно поэкспериментировать с зазорами между магнитами и катушками с увеличенным количеством витков для увеличения КПД гидростанции.

О всех видах вы узнаете, ознакомившись со статьей, посвященной внедрению в быт “зеленых технологий”.

Выводы и полезное видео по теме

Видео #1. Пример работающей гидроустановки с самодельным генератором на базе трехфазного двигателя:

Видео #2. Мини-ГЭС, сконструированная по принципу водяного колеса:

Видео #3. Станция на основе велосипедного колеса – интересный вариант решения проблемы с энергообеспечением на отдыхе вдали от цивилизации:

Как видите, построить водяную миниэлектростанцию своими руками не так уж и сложно. Но так как большинство расчетов и параметров для ее комплектующих определяется «на глазок», следует быть готовым к возможным поломкам и сопутствующим затратам.

Если вы чувствуете нехватку знаний и опыта в данной сфере, стоит довериться специалистам, которые выполнят все необходимые расчеты, посоветуют оптимальное для вашего случая оборудование и качественно произведут его установку.

Пишите, пожалуйста, комментарии в расположенном ниже блоке. Делитесь интересными сведениями и полезными рекомендациями, оставляйте тематические фото. Возможно, вы хотите рассказать, как соорудили собственными руками действующую гидроэлектростанцию на загородном участке? Будем рады прочитать ваш рассказ о процессе устройства и эксплуатации.

Гидроэнергетика нового поколения — Энергетика и промышленность России — № 17 (301) сентябрь 2016 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 17 (301) сентябрь 2016 года

Их применение будет не только новаторским, но и достаточно эффективным.

Из основных возобновляемых источников энергии – водного, воздушного (ветрового) и солнечного – первый был и будет самым надежным, эффективным, доступным, дешевым. Генерация на его основе будет развиваться активнее, особенно в кризисных ситуациях. Два остальных возобновляемых источника (солнце и воздух) могут быть дополнением к гидроэнергетике нового типа при комбинированных энергокомплексах типа гидро-гелио-пневмоЭС. По отдельности сегодня их разработка технически сложна и дорогостояща, малодоступна для рядового потребителя в отдаленных от центра территориях.

Использование воды

Океаны, моря, реки и другие водоемы занимают большую часть планеты. Вода содержит в себе колоссальную энергию, даже если взять только кинетическую энергию движущейся воды, то есть течения, приливы, силу волн, естественные или искусственные потоки. Энергию рек люди стали использовать давно, начиная с водяных мельниц (деревянных норий, 5000 лет назад в Сирии) и кончая гигантскими гидроэлектростанциями ХХ века.

В ХХI веке появились новые технологии использования малых потоков рек (с расходом от 3‑5 м3 /сек для малых плотинных ГЭС). Появляются уже гидроустановки, получающие электроэнергию от сверхмалых потоков (низкопотенциальных, от 20 литров /сек), с большими возможностями по мощностям (до 100 кВт) и от искусственно созданных потоков, так называемых «кинетических гидроколец» (эти установки, по аналогии с механическими типами кинетических колец, мы назвали «гидроколлайдерами»).

Появляется и генерация энергии с помощью комбинированных систем в стоячих водоемах или в искусственных бассейнах. Технология позволит обеспечить потребителя почти в любой отдаленности от центральных энергосистем. Главное в этой технологии регенерации энергии – это использование динамики потоков или гидроимпульсов.

Создается новая энергетика – «индивидуальная», где генерация и потребление максимально сближены и обеспечивают потребителя и соседей собственной энергией по схеме взаимовыручки, в отличие от традиционных видов генерации, энергию которых надо доставлять через сотни километров.

Если рационально использовать гидроресурсы, то потенциал гидроэнергетики, особенно малой, без плотин и микро-ГЭС, к 2030 году может превысить 70 процентов от общей энергетики. Простота и доступность индивидуальной энергетики, в т. ч. и микро-ГЭС, снизит потребление энергии ветра и солнца как неудобные и чрезмерно затратные для общего пользования, а уж зависимость от топливной энергетики и подавно резко уменьшится.

В использовании течений морей, приливов и силы волн человечество пока делает робкие шаги, хотя многие страны буквально тонут в мировом океане.

Надо эффективно и рационально использовать возможности воды, а не создавать гидросистемы, заранее обрекая полученную энергию на дороговизну. Имеются в виду каскады плотин на реках и затопление земель.

Неосуществленный проект

В России у изобретателей появляются щадящие технологии использования силы рек и моря, есть проекты, которые позволят получать энергию даже после сноса плотин и спуска водохранилищ.

Страны ЕС намерены использовать ветроэнергетический потенциал Северного моря. Девять европейских стран, включая Нидерланды, Норвегию и Швецию, подписали программу действий по укреплению энергетического сотрудничества в Северном море. Они будут вести сотрудничество в следующих направлениях: планирование и использование морского пространства; создание электросетей, способных принять большое количество энергии от ветровых электростанций; обмен информацией; признание энергетических стандартов друг друга, – что позволит с минимальными затратами использовать богатый ветроэнергетический потенциал региона Северного моря.
Эффективней было бы использовать водный потенциал перечисленных стран и уже попутно – ветровой.

Например, был один из оригинальных проектов, предложенный в начале 80-х годов ХХ века испанским инженером Феликсом Канью и незаслуженно забытый: строительство донной ж /б плотины для подводной ГЭС в северной части Гибралтарского пролива.
Океанологи определили, что вдоль марокканского побережья из Атлантического океана в Средиземное море «вливается» поверхностным течением около 100  000 м3 воды в секунду, а у берегов Испании в океан движется придонный поток в обратном направлении.
Энергию этой мощной донной реки и предложил использовать Феликс Канью, для этого надо было построить железобетонную плотину, в пропускных арках которой должны были разместиться электрогенераторы горизонтального типа. Но стройка века не состоялась из‑за сложности возведения подводной бетонной плотины, хотя гидротурбины, говорят, уже были созданы фирмами Англии. Несмотря на сложность и дороговизну строительства, донные морские плотины гораздо экологичнее и эффективнее, чем речные поперечные гравитационные, т. к. не требуют подпора воды, затопления земель и строительства пропускных шлюзов.

Варианты донной плотины

Хотя европейские энергетические фирмы и охладели к крупным подводным плотинам из‑за сложности и дороговизны их возведения, но если предлагаемые новые современные технологии их возведения снизят цену наполовину, то, возможно, некоторые потребители (страны) обратят внимание на эти сооружения, т. к. по мощности донные плотинные ГЭС не будут уступать речным гидроэлектростанциям или целым каскадам речных ГЭС и в то же время не отнимают места на суше.

Автор позволит себе предложить свои варианты донной морской плотины, на его взгляд, более технологичные и экономичные, а значит, реальные в осуществлении.

Подобные плотины можно возводить всюду, где есть постоянные донные течения, даже на течении Гольфстрим, у берегов Флориды, в проливе Лаперуза (скорость течения 4,5 м /сек), в проливах Англии и Шотландии, Кореи и Японии, где скорости от 3 м /сек.

Так как проект Ф. Канью был предложен для Испании, то и рассмотрим вариант именно для этого региона. Вдоль южного побережья средиземноморской Испании, от Гибралтара и далее на восток, необходимо выбрать благоприятное дно, примерно около 1‑1,5 километра в море от берега с оптимальными глубинами до 20‑35 метров, с донным течением не менее 2 м /сек.

Под защитой искусственной дамбы у берега можно создать искусственную бухту (по той же технологии, что и плотину), где разместятся вспомогательные суда, причалы, полигоны для изготовления необходимых форм и размеров ж /б конструкций, а временная гидро-гелио-ветростанция (предложенная тоже авторами) или малая ГАЭС с импульсными турбинами может дать необходимую энергию для нужд строительства, сборочным цехам и жилым поселениям.

В акватории этой искусственной бухты и начинается монтаж самой плотины, уходящей в глубину от берега, при соблюдении некоторых условий. Возможно, будет необходимо возвести на конце будущей плотины маяк. Если плотина (по одному из вариантов) будет «притоплена» на 7‑8 метров, то маяк определит, где могут проходить маломерные суда и где крупные корабли, а если по гребень плотины выше уровня моря (другой вариант), то он тем более необходим. Маяк устанавливается на искусственном острове, сооруженном из железобетонных колец диаметром от 6 до 12 метров с анкеровкой в дно.

Кольца изготовляются по той же технологии, что и ячеистые контейнеры для тела плотины (методом пневмонабрызга, «мокрый торкрет»). От маяка и идет подготовка ложа будущей плотины по дуге, вогнутой по течению.

Для монтажа плотины пустотелыми конструкциями не обязательно использовать сложные специальные плавсредства. Доставка с берегового полигона ячеистых конструкций может осуществляться с помощью специальных понтонов, а монтаж ведется плавучими кранами, причем транспортировка и засыпка установленных ячеистых конструкций скальным грунтом и подводное бетонирование также могут осуществляться с помощью тех же понтонов, оборудованных бункерами с трубчатыми транспортерами (хоботами), что намного удешевит работы.

Пролив бетоном скального наполнителя и стыков конструкций может также осуществляться с барж бетононасосами. Глубина до 35 метров способствует использованию для контроля легких водолазов и специальных монтажных батискафов.

Во время монтажа в тело плотины по ярусам вставляются специальные блоки с горизонтальными цилиндрическими отверстиями, куда затем монтируются гидротурбины с электрогенераторами.

Для электрогенераторов с гидротурбинами блоки изготовляются отдельно на полигоне. Энергоблок может устанавливаться уже в собранном виде под водой, а если генераторы еще не готовы, то энергоблоки могут монтироваться уже после создания плотины, в пустые ячейки блоков с помощью монтажных батискафов.

Удобно будет, если размеры всех блоков будут, например, равны 2 × 2 × 4 метра, а блоки с генераторами представляют заданных размеров кубы с продольными отверстиями, со специальными пазами и крепежом для монтажа и фиксации сборных энергоблоков. Изгибающаяся в плане форма донной плотины увеличит подпор воды. Увеличится скорость направляемого в отверстия потока и повысится КПД генераторов.

При указанных примерных размерах плотины в ней могут разместиться от 300 до 500 генераторов при мощности одного генератора в 100 кВт, но генераторы могут быть и более мощные, все зависит от силы течения и возможностей строительных фирм.

В случае отказа работы генератора он просто извлекается из бетонного блока с помощью подводного монтажного батискафа и заменяется другим.

Если конфигурация берега Испании позволит построить не одну подобную плотину, то наверняка проблема с недостатком электроэнергии уменьшится или решится полностью, без строительства АЭС, солнечных и ветроэлектростанций. Причем – как для Испании, так и для соседних стран (с помощью экспорта энергии).

Использование нефтяных платформ

Если все‑таки условий для строительства таких конструкций не будет, то автор предлагает оригинальную конструкцию облегченной плотины-«моста», в просветы опор которой помещаются горизонтально-лопастные гидротурбины с вертикальной осью вращения. Такая подводная ГЭС должна быть не меньше по мощности, но пока об этом судить рано, так как это пионерское решение и нигде еще не применялось. На базе горизонтально-лопастных гидротурбин могут создаваться одиночные энергоустановки на морских платформах, в комбинации с ветроагрегатами нового поколения. Здесь могут использоваться списанные или запрещенные нефтяные платформы. Грубый расчет говорит, что одна нефтяная платформа может дать количество энергии, равное четверти выдаваемой Саяно-Шушенской ГЭС. На базе такой энергетики можно строить аквагорода, особенно у тех стран, где есть недостаток земель и большая зависимость от экспорта топлива.
Строительство традиционных ветроэлектростанций на суше уже считается не столь экологичным. Сейчас их стремятся выносить в море, подальше от берега, на искусственные острова, что сильно удорожает вырабатываемую энергию (нужны линии электропередачи).

Донные плотинные ГЭС и автономные донные и плавающие энергоблоки гораздо безопасней и дешевле. Для Испании, имеющей береговую протяженность около 4000 километров, нет необходимости засорять поля традиционными «ветряками» и покрывать гектары земель солнечными батареями, энергия которых почти в четыре раза дороже. Комбинированные системы типа гидро-гелио-пневмоЭС могут решить энергетическую проблему любой страны (условно один метр берега моря или другого водоема, может дать 1‑2 кВт /сек энергии). В нашем проекте солнце и воздух (ветер) являются только стартером и поддержкой работы донных ГЭС морского базирования.

Вернемся к поверхностному течению у берегов Марокко. Грех не использовать и его, при условии если «толщина» скоростного потока не менее полутора-двух метров, а скорость течения не менее 2‑2,5 м / сек. Один поперечный квадратный метр здесь содержит от 30 кВт / сек; при больших скоростях (от 3,5‑4 м / сек) мощность потока доходит до 80 кВт / сек.

ГЭС для поверхностных течений

Авторы могут предложить гидродвигатель и конструкцию ГЭС для условий поверхностных течений, в т. ч. для приливов и отливов (любой глубины, от 1 метра). Единственное условие: в тех местах, где будут помещены гидроустановки, использующие поверхностные потоки, судоходство невозможно, так как ГЭС использует горизонтально расположенные лопасти гидро­двигателя, плавающего или притопленного типа, но для фауны моря они совершенно безопасны. Эта же схема гидротурбин отлично приспособлена к будущим приливным электростанциям (ПЭС нового поколения), не требующих перегораживающих плотин или барьеров, использующих только динамику прилива и отлива.

В отличие от подводных мачтовых ГЭС фирмы «Marine Curent Turbines» (водяные мельницы) и фирмы «SMO Hydrovision» (ГЭС-перевертыши), где лопасти вращаются в вертикальной плоскости, и требуют глубину минимум в 20 метров, предлагаемые ГЭС используют максимально набегающий поток, при любом направлении течения, с глубиной потока от 1,5 метров и выше. Кроме того, эта схема гидротурбин, при некоторой доработке, может использовать волновую энергию моря, там, где волны постоянны по высоте и времени, особенно на мелководье.

Гидростанции поверхностных течений могут быть одиночно плавающие, якорного типа, или стационарные, опирающиеся на дно (виде кольцевого столба диаметром до 12 метров, заполненного скальным грунтом) и с добрым десятком генераторов в машинном помещении, размещенном выше поверхности моря, или в виде «подводного корабля», стоящего на якорях в поверхностном или в погруженном состоянии, и имеющего возможность менять позицию в зависимости от условий течений или ледового состояния.

Для последнего варианта можно использовать списанные подвод­ные лодки или утилизированные ж / д цистерны, но можно и изготавливать на верфях специальные цилиндрические понтоны, заполненные соответствующим оборудованием и отбуксированные к месту эксплуатации. Мощность подобных гироэнергетических комплексов ограничена только количеством генераторов и силой поверхностного потока в море или в реке. Они могут заполнять опустевшие верфи (например, в Хорватии), легко масштабируются, увеличивая общую мощность до огромных размеров.

Вообще, странам, почти полностью омываемым морями, имеющим огромный гидроэнергетический потенциал, странно жаловаться на недостаток энергии.

Гидростанции поверхностных течений могут быть одиночно плавающие, на якорных стоянках или на платформах, которые, развиваясь, могут создавать пространственные конструкции, аквагорода.

Альтернатива гидрогигантам

Предложенные подводные «плотинные» ГЭС, автономные кассетные донные гидроэлектростанции, приливные ГЭС нового поколения, гидроаккумулирующие станции прибрежного базирования и ГЭС для поверхностных течений со временем найдут применение и в России: на Дальнем Востоке, в северных морях и на глубоких местах сибирских рек.

Даже подо льдом – со льда удобней вести ремонт и монтаж донных блоков. Здесь особенно рационально использовать автономные донные энергетические кассетные блоки и плавающие ГЭС на базе подводных лодок или оборудованных цистерн.

Подсчитано, что только 0,1 процента энергии морей может обеспечить 15 миллиардов человек дешевой энергией, без топлива и экзотических генераций.

А если прибавить энергию ветра, солнца и др. безопасную, то цифра «потребителей» увеличится на порядок, надо только помочь изобретателям превратить свои разработки в реальные изделия.

Энергию воды, солнца и ветра не надо добывать, перевозить, перерабатывать, она всюду в избытке, вокруг нас.

Предлагаемый проект – альтернатива гигантским плотинам, перегораживающим реки, и малой плотинной гидроэнергетике. Можно, кстати, строить вдоль рек (есть проект), продольные береговые «плотины» с искусственными быстротоками, которые не требуют затопления земель, так как используют только необходимый для гидротурбин нового поколения динамический расход воды, чем сохраняют судоходство и естественное существование рыбного поголовья.

ГЭС с горизонтальнолопастными турбинами, под мостовыми пролетами, комбинированные с ветровыми турбинами-трансформерами по краям моста, могут найти применение на сибирских реках и на Дальнем Востоке.

Также предлагается защищать берега рек, со слабыми грунтами и с опасными разливами, специальными ж /б цилиндрами с заполнением их местным инертным материалом, а в некоторых блоках размещать особой конструкции гидродвигатели с выдвижными лопастями (гидротурбины-трансформеры).

Эти стенки из «трубчатого шпунта» создают защиту берегов на слабых грунтах, ликвидируют или ослабляют разрушения от разливов и затоплений и дают электро­энергию, сравнимую с существующими малыми плотинными ГЭС. Они могут разместиться по всему руслу реки.
Если защитить, например, наиболее опасные части рек Эльбы и Дуная подобными энергоблоками, то меньше было бы неприятностей от ежегодных разливов, да еще и дополнительно получалась бы электроэнергия, которая окупала бы ежегодные затраты на защиту и восстановление аварийных береговых откосов и сооружений.

Новаторство для возобновляемой энергетики

Сейчас имеются десятки разработок для малой гидроэнергетики (в том числе и в нашем коллективе). Но не секрет, что бесплотинные малые ГЭС на реках, даже на водопадах и донных течениях пока почти не востребованы.

Они дешевле, быстровозводимы, просты в эксплуатации и используют широкий диапазон глубин рек, от 0,15 метра и выше, при единственном условии, что скорость течения должна быть не менее 0,8 м / сек. Но есть разработки мини-ГЭС, действующих даже в «стоячих» водах озер, в искусственно созданных водоемах – так называемые пневмо-ГЭС.

Такие энергокомплексы могут размещаться даже на крышах промышленных зданий, в технических этажах или подвалах. Представьте – индивидуальная ГЭС и тепловая станция на крыше или в подвале здания!

Россия может стать «двигателем» в развитии автономного энергоснабжения высотных сооружений, использующих ВИЭ. Можно не только проектировать и разрабатывать новые конструкции, но и изготовлять их варианты, обеспечивая индивидуальными и автономными типами энерго­установок.

Уже сейчас некоторые высотные здания пытаются обеспечить энергетикой солнечных батарей и традиционных ветроустановок, но для этого часто приходится подгонять архитектуру сооружения под конструкции.

Здесь и могут пригодиться комбинированные системы энергообеспечения, типа гидро-гелио-пневмоЭС, где сравнительно «небольшие» площади солнечных батарей и нетрадиционные типы ветроустановок являются «стартерами» работы ГЭС (нового типа), размещенных на технических этажах или крышах.

Спрос на чистую индивидуальную энергию будет огромен, учитывая нынешнее увлечение высотными зданиями. Создание энергетической компании для «высоток» необходимо уже сейчас – для этого нужно только желание архитекторов сотрудничать с новаторами в области энергетики.

Устройства, предлагаемые авторами, компактны, просты и автономны. Конструкции универсальны, т. е. могут эксплуатироваться и в малых речках, глубиной потока от 0,15 метра, и в больших потоках любой глубины, а также при морских приливах и отливах. Кроме того, испытываются мини-ГЭС типа «гидроколлайдеров», которые могут использовать быстротоки горных рек или работать вообще без естественных речных потоков и даже вдали от них на большом расстоянии. Подобные «гидроколлайдеры» с успехом могут заменить уголь и мазут на тепловых станциях.

Интерес могут представлять также автономные ГЭС, работающие на энергии взрывной волны, используя любые утилизированные взрывчатые вещества или газовое топливо.

Молодежный творческий коллектив – «iзобретатель» из МГУ природообустройства может предоставить свои разработки по этой теме и другим темам в малой гидроэнергетике.

Трекеры — системы ориентации солнечных батарей

Австрийский изобретатель Франц Цотлётерер (Franz Zotlöterer) из местечка Оберграфендорф (Obergrafendorf) придумал необычную схему для малых ГЭС. Его проект называется «Техника водоворота» (Wasserwirbeltechnik), а мини-ГЭС — «Гравитационно-водоворотная станция» .

В целях избежания негативных экологических последствий при сооружении плотинных мини-ГЭС изобретатель предложил часть потока вблизи берега отводить в специальный канал, направляющий воду к плотине.

Плотина представляет из себя бетонный цилиндр, к которому вода подходит по касательной, обрушиваясь в центре в глубину. Так в центре цилиндра образуется водоворот, который и закручивает турбину. Этот тип мини-ГЭС наиболее оптимален для электростанций мощностью до 150 кВт. Хороший КПД появляется начиная с перепада высот 0,7 м.

КПД преобразования энергии падающей воды в такой мини-ГЭС в ток достигает 73%. Экспериментальный образец, установленный на ручье, выработал свыше 50 МВт·ч электричества при рабочем перепаде высот воды 1,3 м и расходе 1 куб.м/сек. Максимальная электрическая мощность такой мини-станции достигает 9,5 кВт.

При действии такой мини-ГЭС скорость вращения турбины низкая и для рыбы, попавшей в водоворот, лопасти колеса опасности не представляют. К тому же лопасти не рассекают воду, а поворачиваются синхронно с водоворотом.

Еще одним экологическим плюсом данного проекта является перемешивание в водовороте загрязнителей и хорошая аэрация воды, что способствует интенсивной работе микроорганизмов, очищающих ее естественным образом.

Водоворот, образующийся в мини-ГЭС, способствует терморегуляции в водоеме — увеличенная площадь контакта воды с воздухом приводит к ее охлаждению летом; зимой ГЭС продолжает работать подо льдом, наиболее плотная вода тяготеет к центру водоворота, по краям цилиндра образуется ледяная корка, которая выступает в роли утеплителя, не дающего слишком сильно охладиться центру.

Стоимость пробного образца мини-ГЭС составила 75 тыс. долл.

aenergy.ru

В Южном Казахстане строится каскад мини-электростанций

Уже третью мини-ГЭС строит в Сарыагашском районе Южно-Казахстанской области ТОО «Келесгидрострой». И останавливаться на достигнутом не собирается – в планах руководства строительство четвертой ГЭС.

– Сейчас ведутся земляные работы: выемка грунта под здание ГЭС и насыпные работы по дамбе, – рассказывает главный инженер ТОО «Келесгидрострой» Азамат Рысжанов.

– Если с финансированием будет все нормально, то к концу 2016 года планируем сдать ГЭС в эксплуатацию.
На данный момент это самая мощная мини-ГЭС в Южно-Казахстанской области – ее номинальная мощность планируется в 3000 кВт. Стоимость проекта превышает 700 млн тенге.
– Оборудование уже выбрали, собираемся закупать немецкое, – говорит Азамат Рысжанов.

– Оно почти в три раза дороже российского, но имеет больший гарантийный срок, более высокий коэффициент полезного действия – до 93–95 процентов, против 85 процентов КПД на российском оборудовании.
Главный инженер ТОО «Келесгидрострой» рассказал, что к проектированию каждой ГЭС необходимо подходить индивидуально. В расчет принимаются многие факторы: рельеф местности, объем воды и ее напор. К примеру, все ГЭС компания строит на реке Келес, но если там, где сейчас ведется строительство ГЭС, воды в реке много, но ее напор слабый, то на запущенной в 2014 году ГЭС «Рысжан», наоборот, воды меньше, а напор сильнее.

Кроме того, место для строительства ГЭС «Рысжан» было выбрано с таким расчетом, что там не было необходимости возводить дамбу – вода по трубе диаметром свыше 1,5 метра с большой высоты самотеком попадает к турбине. Во многом благодаря этому строительство ГЭС «Рысжан» обошлось в 250 млн тенге.

– Сейчас очень большую поддержку оказывает государство, – говорит Азамат Рысжанов. – В частности, к этой станции за счет бюджетных средств – выделили 102 млн тенге – провели подводящий канал, произвели подключение к электросетям.
Кроме того, оборудование для этой ГЭС было приобретено на российских заводах на Урале и в Санкт-Петербурге. Благодаря политике, проводимой Таможенным союзом, предприниматели избежали дополнительных расходов по таможенному оформлению и доставке оборудования.

– В планах у нас создать каскад из пяти мини-ГЭС, – рассказывает Азамат Рысжанов. – Строительство четвертой ГЭС включено в план индустриализации, в зависимости от финансирования приступить к строительству планируется в 2017–2018 годах. А дальше уже посмотрим. Нам интересно построить каскад ГЭС. К примеру, пять ГЭС позволят снабжать электроэнергией довольно большую территорию района.

Свою первую гидроэлектростанцию мощностью 1,3 МВт/ч ТОО «Келесгидрострой» запустило в 2001 году. Во время перебоев с поставками электроэнергии эта ГЭС помогла нескольким тысячам сельчан пережить тяжелое время. Запущенная в прошлом году ГЭС «Рысжан» способна снабжать электроэнергией до восьми тысяч домов.

Сейчас для устранения дефицита электроэнергии в Южно-Казахстанской области строятся различные объекты ВИЭ (возобновляемые источники электроэнергии) – ветровые и солнечные электростанции, малые гидростанции. Причем последние, если полностью задействовать гидропотенциал ЮКО, могут вырабатывать свыше 400 МВт/час.

Так, ученые Южно-Казахстанского государственного университета им. М. Ауэзова в своих расчетах приводят следующие данные. Согласно проведенным исследованиям, полный гидропотенциал Республики Казахстан ориентировочно можно оценить в 170 млрд кВт/ч в год, технически возможный к реализации – 62 млрд кВт/ч, из них около 8 млрд кВт/ч – потенциал малых ГЭС. При этом на горных реках южных областей страны сосредоточено около 65 процентов гидроэнергоресурсов малых рек. Наибольшие перспективы в развитии малого гидроэнергетического строительства существуют в Южно-Казахстанской области.

По расчетам кандидатов технических наук Бескенова и Ибрагимова из ЮКГУ им. М. Ауэзова, на 18 реках и водохранилищах региона можно установить 112 малых ГЭС суммарной установленной мощностью 420,9 МВт/ч. Таким образом, за счет строительства мини-ГЭС в Южно-Казахстанской области можно выработать более 1800 млн кВт/ч в год.

Пока же в области большие и малые ГЭС можно пересчитать по пальцам. Но с каждым годом гидроэнергетика становится все интереснее для бизнеса. Во многом этому способствовало утверждение фиксированных тарифов на поставку электроэнергии, произведенной объектами ВИЭ, принятых в прошлом году. В частности, если мини-ГЭС продает электроэнергию местным энергокомпаниям по 10 тенге за кВт/ч, то государство доплачивает гидростанции еще 6,71 тенге за каждый кВт/ч.

Кстати

Вполне возможно, что в конце года в области начнет поставку электроэнергии еще одна малая ГЭС. В настоящее время строительство такой ГЭС ведет в Сайрамском районе ТОО «Водные ресурсы-маркетинг». Уже проложен трубопровод и ведется строительство здания станции. Мощность этой малой ГЭС составит 2,5 МВт/ч.

источник

Калькулятор гидроэлектрической мощности

Если вы проектируете мини-гидротурбину или следующую плотину «Три ущелья», этот калькулятор гидроэлектрической мощности поможет вам оценить выходную мощность вашего проекта. Наш инструмент определяет ожидаемую мощность для трех разных типов гидроэлектрических турбин только на основе основных характеристик потока: поперечного сечения канала, скорости потока и (для плотины) так называемого напора — полезной высоты падения.

Если вас интересует гидроэнергетика, обратите внимание на калькулятор расхода в трубопроводе!

Типы гидроэнергетических турбин

Наш калькулятор гидроэнергетики может определить мощность трех различных типов турбин: плотины , русловой установки и турбины приливной энергии .

  • Плотины — это огромные преграды, которые блокируют поток воды, создавая большой резервуар. Вода падает с плотины, и ее потенциальная энергия во время падения преобразуется в механическую. Высота падения называется , напор и является наиболее важной характеристикой плотины.

  • Русловые установки не имеют резервуара с водой, но используют кинетическую энергию потока и преобразуют ее в механическую энергию.Требование к такой турбине — постоянный приток воды.

  • Приливные электростанции используют ежедневные подъемы и опускания океанской воды или приливы для выработки энергии.

Формулы для гидроэнергетики

Выходная мощность плотины рассчитывается с использованием потенциальной энергии воды и может быть определена по следующей формуле гидроэнергетики:

P = η * ρ * g * h * Q

где:

  • P — выходная мощность, измеренная в ваттах
  • η — КПД турбины
  • ρ — плотность воды, принятая равной 998 кг / м³ (вы можете изменить ее в расширенном режиме )
  • g — ускорение свободного падения, равное 9.81 м / с² (можно изменить в расширенном режиме )
  • h — напор или полезная высота падения, выраженная в единицах длины (метрах или футах)
  • Q — расход (также называемый расходом), рассчитанный как Q = A * v
  • A — площадь поперечного сечения канала
  • v — скорость потока

Русловые установки и приливные электростанции используют кинетическую энергию потока, поэтому формула немного отличается:

P = 0.5 * η * ρ * Q * v²

КПД турбины — это отношение доступной энергии воды к фактической выходной мощности турбины. Обычно выражается в процентах. КПД таких турбин может достигать 59,3%, так как он ограничен лимитом Betz .

Расчет гидротурбины: пример

Предположим, вы хотите построить дамбу на небольшой реке. Площадь поперечного сечения канала 150 м², скорость реки 2 м / с.Высота плотины 15 м.

  1. Рассчитать расход: Q = A * v = 150 * 2 = 300 м³ / с .
  2. Узнайте эффективность вашей гидротурбины. Можно считать равным 80%.
  3. Найдите выходную мощность плотины по формуле гидроэнергетики:

P = η * ρ * g * h * Q = 0,8 * 998 * 9,81 * 15 * 300 = 39 639 * 10³ W = 39 639 кВт

Каков мой доход?

После того, как вы узнаете выходную мощность плотины, вы можете использовать наш калькулятор гидроэнергетики, чтобы определить доход, который она вам принесет.Все, что вам нужно сделать, это умножить выходную мощность на тариф на электроэнергию и на количество часов, в течение которых плотина находится в эксплуатации.

Например, предположим, что вам платят 0,08 доллара за кВтч за электроэнергию. Плотина будет работать 150 дней в году. Через 365 дней вы получите следующий доход:

доход = 0,08 доллара США * 39 639 * 24 * 150 = 11 416 000 долларов США

Этого достаточно, чтобы оправдать стоимость строительства? Проверьте это с помощью нашего калькулятора ROI!

Сколько гидроэнергии я могу получить

Если вы имеете в виду энергии (это то, что вы продаете), прочтите «Сколько энергии я могу произвести с помощью гидротурбины?».
Если вы имеете в виду мощность , читайте дальше.

Мощность — это скорость производства энергии. Мощность измеряется в ваттах (Вт) или киловаттах (кВт). Энергия — это то, что используется для работы, и измеряется в киловатт-часах (кВтч) или мегаватт-часах (МВтч).

Проще говоря, максимальная выходная мощность гидроэлектроэнергии полностью зависит от того, какой напор и поток доступны на площадке, поэтому крошечная микрогидросистема может производить всего 2 кВт, тогда как большая гидроэнергетическая система может легко производить сотни мегаватт (МВт).Чтобы представить это в контексте, система гидроэлектроэнергии мощностью 2 кВт может удовлетворить годовые потребности в электроэнергии двух средних домов в Великобритании, тогда как система мощностью 200 МВт может обеспечить 200 000 средних домов в Великобритании.

Если вы не возражаете против уравнений, самый простой способ объяснить, сколько энергии вы можете произвести, — это посмотреть на уравнение для расчета гидроэнергии:

P = m x g x H нетто x η

Где:

-п.
мощность, измеренная в ваттах (Вт).
м
массовый расход в кг / с (численно то же, что и расход в литрах / сек, потому что 1 литр воды весит 1 кг)
г
гравитационная постоянная, равная 9,81 м / с 2
H нетто
чистый напор. Это общий напор, физически измеренный на площадке, за вычетом потерь напора. Для простоты потери напора можно принять равными 10%, поэтому H нетто = H брутто x 0,9
η
произведение КПД всех компонентов, которыми обычно являются турбина, система привода и генератор

Для типичной небольшой гидросистемы КПД турбины будет 85%, КПД привода 95% и КПД генератора 93%, поэтому общий КПД системы будет:


0.85 x 0,95 x 0,93 = 0,751, т. Е. 75,1%

Следовательно, если у вас относительно низкий общий напор 2,5 метра и турбина, которая может выдерживать максимальный расход 3 м 3 / с, максимальная выходная мощность системы будет:

Сначала преобразуйте напор брутто в напор нетто, умножив его на 0,9, так:

H нетто = H брутто x 0,9 = 2,5 x 0,9 = 2,25 м


Затем преобразуйте расход в м 3 / с в литры / секунду, умножив его на 1000, так:

3 м 3 / с = 3000 литров в секунду


Помните, что 1 литр воды весит 1 кг, поэтому м численно совпадает с расходом в литрах в секунду, в данном случае 3000 кг / с.

Теперь вы готовы рассчитать мощность гидроэлектростанции:

Мощность (Вт) = m x g x H нетто x η = 3000 x 9,81 x 2,25 x 0,751 = 49,729 Вт = 49,7 кВт

Теперь сделайте то же самое для гидроэлектростанции с высоким напором, где общий напор составляет 50 метров, а максимальный расход через турбину составляет 150 литров / секунду.

В данном случае H нетто = 50 x 0,9 = 45 м , а расход в литрах / секунду равен 150, отсюда:

Мощность (Вт) = m x g x H net x η = 150 x 9.81 x 45 x 0,751 = 49,729 Вт = 49,7 кВт

Здесь интересно то, что для двух совершенно разных участков, один с чистым напором 2,25 метра, а другой 45 метров, могут генерировать точно такое же количество энергии, потому что участок с низким напором имеет гораздо больший поток (3000 литров в секунду ) по сравнению с местом с высоким напором всего 150 л / с.

Это ясно показывает, как две главные переменные при расчете выходной мощности гидроэнергетики от гидроэнергетической системы — это напор и поток, а выходная мощность пропорциональна напору, умноженному на поток.

Конечно, две системы в приведенном выше примере будут очень разными физически. Для узла с низким напором потребуется физически большой винт Архимеда или турбина Каплана внутри машзала размером с большой гараж, потому что он должен быть физически большим, чтобы выпускать такой большой объем воды с относительно низким давлением (напором) через него. . Для установки с высоким напором потребуется только небольшая турбина Pelton или Turgo размером с холодильник, потому что она должна отводить только 5% расхода системы с низким напором и при гораздо более высоком давлении.

Интересно, что в реальном мире напоры и потоки в приведенном выше примере не так уж далеки от реальности, потому что места с высоким напором, как правило, находятся в истоках рек на возвышенностях, поэтому земля имеет крутой уклон, что позволяет создавать высокие напоры. должны быть созданы, но водосборный бассейн водотока относительно невелик, поэтому скорость потока мала. Тот же самый верховой поток в 20 км ниже по течению слился бы с бесчисленными небольшими притоками и превратился бы в гораздо большую реку с более высоким расходом, но прилегающая территория теперь была бы низменными сельскохозяйственными угодьями со скромным уклоном.Можно было бы иметь только низкий напор через плотину, чтобы избежать риска затопления окружающей земли, но скорость потока в низменной реке была бы намного больше, чтобы компенсировать это.

В Великобритании есть ряд гидроэлектростанций всех типов с высоким, средним и низким напором. В Англии больше мест с низкой головой, в Шотландии — с высокой, а в Уэльсе — смесь всего, но все же со значительными возможностями для средней и высокой ставки.

Мощность и выработка энергии можно максимизировать, очищая входной экран от мусора, что обеспечивает максимальный напор системы.Этого можно добиться автоматически, используя наш инновационный экран GoFlo Traveling, произведенный в Великобритании нашей дочерней компанией. Откройте для себя преимущества установки путевого экрана GoFlo на вашу гидроэнергетическую систему в этом тематическом исследовании: Максимальное использование преимуществ гидроэнергетических технологий с помощью инновационной технологии путевых экранов GoFlo.

Вернуться в Учебный центр Hydro

Вы рассматриваете гидроэнергетический проект?

Компания

Renewables First имеет значительный опыт работы в качестве консультанта по гидроэнергетике и обладает всеми возможностями проекта, от первоначального технико-экономического обоснования до проектирования и установки системы.

Первым шагом к развитию любого участка гидроэлектростанции является проведение полного технико-экономического обоснования.

Свяжитесь с нами по поводу технико-экономического обоснования сегодня!

По завершении вы поймете потенциал сайта и получите инструкции по дальнейшим шагам по развитию вашего проекта. Вы можете узнать больше о гидроэнергетике в нашем Учебном центре по гидроэнергетике.

Сведите к минимуму ручную очистку вашего водозаборного экрана, максимизируйте финансовую отдачу вашей гидроэнергетической системы и защитите рыбу и угрей с помощью дорожных экранов GoFlo.Узнайте больше здесь.

онлайн-курсов PDH. PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии

курсов.

Russell Bailey, P.E.

Нью-Йорк

«Он укрепил мои текущие знания и научил меня еще нескольким новым вещам.

, чтобы познакомить меня с новыми источниками

информации.»

Стивен Дедак, П.Е.

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

.

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова. Спасибо. «

Blair Hayward, P.E.

Альберта, Канада

«Простой в использовании веб-сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.

проеду по вашей компании

имя другим на работе. «

Roy Pfleiderer, P.E.

Нью-Йорк

«Справочные материалы были превосходными, и курс был очень информативным, особенно потому, что я думал, что уже знаком с

с подробной информацией о Канзасе

Городская авария Хаятт.»

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

.

информативно и полезно

на моей работе »

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны.Вы

— лучшее, что я нашел ».

Russell Smith, P.E.

Пенсильвания

«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

материал «

Jesus Sierra, P.E.

Калифорния

«Спасибо, что позволили мне просмотреть неправильные ответы.На самом деле

человек узнает больше

от отказов »

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным.

способ обучения »

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы; i.е., позволяя

студент для ознакомления с курсом

материалов до оплаты и

получает викторину «

Арвин Свангер, П.Е.

Вирджиния

«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил огромное удовольствие «.

Мехди Рахими, П.Е.

Нью-Йорк

«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

на связи

курсов.»

Уильям Валериоти, P.E.

Техас

«Этот материал во многом оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

.

обсуждаемых тем ».

Майкл Райан, P.E.

Пенсильвания

«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

Джеральд Нотт, П.Е.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам »

Джеймс Шурелл, P.E.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основе какой-то неясной секции

законов, которые не применяются

до «нормальная» практика.»

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор.

организация «

Иван Харлан, П.Е.

Теннесси

«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П.E.

Калифорния

«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

а онлайн-формат был очень

Доступно и просто

использовать. Большое спасибо. «

Патрисия Адамс, P.E.

Канзас

«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

Джозеф Фриссора, P.E.

Нью-Джерси

«Должен признаться, я действительно многому научился. Помогает иметь распечатанный тест во время

обзор текстового материала. Я

также оценил просмотр

фактических случаев предоставлено.

Жаклин Брукс, П.Е.

Флорида

«Документ» Общие ошибки ADA при проектировании оборудования «очень полезен.

испытание действительно потребовало исследования в

документ но ответы были

в наличии «

Гарольд Катлер, П.Е.

Массачусетс

«Я эффективно использовал свое время. Спасибо за широкий выбор вариантов.

в транспортной инженерии, что мне нужно

для выполнения требований

Сертификат ВОМ.»

Джозеф Гилрой, P.E.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роадс, P.E.

Мэриленд

«Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курсов со скидкой.»

Кристина Николас, П.Е.

Нью-Йорк

«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать дополнительный

курсов. Процесс прост, и

намного эффективнее, чем

приходится путешествовать ».

Деннис Мейер, P.E.

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов.

Инженеры получат блоки PDH

в любое время.Очень удобно »

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

время искать где

получить мои кредиты от. «

Кристен Фаррелл, P.E.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теорий. «

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утром

до метро

на работу.»

Клиффорд Гринблатт, П.Е.

Мэриленд

«Просто найти интересные курсы, скачать документы и взять

викторина. Я бы очень рекомендовал

вам на любой PE, требующий

CE единиц. «

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники.»

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес электронной почты который

сниженная цена

на 40% «

Конрадо Казем, П.E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

кодов и Нью-Мексико

правил. «

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

.

при необходимости дополнительно

сертификация. «

Томас Каппеллин, П.E.

Иллинойс

«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил — много

оценено! «

Джефф Ханслик, P.E.

Оклахома

«CEDengineering предлагает удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

«Курс был по разумной цене, материал был кратким, а

хорошо организовано. «

Глен Шварц, П.Е.

Нью-Джерси

«Вопросы подходили для уроков, а материал урока —

.

хороший справочный материал

для деревянного дизайна. «

Брайан Адамс, П.E.

Миннесота

«Отлично, я смог получить полезные рекомендации по простому телефонному звонку.»

Роберт Велнер, P.E.

Нью-Йорк

«У меня был большой опыт работы в прибрежном строительстве — проектирование

Building курс и

очень рекомендую

Денис Солано, P.E.

Флорида

«Очень понятный, хорошо организованный веб-сайт. Материалы курса по этике в Нью-Джерси были очень хорошими.

хорошо подготовлены. »

Юджин Брэкбилл, P.E.

Коннектикут

«Очень хороший опыт. Мне нравится возможность загружать учебные материалы на

.

обзор везде и

всякий раз, когда.»

Тим Чиддикс, P.E.

Колорадо

«Отлично! Поддерживаю широкий выбор тем на выбор».

Уильям Бараттино, P.E.

Вирджиния

«Процесс прямой, никакой ерунды. Хороший опыт».

Тайрон Бааш, П.E.

Иллинойс

«Вопросы на экзамене были зондирующими и демонстрировали понимание

материала. Полная

и всесторонний ».

Майкл Тобин, P.E.

Аризона

«Это мой второй курс, и мне понравилось то, что мне предложили курс

поможет по моей линии

работ.»

Рики Хефлин, P.E.

Оклахома

«Очень быстро и легко ориентироваться. Я обязательно воспользуюсь этим сайтом снова».

Анджела Уотсон, P.E.

Монтана

«Легко выполнить. Нет путаницы при подходе к сдаче теста или записи сертификата».

Кеннет Пейдж, П.E.

Мэриленд

«Это был отличный источник информации о солнечном нагреве воды. Информативный

и отличный освежитель ».

Луан Мане, П.Е.

Conneticut

«Мне нравится, как зарегистрироваться и читать материалы в автономном режиме, а затем

вернуться, чтобы пройти викторину «

Алекс Млсна, П.E.

Индиана

«Я оценил объем информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

использование в реальных жизненных ситуациях »

Натали Дерингер, P.E.

Южная Дакота

«Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне

успешно завершено

курс.»

Ира Бродский, П.Е.

Нью-Джерси

«Веб-сайтом легко пользоваться, вы можете скачать материалы для изучения, а потом вернуться.

и пройдите викторину. Очень

удобно а на моем

собственный график «

Майкл Глэдд, P.E.

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.»

Деннис Фундзак, П.Е.

Огайо

«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

сертификат. Спасибо за создание

процесс простой ».

Фред Шейбе, P.E.

Висконсин

«Положительный опыт.Быстро нашел курс, который соответствовал моим потребностям, и закончил

один час PDH в

один час. «

Стив Торкильдсон, P.E.

Южная Каролина

«Мне понравилась возможность скачать документы для проверки содержания

и пригодность, до

имея платить за

материал

Ричард Вимеленберг, P.E.

Мэриленд

«Это хорошее напоминание об ЭЭ для инженеров, не занимающихся электричеством».

Дуглас Стаффорд, П.Е.

Техас

«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

.

процесс, которому требуется

улучшение.»

Thomas Stalcup, P.E.

Арканзас

«Мне очень нравится удобство участия в онлайн-викторине и получение сразу

сертификат. «

Марлен Делани, П.Е.

Иллинойс

«Учебные модули CEDengineering — это очень удобный способ доступа к информации по номеру

.

много разные технические зоны за пределами

по своей специализации без

надо ехать.»

Гектор Герреро, П.Е.

Грузия

Технико-экономическое обоснование малой гидроэнергетики для выбранных мест в Египте

Основные моменты

Исследует потенциал малой гидроэнергетики в различных местах в Дельте Египта.

Сравнение выработки энергии от трех типов гидротурбин.

Программа Matlab предназначена для расчета КПД турбин на каждом участке при разном напоре и расходе воды.

Турбины Crossflow и Kaplan с разными размерами могут достаточно увеличить электрическую энергию на выбранных участках.

Мини-гидроэлектрические проекты могут быть созданы на многих объектах в Египте.

Реферат

Одна из самых больших проблем, стоящих сегодня перед миром, — обеспечить доступ к безопасному и доступному по цене источнику электроэнергии. В зависимости от течения реки малая гидроэнергетика часто является экономически эффективным источником возобновляемой энергии.В Египте протекает часть самой длинной реки Африки, и это относительно надежный источник. Многие малые гидроэлектростанции могут быть установлены в русловых схемах или внедрены в существующую речную инфраструктуру. Мы утверждаем, что египетскому правительству крайне важно использовать гидроэнергетические ресурсы не только для удовлетворения растущего спроса, но и для сокращения использования ископаемого топлива и связанного с этим загрязнения окружающей среды. В этом документе исследуется потенциал малой гидроэнергетики в выбранных местах в дельте Нила в Египте и представлено технико-экономическое обоснование малой гидроэнергетики для этих мест.Напор и расход воды за последние пять лет используются для определения гидроэнергетического потенциала. Годовая энергия трех различных малых гидротурбин рассчитана для восьми выбранных регионов в дельте Нила в Египте. Анализ включает сравнение выработки энергии от трех типов гидротурбин. Кроме того, создана программа MATLAB для вычисления эффективности исследуемых турбин на каждом участке при различных напорах и расходах воды. Установлено, что использование турбин Crossflow и Kaplan разных размеров может повысить выработку электроэнергии на выбранных объектах.

Ключевые слова

Малая гидроэнергетика

Эффективность гидроэнергетики

Экономический анализ

Оценка гидроэнергетики

Рекомендуемые статьи Цитирующие статьи (0)

© 2019 Elsevier Ltd.

Рекомендуемые статьи

Цитирующие статьи

Гидроэнергетика

Онлайн-калькулятор гидроэнергетики

Калькулятор, представленный ниже, можно использовать для расчета доступной гидроэлектрической мощности.

Теоретически доступная мощность от падающей воды может быть выражена как

P th = ρ qgh (1)

, где

P th = теоретически доступная мощность (Вт)

ρ = плотность (кг / м 3 ) (~ 1000 кг / м 3 для воды)

q = расход воды (м 3 / с)

g = ускорение свободного падения ( 9.81 м / с 2 )

h = высота падения, напор (м)

Загрузите и распечатайте диаграмму зависимости гидроэнергии от объемного расхода и напора

Пример — гидроэнергетика

Теоретически мощность, доступная при расходе 1 м 3 / с вода при падении 100 м может быть рассчитана как

P = (1000 кг / м 3 ) (1 м 3 / с ) (9,81 м / с 2 ) (100 м)

= 981 000 Вт

= 981 кВт

КПД

Из-за потерь энергии практически доступная мощность будет меньше теоретически мощность.Практически доступная мощность может быть выражена как

P a = μ ρ qgh (2)

, где

P a = доступная мощность (Вт)

μ = КПД (обычно в диапазоне от 0,75 до 0,95)

Энергия от гидроэлектростанции

Можно рассчитать потенциальную теоретическую энергию в объеме приподнятой воды

Вт = mgh

= ρ V gh (3)

, где

W = энергия (Дж)

m = масса воды (кг)

V = объем воды (м 3 )

Пример — Энергия в приподнятом объеме воды

10 м 3 объем воды приподнят 10 м над турбиной.Потенциальная энергия в водном объеме может быть рассчитана как

W = (1000 кг / м 3 ) (10 м 3 ) (9,81 м / с 2 ) (10 м)

= 981000 Дж (Втс)

= 981 кДж (кВт)

= 0,27 кВтч

Потенциальная энергия в резервуаре или резервуаре

Вы можете оценить общую энергию в резервуаре или резервуаре, где Площадь поверхности меняется в зависимости от высоты — как это типично для естественного водоема — путем интегрирования потенциальных энергий для горизонтальных сегментов, как это сделано в шаблоне

Скопируйте документ на свой Google Диск или загрузите его в виде электронной таблицы, чтобы сделать свои собственные расчеты.

Калькулятор мощности и энергии гидроэлектростанций

Принцип

Принцип выработки гидроэлектроэнергии довольно прост. Контур гидротехнических сооружений обеспечивает необходимое давление воды, подаваемой на лопатки турбины, которая приводит в движение генератор, вырабатывающий электроэнергию.

Формула для расчета гидроэнергетики

Как рассчитать выходную мощность гидроэлектрической турбины? Самая простая формула:

Где
P = Механическая мощность в кВт
Q = расход в трубе (м3 / с)
ρ = плотность (кг / м3)
g = ускорение свободного падения (м / с²)
H = высота водопада (м)
η = общий коэффициент полезного действия (обычно от 0,7 до 0,9)




Калькулятор

Введите собственные значения в белые поля, результаты отображаются в зеленых полях.

Пример расхода в м3 / с, л / мин и л / с для расчета гидроэнергии

Водяной поток Расход воды в м3 / с Расход воды в л / мин Расход воды в л / с
Водопроводная вода (давление 2-3 бара) 0.0002 10 л / мин 0,2 л / с
Пожарный шланг 0,008 500 л / мин 8 л / с
Очень небольшая река
Маленькая река > 2 м3 / с> 120 000 л / мин> 2000 л / с
Большая река 100 м3 / с 6 000 000 л / мин 100000 л / с
Очень большая река > 500 м3 / с> 30 000 000 л / мин> 500 000 л / с

(PDF) АНАЛИЗ СТОИМОСТИ МИНИ-ГИДРОСТАНЦИИ, ИСПОЛЬЗУЮЩЕЙ ОПТИМИЗАЦИЮ БАКТЕРИАЛЬНОГО РИВА

International Journal of Energy and Smart Grid

Vol 2, Number 2, 2017

ISSN: 2548 0332

DOI: 10.23884 / IJESG.2017.2.2.04

[10] Filho, G. L. T., et. др., Оценка затрат малых гидроэлектростанций на основе фактора

, Обзоры возобновляемой и устойчивой энергетики 77, (2017), стр. 229-238.

[11] Оздемир, М.Т. и др., Настройка оптимальных параметров PID классического и дробного порядка для автоматического управления генерацией

на основе оптимизации бактериального роя. В:

IFACPapersOnLine, (2015), стр. 501–506.

[12] Эберхарт Р.C., et. др., Новый оптимизатор, использующий теорию роя частиц. В материалах Шестого международного симпозиума

по микромашиностроению и гуманитарным наукам Vol. 1, 1995, стр. 39-43.

[13] Пассино, К. М., Биомимикрия бактериального кормодобывания для распределенной оптимизации и контроля.

Системы управления, IEEE, 22, 3, (2002), стр. 52-67.

[14] Korani, W.M., et. др., Бактериальный корм, ориентированный на стратегию оптимизации роя частиц для настройки

PID. Международный симпозиум IEEE по вычислительному интеллекту в робототехнике и

автоматизации (CIRA), IEEE, (2009), стр.445-450.

[15] Öztürk, D, et. др., Оптимизация частоты нагрузки с помощью эвристических методов в автономной гибридной сети переменного тока

, Международный журнал энергетики и интеллектуальной сети 2, (2017), стр. 2-16

[16] Челик В. и др. , Влияние на область устойчивости ПИ-регулятора дробного порядка для однозонных систем регулирования нагрузки с выдержкой времени

. Труды Института измерений и контроля

, (2017), том: 39, выпуск: 10, страницы: 1509-1521

[17] Özdemir, M.T., et. др., Оптимальное управление частотой нагрузки в двух энергосистемах с помощью Optics

Inspired Optimization. Firat Universitesi Muhendislik Bilimleri Dergisi, 2, (2016), 28, pp. 57–

66.

[18] Özdemir, M.T., et. др., Сравнительный анализ производительности оптимальной настройки параметров ПИД-регулятора

на основе оптических методов оптимизации для автоматического управления генерацией.

Энергия (2017), 10, 2134.

[19] Эроглу В.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *