Твердотельное реле это: Всё о ТТР | KIPPRIBOR твердотельные реле твердотельное реле

Содержание

Что такое твёрдотельное реле?

Устройство и параметры твёрдотельных реле

Радиоэлектроника развивается стремительными темпами и то, что совсем недавно использовалось повсеместно, в настоящее время кажется пережитком далёкой старины. Электромеханическое реле ещё активно используется, но на смену ему идёт принципиально новый электронный прибор – твёрдотельное реле.

В англоязычной технической литературе твердотельное реле (ТТР), имеет сокращённое обозначение SSR (Solid State Relays).

Твёрдотельное реле служит для управления силовыми цепями с помощью низковольтной цепи управления. В качестве коммутатора силовой цепи используются мощные ключи на полупроводниковых структурах, выполненных по типу: транзистора, тиристора или симистора.

По сути, твёрдотельное реле является аналогом всем знакомого электромеханического, но выполненного по полупроводниковой технологии.

Такие реле, в зависимости от типа, могут работать как в цепях переменного, так и постоянного тока.

Принцип работы твёрдотельного реле.

Работает твердотельное реле следующим образом: управляющий сигнал подаётся на светодиод. Оптическое излучение вызывает на фотоприёмнике (фотодиоде) появление ЭДС. Это напряжение подаётся на управляющую схему, которая вырабатывает сигнал для управления выходным ключом.

Таким образом, вся работа твёрдотельного реле осуществляется в нескольких ступенях разделённых между собой:

  • Входная цепь (излучающий диод).

  • Оптическая развязка.

  • Фотодиод с триггером управления (схема управления).

  • Цепь коммутации (симистор).

  • Цепь защиты выходного ключа (варистор и т.п.).

В зависимости от назначения и параметров твёрдотельного реле оно может иметь различное устройство. Как уже говорилось, в качестве силового ключевого элемента, который коммутирует ток нагрузки, может быть использован симистор, МДП-транзистор, тиристор, диод, биполярный транзистор или IGBT-транзистор. Благодаря этому в продаже можно найти твёрдотельное реле под любую задачу.

Основных параметров у твёрдотельного реле немного:

  • Коммутируемое напряжение Uмакс;

  • Коммутируемый ток I

    макс;

  • Управляющий сигнал;

  • Скорость переключения.

Качественные отличия твёрдотельных реле от электромеханических.

Почему твёрдотельные полупроводниковые реле всё активней занимают место «классических» электромеханических? Как известно, у электромеханических реле недостатков много: большое время срабатывания, подгорание контактов (как следствие, низкая надёжность), дребезг контактов, искрение (вызывает помехи в работе аппаратуры).

По сравнению с электромагнитными реле, твёрдотельные обладают рядом несомненных преимуществ:

  • Допускается не менее миллиарда переключений, что в тысячу раз превышает этот показатель у обычных электромеханических.

  • Совместимость с уровнями логических микросхем. То есть SSR можно управлять прямо с выхода микросхем.

  • Отсутствие контактов а, следовательно, и дребезга.

  • Бесшумная работа, вибростойкость, высокое быстродействие.

  • Очень малое энергопотребление.

Следует отметить, что твёрдотельные реле очень чувствительны к превышению, как напряжения, так и тока. Поэтому, выбирая твердотельное реле необходимо всегда учитывать запас минимум в 20 %. Есть ещё два очень важных момента, на которые необходимо обращать внимание. Эти устройства очень боятся перегрева, а при работе полупроводниковая структура сильно нагревается, поэтому наличие радиатора необходимо. Очень часто коммутируемую цепь шунтируют варистором для защиты от импульсных выбросов.

Маломощные твёрдотельные реле.

Существует целая серия твердотельных реле рассчитанных на работу с небольшими токами и напряжениями. Их принято называть телекоммуникационными реле или MER (MicroElectronic Relay). Как правило, они рассчитаны на коммутацию нагрузки небольшой мощности.

Маломощные полупроводниковые реле имеют очень небольшие размеры и прекрасно зарекомендовали себя, работая в многофункциональных телефонных аппаратах, контрольно-измерительной аппаратуре, модемах, приёмно-контрольных приборах систем охранной и пожарной сигнализации.

Поскольку они работают в слаботочных системах, их внутренняя схемотехника заметно упрощена с целью снижения себестоимости. Особенно удобно их использование в системах оповещения о пожаре или несанкционированном проникновении. В этих системах требуется очень высокий уровень надёжности, который далеко не всегда могут обеспечить электромагнитные реле. Рассмотрим устройство слаботочного реле

CPC1035.

Как видно из рисунка, такое реле представляет собой комбинированное устройство. В его составе есть высокоэффективный излучающий AsGaAl-инфракрасный диод. Он является управляющей цепью (Control). Нагрузку (Load) коммутирует сдвоенный MOSFET транзистор. Благодаря сдвоенному MOSFET транзистору реле допускает коммутацию переменного тока. Как только на инфракрасный диод подаётся напряжение, он начинает излучать. Излучение принимается фотодиодной матрицей, в которой создаётся фото-ЭДС. Далее, полученное от фотоматрицы напряжение (фото-ЭДС), подаётся на управляющую схему. Та в свою очередь управляет ключом из полевых транзисторов. Цепь нагрузки начинает пропускать ток. Как видим, в основе любого твёрдотельного реле лежит полупроводниковая технология.

Основные параметры CPC1035:

  • Коммутируемое переменное напряжение (Blocking Voltage) — 0…350 В;

  • Максимальный ток нагрузки (Load Current) — 100 мА;

  • Максимальное сопротивление ключа во включенном состоянии (Max On-resistance) — 35 Ом;

  • Величина управляющего тока — 2…50 мА (Ток управления — постоянный).

Такие маломощные и миниатюрные реле активно используются в охранных датчиках. Вот, например, реле COSMO типа CPC1008 на плате датчика движения «Фотон-Ш». Оно подключается в охранный шлейф приёмно-контрольного прибора (например, ППКОП «Гранит») или к линии, которая подключена к пульту центрального наблюдения (ПЦН).

Твёрдотельные реле серии CPC10xx также есть в составе охранного датчика «Астра-621». Это многофункциональный датчик. Он контролирует движение в охраняемой зоне за счёт пироэлектрического датчика и осуществляет контроль разбития окон за счёт чувствительного микрофона. На печатной плате прибора расположено два полупроводниковых реле типа

CPC1016N. Одно срабатывает при детектировании движения в охранной зоне, а другое срабатывает при разбитии окон.

Если приглядеться, то можно увидеть, что на печатной плате твёрдотельное реле обозначается как DA4 и DA5. Как известно, сокращением DA обычно указывают на схемах аналоговые микросхемы. Поэтому стоит понимать, что твёрдотельное реле это не отдельный электронный компонент, а по своей сути специализированная микросхема, наподобие ИК-приёмника.

 

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Твердотельное реле — Практическая электроника

Что такое твердотельное реле

Твердотельное реле (ТТР) или в буржуйском варианте Solid State Relay (SSR) — это особый вид реле, которые выполняют те же самые функции, что и электромагнитное реле, но имеет другую начинку, состоящую из полупроводниковых радиоэлементов, которые имеют  своем составе силовые ключи на тиристорах, симисторах или мощных транзисторах.

Виды твердотельных реле


Выглядеть ТТР могут по-разному. Ниже на фото слаботочные реле

Такие релe используются в печатных платах и предназначены для коммутации (переключения)  малого тока и напряжения.

На ТТР строят также сразу готовые модули входов-выходов, которые используются в промышленной автоматике

А вот так выглядят реле, используемые в силовой электронике, то есть в электронике, которая коммутирует большую силу тока. Такие реле используется в промышленности в блоках управления станков ЧПУ и других промышленных установках

Слева однофазное реле, справа трехфазное.

Если через коммутируемые контакты силовых  реле будет проходить приличный ток, то корпус реле будет очень сильно греться. Поэтому, чтобы реле не перегревались и не выходили из строя, их ставят  на радиаторы, которые рассеивают тепло в окружающее пространство.

Твердотельные реле по типу управления

ТТР могут управляться с помощью:

1) Постоянного тока. Его диапазон составляет от 3 и до 32 Вольт.

2) Переменного тока. Диапазон переменного тока составляет от 90 и до 250 Вольт. То есть такими реле можно спокойно управлять с помощью сетевого напряжения 220 В.

3) С помощью переменного резистора. Значение переменного резистора может быть в диапазоне от 400 и до 600 Килоом.

Твердотельные реле по типу переключения

С коммутацией перехода через ноль

Посмотрите внимательно на диаграмму

Такие ТТР на выходе коммутируют переменный ток. Как вы здесь можете заметить, когда мы подаем на вход такого реле постоянное напряжение, у нас коммутация на выходе происходит не сразу, а только тогда, когда переменный ток  достигнет нуля. Выключение происходит подобным образом.

Для чего это делается? Для того, чтобы уменьшить влияние помех на нагрузках и уменьшить импульсный бросок тока, который может привести к выходу нагрузки из строя, если тем более нагрузкой будет являться схема на полупроводниковых радиоэлементах.

Схема подключения и внутреннее строение такого ТТР выглядит примерно вот так:

управление постоянным токомуправление переменным током

Мгновенного включения

Здесь все намного проще. Такое реле сразу начинает коммутировать нагрузку при появлении на нем управляющего напряжения. На диаграмме видно, что выходное напряжение появилось сразу, как только мы подали управляющее напряжение на вход. Когда мы уже снимаем управляющее напряжение, реле выключается также, как и ТТР с контролем перехода через ноль.

В чем минус данного ТТР? При подаче на вход управляющего напряжения, у нас на выходе могут возникнуть броски тока,  а в следствии и электромагнитные помехи. Поэтому, данный тип реле не рекомендуется использовать в радиоэлектронных устройствах, где есть шины передачи данных, так как в этом случае помехи могут существенно помешать передаче информационных сигналов.

Внутреннее строение ТТР и схема подключения нагрузки выглядят примерно вот так:

С фазовым управлением

Здесь все намного проще. Меняя значение сопротивления, мы тем самым меняем мощность на нагрузке.

Примерная схема подключения выглядит вот так:

Работа твердотельного реле

В гостях у нас ТТР фирмы FOTEK:

Давайте разберемся с его обозначениями.  Вот небольшая табличка-подсказка для этих типов реле

Давайте еще раз взглянем на наше ТТР

SSR — это значит однофазное твердотельное реле.

40 — это на какую максимальную силу тока она рассчитана. Измеряется в Амперах и в данном случае составляет 40 Ампер. 

D — тип управляющего сигнала. От значения Direct Current — что с буржуйского — постоянный ток. Управление ведется постоянным током от 3 и до 32 Вольт. Этого диапазона хватит самому заядлому разработчику радиоэлектронной аппаратуры. Для особо непонятливых даже написано Input, показан диапазон и фазировка напряжения. Как вы видите, на контакт №3 мы подаем «плюс», а на №4 мы подаем «минус».

А — тип коммутируемого напряжения. Alternative current — переменный ток. Цепляемся в этом случае к выводам №1 и №2. Можем коммутировать диапазон от 24 и  до 380 Вольт переменного напряжения.

Для опыта нам понадобится лампа  накаливания на 220 Вольт и простая вилка со шнуром. Соединяем лампу со шнуром только в одном месте:

В разрыв вставляем наше  твердотельное реле

Втыкаем вилку в розетку и…

Нет… не хочет… Чего-то не хватает…

Не хватает управляющего напряжения! Выводим напряжение от Блока питания  от 3 и до 32 Вольт постоянного напряжения. В данном случае я взял 5 Вольт. Подаю на управляющие контакты и…

О чудо! Лампочка загорелась!  Это значит, что контакт №1 замкнулся с контактом №2. О срабатывании реле нам также говорит и светодиод на корпусе самого реле. 

Интересно, какую силу тока потребляют управляющие контакты реле? Итак, имеем на блоке 5 Вольт.

А сила тока получилась 11,7 миллиампер! Можно управлять хоть микроконтроллером!

Плюсы и минусы твердотельного реле

Плюсы

  • включение  и выключение цепей без электромагнитных помех
  • высокое быстродействие
  • отсутствие шума и дребезга контактов
  • продолжительный период работы (свыше МИЛЛИАРДА срабатываний)
  • возможность работы во взрывоопасной среде, так как нет дугового разряда
  • низкое энергопотребление (на 95% (!) меньше, чем у обычных реле)
  • надёжная изоляция между входными и коммутируемыми цепями
  • компактная герметичная конструкция, стойкая к вибрации и ударным нагрузкам
  • небольшие размеры и хорошая теплоотдача (если конечно использовать термопасту и хороший радиатор)

Минусы:

Твердотельное реле (SSR) | LAZY SMART

Твердотельное реле (ТТР) — это устройство, предназначенное для коммутации силовой нагрузки. Функционально оно ничем не отличается от обычного электромагнитного реле, но имеет другое устройство, характеристики и принцип действия. Этими особенностями обусловлены сферы, в которых использование твердотельных реле предпочтительнее, чем электромагнитных. Обо всём об этом далее по тексту…

Устройство и принцип работы

Твердотельное реле, как уже было сказано, предназначено для включения/выключения внешней нагрузки. Для этого оно имеет выходной контакт, который замыкается при подаче управляющего напряжения.

Однако, в отличие от электромагнитного реле, где выходной контакт — это два реальных металлических проводника, выходные контакты твердотельного реле выполнены на основе полупроводниковых компонентов (транзисторов, тиристоров или симисторов), то есть его выход — это электронный ключ.

Поскольку электронный ключ не может иметь нормально закрытое состояние, выход твердотельного реле всегда нормально-открытый.

Твердотельное реле имеет гальваническую развязку, то есть управляющая и коммутируемая цепи не связаны между собой электрически. Управляющий сигнал передаётся на электронный ключ с помощью встроенного оптрона.

Особенности твердотельного реле
  1. Меньшие габариты по сравнению с «электромагнитным собратом»
  2. Бесшумное переключение и работа
  3. Высокая надёжность и долгий срок службы
  4. Высокая скорость переключения (сравнима со скоростью света)
  5. Отсутствие эффекта искрения и подгорания контактов
  6. Сравнительно высокая стоимость
  7. Более чувствительны к перегрузкам, поэтому должны выбираться с большим коэффициентом запаса (2-4 раза для обычных нагрузок и 6-11 раз для устройств с большими пусковыми токами).

Характеристики твердотельного реле
  1. Тип управляющего напряжения. Это может быть постоянный или переменный ток. Так же стоить обратить внимание на диапазон управляющих напряжений. Например, для постоянного тока это может быть 3-32 В, а для переменного 80 -250 В.
  2. Тип коммутируемого напряжения. Аналогично управляющему напряжению может быть постоянным и переменным. Минимальные и максимальные значения коммутируемого напряжения также указываются в паспорте устройства.
  3. Максимальный ток нагрузки  —  выбирается сообразно с мощностью предполагаемой нагрузки.
  4. Количество фаз коммутируемого переменного напряжения — одно- или трёхфазные.

Области применения твердотельных реле

Исходя из принципа работы и особенностей твердотельных реле, можно сказать, что они применяются в тех случаях, когда требуется большое количество включений/выключений нагрузки за короткое время (высокая частота переключений). В таких системах обычные реле быстро вырабатывают свой ресурс и выходят из строя.

Твердотельные реле часто применяют для включения индуктивной нагрузки (например ТЭНы).

Кроме того, малые габариты и бесшумная работа, тоже могут стать причиной установки твердотельных реле.

Однако, не стоит забывать, что такие реле дороже, поэтому если можно обойтись обычным  электромагнитным реле, лучше так и сделать

Твердотельное реле постоянного тока

Используется для коммутации цепей постоянного тока. Как правило выдерживают достаточно широкий диапазон коммутируемого напряжения (порядка 5 — 230 В). В качестве электронного ключа используется транзистор.

Схема подключения:

Твердотельное реле переменного тока

Предназначены для коммутации цепей переменного тока. В качестве электронного ключа используется симистор или тиристор. Бывают однофазные и трёхфазные версии таких реле.

Реле твердотельное однофазное

Предназначено для коммутации однофазной нагрузки. Схема подключения похожа на схему в случае реле постоянного тока.

Реле твердотельное трёхфазное

Используются для коммутации трёхфазной нагрузки (например электродвигателей).

На входные контакты реле «приходят» три фазы питания, а при подаче управляющего сигнала эти фазы «появляются» на соответствующих выходных клеммах, к которым подключена нагрузка. На следующей схеме через трёхфазное реле запитаны три ТЭНа, соединённых звездой:

Для управления электродвигателями применяют специальные трёхфазные реле с реверсом.

Такое реле имеет три управляющих контакта. Один из них — общий, а два других в паре с ним образуют два управляющих входа. При подаче напряжения на первый, фазы коммутируются для прямого вращения электродвигателя, а при подаче «управляющей фазы» на другой вход — для обратного вращения.


Твердотельные реле | OMRON, Россия

Сила тока 100 мA () 2 A () 3 A () 5 A () 20 A () 25 A () 35 A () 45 A () 60 A () 90 A () 150 A () Зависит от применяемого твердотельного реле () 2 А (240 В перем. тока, резистивная нагрузка) 3 A (24 В пост. Тока, резистивная нагрузка) 100 мA 2 A 2 A 3 A 3 A 3 A 5 A 90 A 20 A 60 A 25 A 45 A 150 A 35 A 60 A Зависит от применяемого твердотельного реле Напряжение нагрузки (В перем. тока) 24 — 240 В перем. тока () 100 — 240 В перем. тока () 100 — 480 В перем. тока () 200 — 480 В перем. тока () 100 — 240 ~В (-A(L)) 100 -240 ~В (-F) 100 — 240 ~В (-H) 100 -240 ~В (-B) 24 — 240 В перем. тока 200 — 480 В перем. тока 100 … 240 В~ 24 — 240 В перем. тока 200 — 480 В перем. тока 100 — 480 В перем. тока 100 … 240 В~ 200 — 480 В перем. тока 100 … 240 В~ 180 — 480 В перем. тока 100 … 240 В~ 200 — 480 В перем. тока 100 … 240 В~ 100 … 240 В~ 400 — 480 В перем. тока Напряжение нагрузки (В пост. тока) 4 — 48 В пост. тока () 5 — 24 В пост. тока () 5 — 110 В пост. тока () 5 — 200 В пост. тока () 5 — 24 =В (-D) 4 — 48 В пост. тока (-O) 5 — 24 =В (-I) 4 — 48 В пост. тока (-FD) 5 — 110 В пост. тока (-FD) 4 — 48 В пост. тока (-HD) 5 -110 В пост. тока (-BD) 5 — 200 В пост. тока Особенности Светодиодный индикатор работы () Варистор () Заменяемый силовой модуль () Защитная крышка () Контроль перехода фазы через ноль () Радиатор () Схема подавления перенапряжений () Трансформатор тока () Светодиодный индикатор работы Контроль перехода фазы через ноль Светодиодный индикатор работы Контроль перехода фазы через ноль Контроль перехода фазы через ноль Контроль перехода фазы через ноль Контроль перехода фазы через ноль Светодиодный индикатор работы Варистор Защитная крышка Контроль перехода фазы через ноль Варистор Контроль перехода фазы через ноль Светодиодный индикатор работы Варистор Заменяемый силовой модуль Защитная крышка Контроль перехода фазы через ноль Радиатор Светодиодный индикатор работы Защитная крышка Контроль перехода фазы через ноль Радиатор Светодиодный индикатор работы Контроль перехода фазы через ноль Радиатор Схема подавления перенапряжений Светодиодный индикатор работы Защитная крышка Контроль перехода фазы через ноль Радиатор Схема подавления перенапряжений Светодиодный индикатор работы Защитная крышка Контроль перехода фазы через ноль Радиатор Трансформатор тока Контроль перехода фазы через ноль Радиатор

Однофазные и трехфазные твердотельные реле, реверсивные трехфазные твердотельные реле

Представляем Вашему вниманию твердотельные реле, которые признаны одними из самых эффективных полупроводниковых приборов для коммутации. В их основе лежат современные разработки, соответствующие всем международным стандартам качества и легкости в эксплуатации. Ниже представлены основные виды твердотельных реле:

Твердотельное реле представляет собой полупроводниковый прибор, основное предназначение которого заключается в коммутации цепей как постоянного, так и переменного тока. При этом непосредственного контакта не происходит, что значительно упрощает процедуру эксплуатации и делает работу данного прибора более безопасной и долговечной. Благодаря этим своим преимуществам твердотельные реле уверенными темпами вытесняют своих предшественников – электромагнитные контакторы и реле, которые по своим характеристикам не могут с ними конкурировать.

Сфера использования данных приборов достаточно широкая. Это – система управления электродвигателями, электромагнитами, освещением, нагревом, трансформаторами и многими другими техническими средствами и операциями. Здесь их характеристики раскрываются должным образом.

Разберем более подробно особенности и преимущества твердотельных реле, чем они кардинально отличаются от своих предшественников. В первую очередь, при их использовании значительно снижается уровень электромагнитных помех. Также при переключениях отсутствуют искрения и дребезг контактов. Это позволяет всему оборудованию значительно дольше сохранять свои изначальные характеристики и значительно замедляет интенсивность износа.

Кроме того, при переключениях и разных фазах эксплуатации отсутствует также и акустический шум. Учитывая и без того высокий уровень шумового загрязнения в современных городах и на промышленных и других объектах, данное преимущество является весьма привлекательным и актуальным. Что же касается экономии, то работа твердотельного реле не требует значительных энергетических затрат, как это наблюдается при использовании электромагнитных контакторов и реле предыдущих поколений.

Оперативность выполнения команд по переключению достаточно высокая. Быстродействие оставляет далеко позади предшествующие разновидности реле. Управляющее напряжение твердотельных реле зависит от ряда параметров и колеблется в зависимости от конкретного наименования. Наличие же множества моделей данных изделий позволяет выбрать конкретную из них в зависимости от особенностей будущей эксплуатации и характеристик объекта. Каждое наименование рассчитано на свои условия эксплуатации, при которых их преимущества раскрываются в полной мере. Существует несколько основных разновидностей твердотельных реле. Это – однофазные, трехфазные и реверсивные.

Однофазные аналоги обеспечивают коммутацию переменного тока при его переходе через ноль. Они выпускаются в двух видах корпусного исполнения: GDH – однофазное твердотельное реле с коммутацией тока от 10 до  120 Ампер и GDM – однофазные твердотельные реле в корпусе промышленного исполнения с коммутацией тока от 100 до  500 Ампер. Управляющее напряжение при этом составляет 70-280V AC, 3-32V DC. Также возможно фазовое (аналоговое) управление тремя способами: 1) аналоговый сигнал 4-20мА; 2) аналоговый сигнал 0-10V DC; 3) переменный резистор 470-560кОм/2Вт. Для управления пременным резистором необходимо использовать потенциометр VR-RV-24YN-B504 (500 кОм), который применяется совместно с реле GDHxxxxxVA  для плавного управления  нагрузкой. Переменный резистор VR-RV-24YN-B103 (10 кОм) используется для управления оборотами электродвигателя через частотный преобразователь.

Трехфазные реле обозначаются GTH и позволяют коммутировать ток от 10 до 120 Ампер сразу в трех фазах, что является большим преимуществом при коммутации трехфазных нагрузок.  Управляющее напряжение также может быть двух видов: 70-280V AC и 3-32V DC.

Трехфазные реверсивные твердотельные реле отличаются от них по ряду характеристик. В маркировке трехфазные аналоги обозначают аббревиатурой GTR. Это полупроводниковые приборы, задача которых осуществлять бесконтактную коммутацию цепей переменного и постоянного тока. Основная задача у них не отличается от однофазных реле, однако характер ее выполнения имеет свои особенности. Так, в трехфазное реверсивное твердотельное реле встроена специальная RC-цепь, которая обеспечивает надежную защиту от ложного включения.

Это очень актуально при эксплуатации на индуктивной нагрузке. Также возможности данных приборов позволяют их использовать при запуске и управлении асинхронными двигателями, осуществляя их реверс. Однако для этого необходимо соблюдать некоторые условия, в частности, учитывать пусковые токи каждого двигателя, чтобы подбирать прибор со значительным запасом по току.

Хорошо, если данный запас будет многократный – это сделает эксплуатацию более безопасной, оперативной и эффективной. Также, при эксплуатации любых твердотельных реле необходимо обеспечивать  дополнительный отвод тепла, используя соответствующий радиатор. Если есть угроза кратковременного перенапряжения реле, в целях защиты прибора используются варисторы. В качестве же защиты от ряда возможных перегрузок напряжения выступают быстродействующие предохранители.

Трехфазные реверсивное твердотельные реле характеризуются продолжительным сроком службы. Управляющее напряжение возможно только 3-32V DC. Коммутация осуществляется сразу по трем фазам. Во время эксплуатации также гарантируется отсутствие акустического шума, искрения и дребезга во время переключения, обеспечивается высокая оперативность управления напряжением. Между управляемой и коммутируемой цепью наблюдается высокое сопротивление изоляции. Это также усиливает долговечность работы прибора. Само управление коммутацией осуществляется при переходе тока через ноль посредством светодиодной индикации направления вращения.

Статья твердотельные реле SSR | CITYRON

Что есть твердотельное реле?

Полупроводниковое твердотельное реле, сокращенное название ТТР (в иностранной литературе Solid State Relay сокращенно SSR) — это полупроводниковое электронное устройство, предназначенное для коммутации цепей переменного и постоянного тока. Непосредственная коммутация цепи осуществляется путем подачи на клеммы твердотельного реле управляющего сигнала.

Преимущества твердотельных реле бренда CITYRON:
• Высокая скорость срабатывания.
• Низкое собственное энергопотребление.
• Очень высокий ресурс наработки на отказ (более 1 млрд циклов замыкания-размыкания)
• В отличие от контакторов, в твердотельном реле отсутствуют механические элементы, участвующие в коммутации цепей, следовательно, нет электрической дуги и это позволяет использовать твердотельное реле во взрывоопасной и пожароопасной среде.
• Во время работы отсутствуют посторонние шумы.
• В твердотельных реле, поставляемые компанией «Ситирон», используется способ коммутации с контролем перехода через ноль — эта особенность позволяет снизить коммутационные помехи в сети.
• Простота и удобство монтажа.
• Управление твердотельным реле осуществляется напряжением в диапазоне 3-32 В постоянного тока.
• Относительно малый вес и габаритные размеры.

Компания Ситирон предлагает на российском рынке твердотельные реле собственного бренда. Отличительные особенности твердотельных реле бренда «Ситирон»:

• Доступная цена (на твердотельные реле и радиаторы распространяется скидка!)
• всегда в достаточном количестве на складе компании «Ситирон» (актуальное количество можно посмотреть на сайте компании)
• защитные шторки на клеммах твердотельного реле, для защиты от случайного прикосновения.

На российском рынке представлено огромный спектр твердотельных реле для самых разных задач. В компании «Ситирон» представлены твердотельные реле, которые чаще всего используются при организации приточно-вытяжных систем вентиляции.

Рекомендации по выбору твердотельных реле для совместной работы с электрическим ТЭНом.

ВАЖНО!
При выборе ТТР обязательно должен быть 30% запас по мощности, а также обязательно использовать радиатор!

Пример расчета:
Дано: трехфазный электрический ТЭН мощностью 10кВт. Требуется подобрать твердотельное реле и радиатор к нему.

Iн= Pн/(√3*Uл*cosφ)=10000/(√3*380*1)=15 А
Pн — мощность электрического ТЭНа.
Uл — линейное напряжение.
cosφ — коэффициент мощности, для электрического ТЭНа эта величина равна 1.

Величина тока с запасом по мощности: 15А + 30%=19.5А
Ближайшее твердотельное реле необходимое нам: трехфазное твердотельное реле на ток 25А, радиатор на него H-110.


Однофазные твердотельные реле:
(кликните на соответствующую ссылку, для перехода в карточку товара сайте):
SSR-1DA25A(3-32VDC) – рекомендуемая мощность ТЭНа не больше 4.1кВт
SSR-1DF40A(3-32VDC) – рекомендуемая мощность ТЭНа не больше 6.6кВт

Трехфазные твердотельные реле:
SSR-3DA25A(3-32VDC) – рекомендуемая мощность ТЭНа не больше 12.5кВт
SSR-3DA40A(3-32VDC) – рекомендуемая мощность ТЭНа не больше 19.8кВт

Радиаторы:
Радиатор охлаждения I-50M – для однофазных твердотельных реле на ток до 25А
Радиатор охлаждения I-50T – для однофазных твердотельных реле на ток до 40А
Радиатор охлаждения H-110 – для трехфазных твердотельных реле на ток до 25А
Радиатор охлаждения T-115 – для трехфазных твердотельных реле на ток до 40А

Конструктивные элементы твердотельного реле можно посмотреть на рисунке 1.

 
                                   

Рис.1

Силовые клеммы
Управляющие клеммы
Защитные шторки

Твердотельное реле | Electric-Blogger.ru

2017-05-25 Промышленное  

Твердотельное реле ( SSR — Solid State Relay) — это разновидность обычного электромеханического реле или контактора, нашедшая на сегодняшний день широкое применение в промышленности.

То есть также как и обычное реле, твердотельное служит для коммутации мощной нагрузки с помощью небольшого управляющего сигнала. В отличии от электромеханического реле твердотельное не имеет механических подвижных контактов, оно выполнено полностью на полупроводниковых элементах.

Это позволяет значительно повысить срок эксплуатации реле, избавиться от шума и дребезга контактов, сократить собственное энергопотребление, исключить электромагнитные помехи при включении, увеличить быстродействие.

Но с другой стороны у твердотельных реле есть и ряд минусов.

Во первых твердотельные реле при работе сильно нагреваются, что обусловлено электрическими потерями на силовых полупроводниковых элементах. И чем больше мощность нагрузки, тем больше нагрев.

Поэтому им необходимо обеспечить хороший теплоотвод. Для этого необходим охлаждающий радиатор, а при «тяжелых» режимах работы еще и вентилятор. Нормальной температурой реле, не влияющей на снижение эффективности работы считается примерно 40°C. При повышении температуры до 60°C твердотельные реле могут работать нестабильно, даже выйти из строя.

Во вторых это конечно цена, которая на сегодняшний день превышает цену обычных контакторов в несколько раз.

В третьих необходимо помнить, что твердотельные реле всегда необходимо выбирать с запасом по номинальному току в 2-4 раза, а в случае с индуктивной нагрузкой в 6-10 раз, что неизбежно приводит опять же к увеличению стоимости реле.

Но даже несмотря на эти недостатки, при грамотном подходе к выбору использование твердотельных реле полностью себя оправдывает. Например там, где частота включений-выключений нагрузки очень высокая, обычные контакторы могут не справляться со своими обязанностями из-за ограниченного ресурса коммутаций, а твердотельные реле могут спокойно работать годами. Наиболее широко твердотельные реле применяются в системах нагрева и температурного контроля.

Принцип действия твердотельных реле

Принцип действия твердотельного реле следующий: управляющий сигнал через оптопару, которая обеспечивает гальваническую развязку, поступает на схему управления, которая управляет выходным ключом. В качестве выходного ключа могут применяться тиристоры, симисторы — при работе на переменном токе и транзисторы — при работе на постоянном токе.

По способу коммутации твердотельные реле делятся на два основных типа:

— управление с контролем перехода через 0

Данный метод заключается в том, что при подаче управляющего сигнала на вход, на выходе реле включится только когда значение переменного напряжения достигнет нулевого уровня. Благодаря такому методу уменьшается начальный бросок тока, снижается уровень электромагнитных помех. Минус такого типа реле в том, что они не способны коммутировать высокоиндуктивную нагрузку.

Реле данного типа используются для коммутации резистивных (ТЭНЫ, лампы накаливания), емкостных ( помехоподавляющие фильтры), слабоиндуктивных нагрузок (соленоиды, клапаны).

— фазовое управление

Данный метод интересен тем, что при изменении какого-либо параметра на входе, на выходе можно менять величину выходного напряжения, тем самым регулируя мощность нагрузки.

Реле такого типа можно управлять индуктивными и резистивными нагрузками, регулировать мощность нагревательных элементов.

Как правильно подобрать твердотельное реле

На правильный выбор ТТР в первую очередь влияют такие параметры как:

  • ток нагрузки — номинальный, пусковой
  • тип нагрузки — индуктивный, резистивный, емкостной
  • коммутируемое напряжение — переменное, постоянное. Для переменного также имеет значение количество фаз.
  • управляющее напряжение — переменное, постоянное

Расшифровка номенклатуры твердотельных реле

На примере реле BDH 20044 ZD3 фирмы KIPPRIBOR рассмотрим как расшифровываются их технические характеристики:

B — Тип корпуса промышленного исполнения

D — Однофазное реле

H — Тип выходного силового элемента — тиристор SCR типа на керамической подложке. Представляет из себя полупроводниковый ключ, выполненный методом нанесения на металлическое основание изолирующей керамической подложки, на которую затем наносятся кристаллы полупроводниковой структуры тиристора.

200 — максимальный допустимый ток нагрузки

44 — Номинальное коммутируемое напряжение 440 V AC

ZD3 — Тип управляющего сигнала коммутируемого напряжения 3-32 DC коммутация переменного тока

Подключение твердотельных реле

В качестве нагрузки возьмем обычную лампу накаливания. Один провод подключаем напрямую на лампу.

В разрыв другого провода подключаем выходные контакты реле.

На входные контакты соблюдая полярность подключаем источник питания постоянного тока, в моем случае 12В. На белый провод подключаем плюсовой вывод, на красный — минус.

И выходные контакты сработали, лампа загорелась. О срабатывании реле также сигнализирует светодиод на его корпусе.

Вот и все, ничего сложного.

Что такое твердотельное реле? Разъяснение конструкции твердотельного реле

Твердотельные реле — это переключающие реле, не требующие использования каких-либо механических частей. Это обычно дает им преимущество в том, что срок их службы превышает срок службы обычного электромеханического реле, и хотя твердотельные реле намного быстрее электромеханических реле, они имеют некоторые конструктивные особенности.

Твердотельные реле покорили мир, произведя революцию в распределении электроэнергии во всех отраслях, от автоматизации сельского хозяйства до авиакосмической промышленности.Но вам может быть интересно… «Как именно они работают?» Эта статья будет охватывать все, от основ твердотельных реле до оптоизоляторов и оптопар, фотодиодов и PN-переходов.

Конструкция твердотельного реле

Твердотельные реле

обычно представляют собой простой двухпозиционный переключатель с клеммой питания и клеммой нагрузки, которая переключается, когда внешний управляющий сигнал передается на реле через другую клемму. Когда это происходит, переключение происходит очень быстро, и на нагрузку подается питание, обычно с помощью силового транзистора MOSFET.

Реле

могут быть спроектированы и использоваться с коммутационной способностью как переменного, так и постоянного тока, но внутренняя конфигурация должна быть изменена для работы в любом сценарии. Реле постоянного тока могут работать с одним полевым МОП-транзистором, при этом исток и сток подключены к питанию и нагрузке главной цепи, а управляющий сигнал подключен к проходному затвору. Управляющий сигнал может иметь очень малую мощность, что позволяет управлять реле (и цепью с большой нагрузкой) с помощью чего-то столь же маленького, как Arduino. Твердотельные реле могут иметь несколько транзисторов, выровненных параллельно, чтобы обеспечить более высокий потенциал протекания тока, который может быть рассчитан на 100 ампер.Для переключателей переменного тока требуется как минимум два транзистора, поскольку один полевой МОП-транзистор не может подавлять ток в обоих направлениях, когда реле находится в выключенном состоянии. Два транзистора с подключенными источниками используются для блокировки тока в выключенном состоянии и для передачи энергии при включении управляющего сигнала внутри реле.

Как работает твердотельное реле?

Вам может быть интересно — какой переключатель позволяет управляющему сигналу обеспечивать мощность в сотни ампер? Настоящая прелесть твердотельных реле по сравнению с электромеханическими реле в конечном итоге заключается в различии механизмов переключения.В твердотельных реле используются так называемые оптоизоляторы или оптопары. На человеческом языке это означает «светоотделитель». Правильно — переключатель внутри твердотельного реле — это просто луч света! Как правило, есть светодиод очень низкой мощности, который направляет луч света на фотодиод, который почти мгновенно позволяет передавать мощность через него — или «включаться».

Рисунок 1: Это примерная диаграмма типичного фотодиода. На схеме изображен светодиод, светящий на фотодиодный транзистор.Это действие позволяет току течь через транзистор.

Оптоизоляторы имеют решающее значение в твердотельных реле, поскольку они разделяют две или более цепи реле. Поскольку реле используют сигналы малого напряжения для управления сигналами очень большого напряжения, чрезвычайно важно разделять эти сигналы. Красота и революционная черта оптоизоляторов заключается в отсутствии движущихся частей. Например, в электромеханических реле такое разделение цепи становится возможным за счет электромагнитного поля, которое также используется для окончательного замыкания цепи большой нагрузки.

В твердотельном реле фотодиод — это то, что завершает соединение в цепи нагрузки. Так что же такое фотодиод? Это очень специализированный транзистор, который использует фотоны для питания затвора, а не типичный электрический сигнал. Как вообще это работает? В нем используется узкоспециализированный кремниевый P-N переход.

Что такое переход P-N и как он работает?

P-N переход наблюдается во всех видах различных кремниевых компонентов для множества приложений и, по сути, позволяет «кремнию» функционировать как полупроводник.Кремний как самостоятельный элемент имеет очень низкую электропроводность. Однако, когда кремний легирован другими элементами, такими как фосфор и бор, кремний p-типа и n-типа становится намного более электропроводным. Область кремния, где встречаются кремний p-типа и n-типа, называется P-N переходом. В схеме оптоизолятора этот P-N-переход известен как фотодиод, который в конечном итоге имеет одну главную цель — генерировать ток в присутствии света.

Рис. 2: Это изображение представляет собой художественное изображение PN-перехода, которое иллюстрирует область истощения фотодиода.

Свет состоит из фотонов или частиц, несущих энергию, которые являются «хлебом с маслом» физики фотодиодов. Как правило, свет, на который лучше всего реагируют фотодиоды, составляет около 200 нм (ультрафиолет) или 1100 нм (инфракрасный). Эти фотоны создают электронно-дырочные пары в обедненной области кремниевого фотодиода. Область обеднения образуется, когда кремний с примесью p-типа входит в контакт с кремнием n-типа, и электроны и дырки текут в области с более низким потенциалом. Когда свет попадает на кремний, фотоны поглощаются, создавая электронно-дырочные пары.Когда электронно-дырочные пары начинают расходиться, они уносятся электрическим полем зоны обеднения. Это движение электронно-дырочных пар создает ток в фотодиоде, пока PN-переход работает в обратном направлении смещения.

Теперь, когда на выходе оптоизолятора генерируется сигнал, можно использовать транзистор или ряд транзисторов для усиления этого сигнала и в конечном итоге вывода очень больших сигналов, метод, упомянутый ранее в статье.Возможность использовать сигнал очень низкой мощности в качестве входа оптоизолятора и, наоборот, превращать этот сигнал в очень большой выходной сигнал, является конечной целью твердотельного реле.

Хотите узнать больше? Подробно изучите твердотельные и электромеханические реле.

% PDF-1.4 % 215 0 объект > эндобдж xref 215 184 0000000016 00000 н. 0000004499 00000 н. 0000004565 00000 н. 0000005611 00000 п. 0000006045 00000 н. 0000006634 00000 н. 0000006990 00000 н. 0000007053 00000 п. 0000007548 00000 н. 0000007947 00000 н. 0000008265 00000 н. 0000008379 00000 н. 0000008495 00000 н. 0000008573 00000 п. 0000008754 00000 н. 0000008805 00000 н. 0000017493 00000 п. 0000023711 00000 п. 0000023879 00000 п. 0000024049 00000 п. 0000030711 00000 п. 0000038302 00000 п. 0000045378 00000 п. 0000053439 00000 п. 0000053721 00000 п. 0000054033 00000 п. 0000054412 00000 п. 0000054810 00000 п. 0000062467 00000 п. 0000069853 00000 п. 0000070108 00000 п. 0000070191 00000 п. 0000070246 00000 п. 0000073476 00000 п. 0000074328 00000 п. 0000077047 00000 п. 0000077153 00000 п. 0000077384 00000 п. 0000077467 00000 п. 0000077522 00000 п. 0000077551 00000 п. 0000077689 00000 п. 0000077825 00000 п. 0000077946 00000 п. 0000078092 00000 п. 0000078643 00000 п. 0000079001 00000 п. 0000079295 00000 п. 0000080456 00000 п. 0000080746 00000 п. 0000086160 00000 п. 0000086420 00000 н. 0000098830 00000 н. 0000099085 00000 п. 0000112177 00000 н. 0000112432 00000 н. 0000128515 00000 н. 0000128764 00000 н. 0000128875 00000 н. 0000128985 00000 н. 0000129106 00000 н. 0000129252 00000 н. 0000129353 00000 н. 0000129474 00000 н. 0000129620 00000 н. 0000129754 00000 н. 0000129851 00000 н. 0000129997 00000 н. 0000130136 00000 н. 0000130279 00000 н. 0000130418 00000 н. 0000130563 00000 н. 0000130709 00000 н. 0000130846 00000 н. 0000130943 00000 н. 0000131089 00000 н. 0000131173 00000 н. 0000131252 00000 н. 0000131332 00000 н. 0000131418 00000 н. 0000131589 00000 н. 0000131735 00000 н. 0000131821 00000 н. 0000131918 00000 н. 0000132064 00000 н. 0000132149 00000 н. 0000132234 00000 н. 0000132314 00000 н. 0000132460 00000 н. 0000132606 00000 н. 0000132745 00000 н. 0000132888 00000 н. 0000133027 00000 н. 0000133173 00000 н. 0000133319 00000 н. 0000133458 00000 н. 0000133601 00000 н. 0000133740 00000 н. 0000133886 00000 н. 0000134032 00000 н. 0000134176 00000 н. 0000134273 00000 н. 0000134419 00000 н. 0000134558 00000 н. 0000134697 00000 н. 0000134818 00000 н. 0000134964 00000 н. 0000135074 00000 н. 0000135171 00000 н. 0000135317 00000 н. 0000135452 00000 н. 0000135593 00000 п. 0000135732 00000 н. 0000135879 00000 п. 0000136033 00000 н. 0000136162 00000 н. 0000136300 00000 н. 0000136441 00000 н. 0000136587 00000 н. 0000136733 00000 н. 0000136875 00000 п. 0000137015 00000 н. 0000137136 00000 н. 0000137290 00000 н. 0000137434 00000 п. 0000137573 00000 н. 0000137711 00000 н. 0000137857 00000 н. 0000138003 00000 н. 0000138145 00000 н. 0000138287 00000 н. 0000138423 00000 н. 0000138552 00000 н. 0000138723 00000 н. 0000138869 00000 н. 0000139010 00000 н. 0000139149 00000 н. 0000139296 00000 н. 0000139450 00000 н. 0000139579 00000 п. 0000139717 00000 н. 0000139852 00000 н. 0000139998 00000 н. 0000140144 00000 н. 0000140280 00000 н. 0000140420 00000 н. 0000140541 00000 п. 0000140695 00000 п. 0000140806 00000 н. 7a

ЧТО ТАКОЕ ТВЕРДОЕ РЕЛЕ?

T

Первые твердотельные реле стали доступны в качестве стандартных компонентов к концу 1960-х годов.Сегодня твердотельное реле идеально подходит для определенных приложений: плавный пуск, изменение направления вращения, регулирование мощности.

Определение

Твердотельное реле — это электронный компонент, который выполняет функцию интерфейса с гальванической развязкой между цепью управления, обычно на низком уровне, и цепью питания, подключенной к нагрузкам, которые могут иметь высокие номинальные мощности (двигатели, насосы, соленоидные клапаны, нагреватели, так далее).

Другими словами, это электрический компонент, используемый для включения и выключения нагрузки.

Эта функция выполняется полностью «статично», без движущихся частей, что обеспечивает почти неограниченный срок службы компонента.

Структура твердотельного реле

Твердотельное реле, также называемое SSR, в основном имеет 5 функций. Эта структура технически эквивалентна и сопоставима с структурой электромеханического реле (ЭМИ).

В электромеханическом реле входные характеристики (напряжение, ток, уровень) определяются катушкой.Точно так же SSR имеет более или менее сложную входную цепь. В нижней части диапазона он может состоять из простого последовательного резистора с поляризационным диодом. Более сложные реле могут иметь схему, генерирующую постоянный ток для расширенных диапазонов входного напряжения, или аналого-цифровой преобразователь для аналоговых реле.

В ЭМИ электромагнитная связь между подвижным якорем и катушкой, естественно, обеспечивает гальваническую развязку. В случае SSR полупроводникового типа эта изоляция обеспечивается оптической связью (фототранзистор, фототриак …).В некоторых более старых версиях изоляция может осуществляться с помощью магнитной муфты или даже реле REED.

Эта схема обрабатывает полученный входной сигнал и переключает выходную цепь. Если переключение является сложным (переключение при нулевом напряжении, импульсы, регулировка фазы…), эта схема гарантирует желаемый режим переключения. В случае, например, переключения при нулевом напряжении, схема будет гарантировать, что выход будет переключаться только тогда, когда напряжение в следующий раз станет равным нулю после подачи управляющего входа.

Эта схема состоит из элемента, обеспечивающего переключение электроэнергии на нагрузку. Этот компонент может быть либо биполярным транзистором, либо МОП-транзистором для переключения напряжения постоянного тока на нагрузку, либо симистором или тиристорами с обратной связью для переключения источника переменного тока.

В электромеханических реле переключающий элемент представляет собой простой контакт, способный работать в режиме переменного или постоянного тока. В твердотельном реле выход предварительно определяет тип коммутируемого основного источника питания.

Благодаря своей полностью электронной структуре, SSR более чувствительны к помехам, присутствующим в основном источнике переменного тока, чем EMR. Схема переключения должна быть защищена от скачков и помех в источниках низкого напряжения. Теперь реле все чаще интегрирует такую ​​защиту. Защита от перенапряжения теперь входит в стандартную комплектацию.

Миниатюризация электронных компонентов улучшила характеристики этих реле и сделала возможным добавление дополнительных функций.

T Типичные приложения для твердотельных реле

Твердотельные реле успешно используются в течение 20 лет в широком спектре приложений. Текущий опыт показывает, что, несмотря на универсальность, SSR особенно подходят для технологических приложений, где ПЛК или другие схемы на основе микроконтроллеров управляют станками.

Благодаря очень высокой входной чувствительности (менее 15 мА для управления до 120 А) в широком диапазоне напряжений твердотельные реле напрямую совместимы с большинством стандартов для электронных компонентов, таких как CMOS, TTL, микропроцессоры и т. Д.

Потенциал использует включает (неполный список):

Нагревательные элементы: Коммерческое оборудование для пищевой промышленности • Литье пластмасс под давлением / экструзия • Печи • HVAC • Текстиль • Отопление жилых помещений • Инфракрасное отопление • Сушка • Термоформование • Паяльное оборудование

Движение: Насосы • Компрессоры • Конвейерные системы • Вентиляторы • Лифты • Лифты • Подъемники • Моторизованные тренажеры

Освещение: Театры • Муниципалитеты • Кинотеатры и сцены • Взлетно-посадочные полосы аэропорта • Улицы и проезды • Склады • Офисные помещения • Опасные места и маяки

Разное: силовые трансформаторы • Электромагниты • Импульсные источники питания • Регуляторы • Инверторы • Преобразователи мощности • Источники бесперебойного питания • Конденсаторы коррекции коэффициента мощности • Электромагнитные клапаны • И многое другое

Твердотельные реле и контакторы

Carlo Gavazzi — лидер на рынке твердотельных реле с одним из самых широких ассортиментов продукции в отрасли.Обладая более чем 35-летним опытом, Карло Гавацци знает, что нужно для производства твердотельных реле, которые выдерживают самые суровые условия эксплуатации. Имея местные центры продаж и поддержки, расположенные в 22 странах, и независимые дистрибьюторы в более чем 100 странах, продукция Carlo Gavazzi и техническая поддержка доступны по всему миру.

Что такое твердотельное реле

Твердотельное реле — это электронный переключатель с твердотельным выходом, например SCR, TRIAC, MOSFET или транзистор.Твердотельные реле не имеют движущихся частей, и поэтому их срок службы значительно больше, чем у механических контактов — это делает их идеальными для приложений контроля температуры, где их короткие рабочие циклы обеспечивают более точный контроль температуры. Кроме того, они используют оптопары для обеспечения изоляции между входом и выходом, поэтому нет катушки, которая может создавать скачки напряжения при выключении, что делает их более удобными для выходов с низким уровнем сигнала, которые обычно встречаются на контроллерах температуры.Доступны как цифровые (напряжения переменного и постоянного тока), так и аналоговые (4-20 мА и 0-10 В) входы.

Мы подготовили серию модулей онлайн-обучения, чтобы дать хороший обзор основных операций и приложений твердотельных реле. Эти учебные модули можно проходить в любое время, и по завершении вы получите сертификат.

CARLO GAVAZZI предлагает твердотельные реле на напряжение до 600 В и на ток до 125 А.Наши реле оснащены прямым медным соединением, чтобы обеспечить улучшенную защиту от теплового напряжения и тем самым увеличить срок службы и повысить надежность. Кроме того, наши SSR доступны со встроенным радиатором или без него.

Кроме того, Carlo Gavazzi предлагает реле со встроенным контролем потери сети, потери нагрузки, короткого замыкания SSR, разрыва цепи и перегрева с релейным выходом, позволяющим немедленно принять меры.

Для приложений с большим количеством зон наша серия NRG является идеальным коммутационным решением, когда требуется мониторинг устройств полевого уровня, чтобы минимизировать время простоя дорогостоящего оборудования.Помимо функции переключения, NRG интегрирует схему мониторинга для обеспечения обмена данными с контроллером машины через Modbus RTU, PROFINET и EtherNet / IP ™. Типичные области применения включают машины для литья пластмасс под давлением, машины для выдувания ПЭТ, упаковочные машины, оборудование для производства полупроводников и машины для закалки стекла.

Ассортимент нашей продукции

Серия RM1

Выбрать продукт
  • Однофазные твердотельные реле в стандартном промышленном стиле с хоккейной шайбой
  • Доступен с нулевым, случайным, пиковым, фазовым углом или переключением постоянного тока
  • до 125 A / 600 В

Серия RZ

Выбрать продукт
  • Трехфазные твердотельные реле
  • Доступен с нулевым или случайным переключением
  • до 75 A / 600 В

Серия RGS

Выбрать продукт
  • Однофазные твердотельные реле в тонком корпусе
  • Доступен с нулевым, случайным, постоянным током, фазовым углом, пакетным или распределенным полным циклом переключения
  • до 90 A / 600 В

РФ1 серии

Выбрать продукт
  • Компактные однофазные твердотельные реле
  • Доступен с нулем или случайным образом
  • Быстроразъемные клеммы для упрощения электромонтажа
  • Включает термопрокладку
  • до 25 A / 230 В

RA2A / RK серии

Выбрать продукт
  • 2-полюсные твердотельные реле
  • Доступен с нулем или случайным образом
  • Быстроразъемные или винтовые клеммы для упрощения электромонтажа
  • Доступен с термопрокладкой
  • до 75 A / 600 В

Серия RGC1

Выбрать продукт
  • Однофазные твердотельные реле со встроенным радиатором
  • Доступен с нулевым, случайным, постоянным током, фазовым углом, пакетным или распределенным полным циклом переключения
  • до 85 A / 600 В

Серия RGC3

Выбрать продукт
  • Трехфазные твердотельные реле со встроенным радиатором
  • Доступен с переключением на 2 или 3 линии
  • Доступен с переключением нуля, фазового угла, пакетным или распределенным полным циклом
  • до 75 A / 600 В

NRG

  • Многозонные твердотельные реле с подключением к шине для управления и контроля
  • Доступен с переключением нуля, фазового угла, пакетным или распределенным полным циклом
  • до 90 A / 600 В
  • Управление и мониторинг через Modbus, ProfiNet и Ethernet IP
  • до 90 A / 600 В

RP1A серии

Выбрать продукт
  • Однофазные твердотельные реле для монтажа на печатной плате и в гнезда
  • Доступен с нулевым или случайным переключением
  • до 10 A / 480 В

Типы переключения

Твердотельные реле позволяют включать нагрузку в различные моменты цикла переменного тока — это позволяет им минимизировать пусковой ток первой половины цикла.Типы переключения, которые предлагает Карло Гавацци:

Приложения

Пластмассы и резина

Длительный электрический срок службы и очень высокая надежность — вот причины, по которым твердотельные реле используются для управления нагревательными элементами в экструзионном и инжекционном оборудовании для пластмасс, резины и других синтетических материалов.

Долгосрочная экономия стоимости владения достигается за счет ограничения количества поломок оборудования и технического обслуживания, а также за счет увеличения производительности и качества процесса.

Упаковка и погрузочно-разгрузочные работы

Повышенная износостойкость, длительный срок службы и устойчивость к ударам и вибрации делают твердотельные реле предпочтительным выбором в конвейерных системах, упаковочных машинах, штабелеукладчиках и другом оборудовании.

Обладая чрезвычайно быстрым переключением, высокой надежностью и длительным сроком эксплуатации, твердотельные реле также повышают производительность, а также сводят к минимуму затраты на техническое обслуживание.

Еда и напитки

Низкое энергопотребление, надежность и увеличенный срок службы — вот причины, по которым твердотельные реле предпочитают в пищевой промышленности и производстве напитков.

Оптимально регулируя нагревательные элементы в духовках, фритюрницах, кофеварках, тостерах, пароварках, подносах для подогрева, электрических грилях и другом коммерческом оборудовании, наши SSR экономят энергию, минимизируют время простоя и сокращают техническое обслуживание, тем самым обеспечивая значительную экономию затрат.

ОВК и охлаждение

Твердотельные реле идеально подходят для управления двигателями и клапанами вентиляторов, канальными нагревателями, а также кондиционированием воздуха и тепловыми насосами в коммерческих и промышленных системах HVAC / R.

Их долгий срок службы и бесшумная работа делают их одинаково подходящими для регулирования температуры в водонагревателях, холодильниках для продуктовых магазинов, морозильных камерах и витринах.

Насосные системы

Твердотельные реле с номинальной мощностью в лошадиных силах идеально подходят для регулирования клапанов, управления двигателями и насосами в нефтегазовой, ирригационной отраслях, а также в сфере водоснабжения и водоотведения.

Некоторые SSR Carlo Gavazzi имеют опции переключения нуля, плавного пуска и пропорционального управления мощностью для повышения эффективности. Высокая надежность, устойчивость к ударам и длительный срок службы помогают улучшить общую производительность системы и снизить эксплуатационные расходы.

Системы освещения

Твердотельные реле — это основной выбор для театрального, складского и коммерческого освещения.

Бесшумная работа, быстрое переключение и увеличенный срок службы электрооборудования — вот лишь некоторые из реализованных преимуществ.SSR с пропорциональным управлением выходом расширяют привлекательность SSR для приложений, требующих диммирования или мигания в определенной последовательности.

CARLO GAVAZZI очень активен во всех основных социальных сетях — не забудьте подписаться на наши каналы.

Основы и принцип работы твердотельного реле

Основы твердотельного реле
Что такое твердотельное реле (SSR)? Твердотельное реле — это бесконтактный переключатель, полностью состоящий из твердотельного электрического элемента, который может управлять сильноточной нагрузкой с помощью небольшого управляющего сигнала.Он может включать и выключать без контакта и искры благодаря характеристикам переключения электрического элемента (т.е. полупроводниковых компонентов, таких как переключающий транзистор, симистор и т. Д.). Твердотельное реле имеет следующие преимущества перед электромагнитными реле: высокая надежность, отсутствие контакта, отсутствие искры, длительный срок службы, быстрая скорость переключения, сильная противоинтерференционная способность и небольшие размеры. Он широко используется в различных приложениях, таких как станки с ЧПУ, системы дистанционного управления и устройства промышленной автоматизации, химическая промышленность, медицинское оборудование, системы безопасности и т. Д.

Характеристики твердотельного реле

  1. SSR не имеют внутренних механических элементов и полностью герметичны в структуре. Таким образом, твердотельные реле обладают такими преимуществами, как виброустойчивость, коррозионная стойкость, длительный срок службы и высокая надежность.
  2. Низкий уровень шума. В ТТР переменного тока используется технология запуска по переходу через ноль, что эффективно снижает скорость нарастания напряжения dv / dt и скорость нарастания тока di / dt в линии, делая SSR минимальным вмешательством в источник питания при длительной работе.
  3. Время переключения короткое, поэтому SSR можно использовать в высокочастотных приложениях.
  4. Оптоэлектронная изоляция используется между входными и выходными цепями, а напряжение изоляции превышает 2500 В.
  5. Низкое энергопотребление, совместимость со схемами TTL и COMS.
  6. Схема защиты установлена ​​на выходных клеммах.
  7. Высокая грузоподъемность.

Принцип работы твердотельного реле
Как работает твердотельное реле? Твердотельные реле можно разделить на SSR переменного тока и SSR постоянного тока в зависимости от применения.Теперь возьмем твердотельное реле переменного тока в качестве примера, чтобы объяснить принцип работы SSR. Как показано на Рисунке 1, это принципиальная схема работы ТТР переменного тока, а части ① ~ ④ образуют его основной корпус. В целом, SSR имеет только 2 входных терминала (A и B) и 2 выходных терминала (C и D). Это четырехконтактное активное устройство.

При работе подайте только определенный управляющий сигнал на A&B, чтобы можно было управлять состоянием включения-выключения между C и D, а затем выполнить функцию переключения. Схема связи играет роль в обеспечении канала между входными и выходными клеммами для входного сигнала управления от A и B, но разрывает электрическое соединение между входом и выходом, чтобы выход не влиял на вход.Компоненты, используемые в цепях связи, представляют собой «оптические соединители», которые имеют хорошую чувствительность к действию, высокую скорость отклика, высокий уровень изоляции входа / выхода (выдерживаемое напряжение). Нагрузка на входной клемме представляет собой светодиод, что позволяет очень легко согласовать вход SSR с уровнем входного сигнала. При использовании он может быть напрямую связан с выходным интерфейсом компьютера, то есть управляется логическим уровнем «1» и «0». Функция триггерной схемы состоит в том, чтобы генерировать желаемый триггерный сигнал для запуска работы схемы переключения.Однако без специальной схемы управления переключающая схема будет создавать RFI (радиочастотные помехи) и загрязнять электросеть в виде высоких гармоник или пиков, поэтому для этой цели настроена схема управления переходом через нуль. Означает переход через ноль, SSR находится во включенном состоянии при подаче управляющего сигнала и перехода напряжения переменного тока через ноль; после выключения управляющего сигнала SSR не находится в выключенном состоянии до тех пор, пока переменный ток не будет на стыке положительного полупериода и отрицательного полупериода (нулевой потенциал). Такая конструкция предотвращает влияние высших гармоник и загрязнение электросети.Схема демпфера предназначена для предотвращения воздействия и помех для коммутирующего компонента симистора от скачков и скачков (напряжения) от источника питания. Обычно используется демпферная цепь RC или нелинейное сопротивление (MOV). По сравнению с AC SSR, DC SSR не имеет внутри цепи управления переходом через нуль и демпфирующей цепи, а в качестве переключающего компонента обычно используется транзистор большой мощности. Кроме того, остальные принципы работы такие же.

Хотите купить твердотельное реле? ATO.com предлагает однофазные твердотельные реле с током нагрузки от 10 А, 25 А до 120 А и трехфазные твердотельные реле, включая 10 А, 40 А…, 80А, 100А и др.

Grove — твердотельное реле V2

Вместо катушек в корпусных твердотельных реле (SSR) используются силовые полупроводниковые устройства, такие как тиристоры и транзисторы, которые обеспечивают гораздо более высокую скорость переключения, чем механические реле. Grove — Solid State Relay V2 основан на высококачественном модуле G3MC202P , который позволяет использовать 5 В постоянного тока для управления MAX.240 В переменного тока. С помощью интерфейса Grove становится очень удобно использовать SSR с вашим arduino.

В соответствии с различными сценариями применения мы подготовили для вас серию твердотельных реле.

Grove — твердотельное реле V2

Grove — 2-канальное твердотельное реле

Grove — 4-канальное твердотельное реле

Grove — 8-канальное твердотельное реле

1 * Будьте осторожны при работе с высоковольтной нагрузкой переменного тока, не работайте при включенном питании.

2 * Это реле работает только с нагрузкой переменного тока, если вы используете нагрузку постоянного тока, после включения реле оно всегда будет оставаться включенным.
3 * Из-за тока утечки мы не рекомендуем использовать это реле с маломощным прибором.

Характеристики

1-Твердотельные реле имеют гораздо более высокие скорости переключения по сравнению с электромеханическими реле и не имеют физических контактов, которые могут изнашиваться.

2-Совершенно бесшумная работа.

3-Отсутствие физических контактов означает отсутствие искрения, позволяет использовать его во взрывоопасных средах, где очень важно, чтобы во время переключения не возникало искры.

4-Увеличенный срок службы, даже если он активирован много раз, так как нет движущихся частей, которые могут изнашиваться, и нет контактов, которые могли бы вызвать образование ямок или накопления нагара.

5-Компактный, тонкопрофильный SSR моноблочной конструкции с цельной выводной рамкой, включает в себя печатную плату, клеммы и радиатор, который намного меньше механических реле и может объединять больше каналов.

1-В закрытом состоянии повышенное сопротивление (выделение тепла) и повышенный электрический шум.

2-В разомкнутом состоянии меньшее сопротивление и обратный ток утечки.

3-Работает только для AC laod.

Типичные области применения

  • Операции, требующие переключения с малой задержкой, например управление светом сцены.

  • Устройства, требующие высокой стабильности, например медицинские приборы, светофоры.

  • Ситуации, требующие взрывозащиты, антикоррозийной защиты, защиты от влаги, например угольная, химическая промышленность.

Контактная карта

Введение в твердотельные реле

ВВЕДЕНИЕ:

Благодаря своим превосходным характеристикам твердотельное реле стало важным промышленным устройством управления во многих областях.
Это введение в твердотельные реле, из этой статьи вы узнаете, что такое твердотельное реле? Какие типы твердотельных реле? Как работают твердотельные реле? Как выбрать твердотельное реле? Как использовать твердотельные реле?

Вы можете быстро перейти к интересующим вас главам с помощью каталога Directory ниже и быстрого навигатора в правой части браузера.

СОДЕРЖАНИЕ


§1.Что такое твердотельное реле (SSR)

Твердотельное реле

(также известное как SSR, реле SS, реле SSR или переключатель SSR, твердотельный контактор, силовой электронный переключатель, автомобильные реле, электронные силовые реле и контакторы электрических сигналов) представляет собой интегрированное бесконтактное электронное переключающее устройство, которое компактно собрано из интегральной схемы (ИС) и дискретных компонентов. В зависимости от характеристик переключения электронных компонентов (таких как переключающие транзисторы, двунаправленные тиристоры и другие полупроводниковые компоненты), SSR могут очень быстро переключать состояние нагрузки «ВКЛ» и «ВЫКЛ» через электронную схему, точно так же, как и функции традиционных механических реле.По сравнению с предыдущим реле с «герконовым контактом», а именно электромеханическим реле (EMR), внутри SSR нет подвижной механической части, а также отсутствует механическое воздействие во время процесса переключения SSR. Поэтому твердотельное реле еще называют «бесконтактным переключателем».

По своим конструктивным характеристикам переключатель SSR превосходит EMR. Основными преимуществами твердотельных реле являются следующие:

● Полупроводниковый компонент действует как переключатель для реле, которое имеет небольшие размеры (компактный размер) и долгий срок службы (длительный срок службы).

● Лучшая электромагнитная совместимость, чем ЭМИ — невосприимчивость к радиочастотным помехам (RFI) и электромагнитным помехам (EMI), низкий уровень электромагнитных помех и низкий уровень электромагнитного излучения.

● Отсутствие движущихся частей, отсутствие механического износа, отсутствие шума при работе, отсутствие механических повреждений, и высокая надежность.

● Нет искры, дуги, горения, дребезга контактов и износа между контактами.

● Благодаря функции «переключение при нулевом напряжении, отключение при нулевом токе» легко добиться переключения «при нулевом напряжении».

● Быстрая скорость переключения (скорость переключения SSR в 100 раз выше, чем у обычного EMR), высокая рабочая частота.

● Высокая чувствительность, управляющие сигналы низкого электрического уровня (SSR может напрямую управлять большими токовыми нагрузками через малоточные управляющие сигналы), совместим с логической схемой (схемы TTL, CMOS, DTL, HTL), легко реализует несколько функций.

● Обычно упаковывается из изоляционного материала, с хорошей влагостойкостью, устойчивостью к плесени, коррозии, вибростойкости, механической ударопрочности и взрывозащищенности.

Кроме того, функция усиления и возбуждения твердотельного реле очень подходит для управления мощным исполнительным механизмом, который более надежен, чем электромагнитный. реле (ЭМИ). Управляющие переключатели твердотельных реле требуют очень низкой мощности, поэтому низкие управляющие токи можно использовать для управления большими токами нагрузки. И В твердотельном реле используется отработанная и надежная оптоэлектронная технология развязки между входными и выходными клеммами. Эта технология позволяет выходной сигнал устройства с низким энергопотреблением должен быть напрямую подключен к входным клеммам управления твердотельного реле для управления высокой мощностью устройство на выходной клемме твердотельного реле без необходимости в дополнительных схемах защиты для защиты устройства слабого тока, потому что «устройство малого тока управления» (подключенное к входной клемме SSR) и «большое устройство управления источники питания »(подключенные к выходной клемме SSR) были электрически изолированы.Кроме того, твердотельные реле переменного тока используют «детектор перехода через ноль». технология для безопасного применения AC-SSR к выходному интерфейсу компьютера, не вызывая серии помех или даже серьезных сбоев в работе компьютера. И эти функции не могут быть реализованы EMR.

Из-за присущих твердотельным реле характеристик и вышеуказанных преимуществ, SSR широко используется в различных областях с момента его появления в 1974 году и полностью заменил электромагнитные реле во многих областях, где электромагнитные реле не может применяться.Особенно в области компьютерных систем автоматического управления, потому что твердотельное реле требует очень низкого мощность привода и совместимы с логической схемой, а также могут напрямую управлять выходной схемой без необходимости в дополнительном промежуточном цифровом буфере.

В настоящее время твердотельные реле хорошо работают в военной, химической, промышленной устройства управления автоматикой, электромобиль, телекоммуникации, гражданское электронное оборудование управления, а также приложения для обеспечения безопасности и контрольно-измерительные приборы, такие как система нагрева электрической печи, машина с числовым программным управлением (станок с ЧПУ), оборудование для дистанционного управления, электромагнитный клапан, медицинское оборудование, система управления освещением (например, светофор, сцинтиллятор, система управления сценическим освещением), бытовая техника (например, стиральная машина, электрическая плита, духовка, холодильник, кондиционер), оргтехника (например, копировальный аппарат, принтеры, факсы и многофункциональные принтеры), системы пожарной безопасности, зарядка электромобилей система и так далее.В общем, твердотельные реле можно использовать в любом приложении, требующем высокой стабильности (оптическая изоляция, высокая устойчивость), высокой производительности (высокая скорость переключения, высокий ток нагрузки), и небольшой размер упаковки.

Конечно, твердотельные реле также имеют некоторые недостатки, в том числе: наличие падения напряжения в открытом состоянии и выходного тока утечки, необходимость мер по рассеиванию тепла, более высокая стоимость покупки, чем у EMR, реле постоянного и переменного тока не универсальны, единое состояние управления, небольшое количество контактных групп и плохая перегрузочная способность.Хотя некоторые специальные настраиваемые твердотельные реле могут решить некоторые из вышеперечисленных проблем, эти недостатки необходимо учитывать и оптимизировать при проектировании схем и применении SSR, чтобы максимизировать преимущества твердотельных реле.

§2. Какова структура твердотельных реле

Твердотельные реле представляют собой четырехконтактные активные устройства, две из четырех клемм являются клеммами управления входом, а две другие клеммы клеммы управления выходом. Хотя типов и спецификаций SSR-переключателей много, их конструкции схожи и состоят в основном из трех частей (как показано на рисунке 2.1): входная цепь (цепь управления), цепь возбуждения и выход Цепь (управляемая цепь).

Входная цепь:

Входная цепь твердотельного реле, также называемая схемой управления, обеспечивает контур для входного управляющего сигнала, делая управляющий сигнал источником запуска для твердотельного реле. В соответствии с различными типами входного напряжения входную цепь можно разделить на три типа: входная цепь постоянного тока, переменного тока. входная цепь и входная цепь переменного / постоянного тока.

Входную цепь постоянного тока можно разделить на резистивную входную цепь и входную цепь постоянного тока.

1) Резистивная входная цепь, входной ток которой линейно увеличивается с увеличением входного напряжения, и наоборот. Если управляющий сигнал имеет фиксированное управляющее напряжение, следует выбрать входную цепь резистора.

2) Входная цепь постоянного тока. Когда входное напряжение входной цепи постоянного тока достигает определенного значения, ток больше не будет явно увеличиваться при увеличении напряжения. Эта функция позволяет использовать твердотельное реле постоянного тока на входе в довольно широком диапазоне входного напряжения.Например, когда диапазон изменения напряжения управляющего сигнала довольно большой (например, 3 ~ 32 В), рекомендуется использовать твердотельное реле постоянного тока с входной цепью постоянного тока, чтобы твердотельное реле постоянного тока могло надежно работать в весь диапазон входного напряжения.

Некоторые из этих входных схем управления имеют управление с положительной и отрицательной логикой, инвертирование и другие функции, а также совместимость логических схем. Таким образом, твердотельные реле могут быть легко подключены к схемам TTL (схемы транзисторно-транзисторной логики), схемам CMOS (схемы комплементарных металлооксидных полупроводников), схемам DTL (схемам диодно-транзисторной логики) и схемам HTL (схемам высокопороговой логики).В настоящее время DTL постепенно заменяется TTL, а HTL заменяется CMOS. И если сигнал с широтно-импульсной модуляцией (ШИМ) используется в качестве входного сигнала, переключение ВКЛ / ВЫКЛ частоту источника питания переменного тока следует установить менее 10 Гц, иначе частота переключения выходного сигнала выходной цепи ТТР переменного тока не сможет поспевать за ней.

Цепь управления:

Цепь управления твердотельным реле состоит из трех частей: цепи развязки, функциональной цепи и цепи запуска.Однако, согласно Фактические потребности твердотельного реле, могут быть включены только одна / две из этих частей.

1. Изолированная цепь связи:

Методы изоляции и связи для цепей ввода / вывода (ввод / вывод Схема) твердотельных реле в настоящее время используются два способа: схемы оптопары и схемы высокочастотного трансформатора.

1) Оптопара (также называемая оптопарой, оптическим соединителем, оптоизолятором или оптическим изолятором) непрозрачно снабжена инфракрасным светодиодом (светоизлучающим диодом) и оптическим датчиком для обеспечения изолированного управления между «стороной управления» и «нагрузкой». сторона », потому что между« излучателем света »и« датчиком света »нет электрического или физического соединения, кроме луча.Типы комбинаций «источник-датчик» обычно включают: «светодиод-фототранзистор» (фототранзистор), «светодиод-симистор» (фототриак) и «светодиод-фотодиод». матрица »(стек фотодиодов используется для управления парой полевых МОП-транзисторов или IGBT).

2) В схеме связи высокочастотного трансформатора используется высокочастотный трансформатор для преобразования управляющего сигнала на входе в управляющий сигнал на выходе. Подробный процесс заключается в том, что входной управляющий сигнал создает автоколебательный высокочастотный сигнал, который будет передаваться через сердечник трансформатора во вторичную обмотку трансформатора, и после обработки схемой обнаружения / выпрямления и логической схемой сигнал в конечном итоге станет управляющий сигнал для управления триггерной схемой.

2. Функциональная схема:

Функциональная схема может включать в себя различные функциональные схемы, например схему обнаружения, схему выпрямителя, схему перехода через нуль, схему ускорения, схему защиты, схему отображения и т. Д.

3. Схема запуска:

Цепь триггера используется для подачи триггерного сигнала на выходную цепь.

Выходная цепь:

Выходная цепь твердотельного реле управляется триггерным сигналом для включения / выключения источников питания нагрузки.

Выходная схема в основном состоит из выходного компонента (микросхемы) и контура поглощения (который действует как подавитель переходных процессов) и иногда включает в себя цепь обратной связи. До сих пор выходной компонент твердотельных реле в основном включает в себя: биполярный переходной транзистор (биполярный транзистор или BJT, который делится на два типа, PNP и NPN), тиристор (кремниевый выпрямитель или SCR), симистор (двунаправленный триод, Двунаправленный тиристор, двунаправленный управляемый выпрямитель или BCR), полевой транзистор металл-оксид-полупроводник (MOSFET), биполярный транзистор с изолированным затвором (IGBT), MOSFET из карбида кремния (SIC MOSFET, разновидность широкозонного транзистора с максимальной рабочей температурой перехода промышленного класса 200 °). C, низкое энергопотребление и компактный размер) и так далее.

Выходную цепь твердотельного реле можно разделить на три типа: выходная цепь постоянного тока, выходная цепь переменного тока и выходная цепь переменного / постоянного тока. В выходной цепи постоянного тока обычно используется биполярный компонент (такой как IGBT или MOSFET) в качестве выходного компонента, а в выходной цепи переменного тока обычно используются два тиристора или один симистор в качестве выходного компонента.

§3. Символ твердотельного реле

Символ твердотельного реле на принципиальной схеме показан ниже (Рисунок 3.1).

Следует отметить, что:
● Символ электрода должен быть нанесен отдельно (внутри или вне рамки) рядом с каждым контактом графического символа.
● Входные и выходные клеммы обычно не могут быть нарисованы на одной или смежных сторонах.
● Когда несколько твердотельных реле появляются на одной схеме, числовой номер может быть добавлен после текстового символа, чтобы различать реле. (например, SSR1, SSR2).

§4. Какие бывают типы твердотельных реле

Типы твердотельных реле разнообразны, и стандарты классификации разнообразны.Твердотельные реле обычно классифицируются по следующим критериям.

1. Тип источника питания нагрузки:

Твердотельное реле можно разделить на твердотельные реле постоянного тока (DC-SSR) и твердотельные реле переменного тока (AC-SSR) в зависимости от типа источника питания нагрузки. В твердотельных реле постоянного тока используются силовые полупроводниковые транзисторы в качестве переключающего элемента (например, BJT, MOSFET, IGBT) для управления состоянием ВКЛ / ВЫКЛ источника питания нагрузки постоянного тока, а в твердотельных реле переменного тока используются тиристоры (например, как Triac, SCR) в качестве переключающего элемента для управления состоянием ВКЛ / ВЫКЛ источника питания нагрузки переменного тока.

1.1 DC-SSR:

В зависимости от формы входа, SSR типа постоянного тока можно разделить на твердотельные реле постоянного тока с резистивным входом и твердотельные реле постоянного тока постоянного тока.

1.2 AC-SSR:

SSR типа AC можно классифицировать в соответствии со следующими стандартами.

1.2.1 Режим запуска управления:

В зависимости от режима запуска управления (время включения и выключения), SSR переменного тока можно разделить на твердотельные реле переменного тока с переходом через нуль, случайное включение Тип твердотельные реле переменного тока и пиковое включение Тип твердотельные реле переменного тока.

1) Твердотельные реле переменного тока с нулевым переходом (рис. 4.2), также известные как твердотельные реле переменного тока с триггером нулевого перехода, твердотельное реле с нулевым перекрестным включением, твердотельные реле переменного тока с нулевым переключением, твердотельные реле переменного тока с нулевым напряжением , или твердотельные реле переменного тока. Для реле SSR с переходом через нуль их состояние переключения выходной цепи синхронизируется с выходным сигнал, то есть «синхронный» с источником питания. Когда входной сигнал включен, если напряжение питания нагрузки находится в зоне, отличной от перехода через нуль, выходной терминал твердотельных реле с переходом через ноль не будет включаться; но если напряжение питания нагрузки достигает нулевой зоны, выходная клемма реле SSR перехода через ноль будет включена, а также цепь нагрузки будет быть включенным.Этот режим триггера может эффективно снизить пусковой ток, генерируемый при включении SSR, а также одновременно уменьшает сигнал помех в электросети и входной цепи управления. В Следовательно, твердотельные реле с переходом через ноль являются наиболее распространенным типом во многих областях.

2) Твердотельные реле переменного тока случайного включения (рис. 4.3), также известные как твердотельные реле переменного тока с произвольным включением, твердотельные реле переменного тока с произвольным включением, твердотельное реле переменного тока с произвольной проводимостью, твердотельное реле переменного тока с произвольным зажиганием , Твердотельное реле мгновенного включения, твердотельные реле переменного тока с ненулевым переключением, твердотельные реле переменного тока с мгновенным включением, твердотельные реле мгновенного действия переменного тока, асинхронные твердотельные реле переменного тока или твердотельные реле переменного тока с фазовой модуляцией.Режим переключения выходной цепи реле ТТР произвольного типа управляется только сигналом управления и не зависит от сигнала источника питания, т. е. «асинхронен» с источником питания. Твердотельные реле случайного типа будут немедленно включены, пока есть входные сигналы на входных клеммах и независимо от состояния напряжения нагрузки. Поскольку случайное твердотельное Реле включается или выключается в любой фазе источника питания переменного тока, в момент включения может генерироваться сильный сигнал помехи.

3) Твердотельные реле переменного тока с пиковым включением также известны как твердотельные реле переменного тока с пиковым переключением или пиковое пожарное реле переменного тока. твердотельные реле. При подаче входного управляющего сигнала реле SSR пикового типа включаются в первой точке пика выходного напряжения переменного тока. для уменьшения пускового тока; если входной управляющий сигнал удален, пиковое твердотельное реле будет отключено.

1.2.2 Фаза:

В зависимости от фазы источника питания переменного тока AC-SSR можно разделить на твердотельные реле однофазного переменного тока и твердотельные реле трехфазного переменного тока.

1) В зависимости от функции однофазные твердотельные реле переменного тока можно разделить на однофазные твердотельные реле переменного / постоянного тока, однофазные твердотельные регуляторы напряжения, однофазные твердотельные регуляторы напряжения, одно открытое и одно закрытое однофазные твердотельные реле, однофазные твердотельные реле прямого и обратного направления, однофазные сдвоенные твердотельные реле и т. д. Следует отметить, что двойное реле (рис. 4.4), которое представляет собой однофазное твердотельное реле. реле, которое объединяет два однофазных промышленных твердотельных реле в один стандартный промышленный корпус с двойными входными клеммами и двойными выходными клеммами, причем каждый набор клемм ввода / вывода не зависит от другого набора, то есть двойного Реле SSR имеют больше контактов и могут обеспечивать более разнообразное управление, чем обычные типы.

2) Трехфазные твердотельные реле переменного тока могут использоваться непосредственно для управления трехфазными двигателями переменного тока, а твердотельные реле трехфазного прямого-обратного переменного тока (или трехфазные реверсивные Твердотельное реле переменного тока) может использоваться для управления трехфазными двигателями прямого и обратного хода (трехфазные двунаправленные двигатели переменного тока или трехфазные двухоборотные двигатели переменного тока).

1.2.3 Компонент переключателя:

В соответствии с компонентами переключателя AC-SSR можно разделить на твердотельные реле переменного тока обычного типа и твердотельные реле расширенного типа.В реле SSR обычного типа используется симистор. в качестве компонента переключения выхода, а реле SSR улучшенного типа использовали встречно-параллельный SCR в качестве компонента переключения.

2. Форма ввода / вывода:

В соответствии с формой ввода / вывода твердотельные реле можно разделить на четыре типа: твердотельные реле типа входа постоянного тока и выхода переменного тока (DC-AC SSR реле), твердотельные реле постоянного и постоянного тока на выходе (реле постоянного и постоянного тока SSR), твердотельные реле переменного и переменного тока на выходе (твердотельные реле переменного и переменного тока), твердотельные реле переменного тока на входе и выходе постоянного тока (AC- Реле постоянного тока SSR).

3. Тип переключателя:

В зависимости от типа переключателя, SSR-переключатели можно разделить на твердотельные реле нормально открытого типа (или NO-SSR) и твердотельные реле нормально закрытого типа (или NC-SSR). Нормально разомкнутые твердотельные реле будут включены только тогда, когда на входные клеммы подается управляющий сигнал. Напротив, нормально закрытый твердотельный реле будут выключены, когда входной сигнал будет подан на входной терминал. (Если не указано иное, твердотельные реле в этом документе по умолчанию относятся к нормально разомкнутым твердотельным реле.)

4. Изоляция / соединение:

В соответствии с методами изоляции / соединения, SSR можно разделить на твердотельные реле с герконовым реле, твердотельные реле с трансформаторной связью, твердотельные реле с фотосвязью и твердотельные реле гибридного типа. государственные реле.

1) В твердотельном реле с герконовой муфтой (рис. 4.5, а) в качестве метода изоляции используется герконовый переключатель. При подаче управляющего сигнала непосредственно (или через предусилитель) к катушке герконового реле, герконовый переключатель сразу замкнется, а тиристорный переключатель будет активирован, чтобы заставить нагрузку проводить.

2) В ТТР с трансформаторной муфтой (рис. 4.5, б) в качестве изолирующего устройства используется трансформатор. Трансформатор может преобразовывать управляющий сигнал малой мощности от первичной катушки во вторичную катушку, чтобы генерировать сигнал для возбуждения электронный переключатель. И если входной управляющий сигнал представляет собой напряжение постоянного тока, во входной цепи требуется преобразователь постоянного тока в переменный. После обработки путем выпрямления, усиления или других модификаций сигнал от вторичной катушки можно использовать для управлять переключающим компонентом.

3) SSR с фотосвязью (рис. 4.5, c), также известный как фотоизолированный SSR или оптопара. SSR использует оптический ответвитель в качестве изолятора. Оптический соединитель представляет собой оптоизолятор, который состоит из источника инфракрасного излучения (обычно светоизлучающего диода или светодиода) и светочувствительного полупроводникового компонента (такого как светочувствительный диод, фоточувствительный транзистор и фоточувствительный тиристор). В соответствии с различными компонентами (рисунок 4.6), оптопара может быть в опто-диодном соединителе (фото-диодном соединителе), оптранзисторном соединителе (фото-транзисторном соединителе), опто-тиристорном соединителе (фото-тиристорном соединителе), и опто-симисторный ответвитель (фото-симисторный ответвитель).

Фото-полупроводниковое устройство обнаруживает инфракрасное излучение от светодиода, а затем выдает сигнал для управления полупроводниковым переключателем. По сравнению с герконовым реле и трансформатором, оптический изолятор имеет лучшую физическую изоляцию, чтобы Обеспечьте электрическую изоляцию между цепью нагрузки на выходе высокого напряжения и цепью входного сигнала низкого напряжения. А благодаря отличным изоляционным характеристикам и очень компактным размерам оптопары, твердотельное реле оптопары используется в очень широком диапазоне приложений.

4) Гибридное твердотельное реле — это специальное твердотельное реле, которое объединяет преимущества EMR и SSR, с высоким КПД и низким энергопотреблением. Входные и выходные цепи гибридных твердотельных реле состоят из реле SSR и герконового переключателя (или микроэлектромагнитного реле), включенных параллельно и управляемых. различными управляющими сигналами (рисунок 4.7).

При подаче входного сигнала 1 SSR немедленно переключается во включенное состояние. Поскольку в электронном переключателе нет движущихся частей, он может стабильно и быстро переключать нагрузку и не генерирует дугу из-за высокого сетевого напряжения или сильного импульсного тока. во время переключения.После генерации тока нагрузки ЭМИ будет управляться управляющим сигналом 2 и включаться. Поскольку ЭМИ подключено параллельно с ТТР, выходной контакт ЭМИ запитан без напряжения, и на контактах нет дуги. Затем, после некоторой задержки, дребезг контактов ЭМИ стабилизируется, и SSR будет выключен. EMR работает почти без нагрева, поэтому гибридные реле SSR могут работать без установленного радиатора.

5. Структура схемы:

В зависимости от структуры схемы твердотельное реле можно разделить на твердотельные реле с дискретной структурой и твердотельные реле с гибридной структурой.Твердотельные реле с дискретной структурой в основном собраны из дискретных компонентов. и печатная плата, а затем упакованные в заливку эпоксидной смолой, пластиковую герметизацию или обертывание смолой. Твердотельные реле с гибридной структурой использовать технологию толстопленочного комбайна для сборки дискретных компонентов и полупроводниковых интегральных схем (ИС), а затем заключить их в металлический или керамический корпус.

6. Производительность:

В зависимости от производительности твердотельное реле можно разделить на твердотельные реле стандартного типа и твердотельные реле промышленного типа.Номинальный ток стандартного твердотельного реле обычно составляет от 10 до 120 А, а номинальный ток промышленного твердотельного реле относительно велик, может составлять от 60 до 2000 А или больше. Следовательно, промышленные реле SSR могут соответствовать строгим требованиям промышленной среды и промышленного оборудования.

7. Монтаж:

В соответствии с методами монтажа твердотельные реле можно разделить на твердотельные реле для монтажа на панели (или для поверхностного монтажа), твердотельные реле для монтажа на DIN-рейку и для монтажа на печатной плате. твердотельные реле (или тип монтажа на печатной плате).И SSR для монтажа на печатной плате можно подразделить на SSR для гнездового монтажа (или вставного типа) и SSR для кронштейна (или для фланцевого монтажа). Вставные твердотельные реле со многими стандартными пакетами (например, SIP, Mini-SIP и DIP), может быть напаян непосредственно на печатную плату, полагаясь на естественное охлаждение, без потребности в радиаторе; твердотельные реле с фланцевым креплением требуют дополнительной металлической пластины или радиатора для отвода тепла.

8. Приложение:

В соответствии с приложением твердотельные реле можно разделить на твердотельные реле общего назначения, твердотельные реле с двусторонней передачей, автомобильные твердотельные реле, твердотельные реле с фиксацией (входной сигнал проходит как логический Исключающее ИЛИ или XOR, поэтому любой вход может блокировать / разблокировать выход) и т. Д.
Реле с фиксацией может продолжать проводить и непрерывно выводить управляющий сигнал даже при отключении управляющего тока, и его можно выключить только путем ввода обратного тока или кнопки выключения. Блокировка обычно используется в высоковольтных цепях, чтобы избежать распространения аварий.

§5. Каковы основные параметры твердотельных реле

Основные параметры твердотельных реле делятся на три категории: входные параметры, выходные параметры и другие параметры.

Входные параметры:

Диапазон входного напряжения / входной ток:

1) Диапазон входного напряжения относится к значению диапазона напряжения, которое должно быть входным (т. Е. Минимальным) или допустимым входным (т. Е. Максимумом) для твердотельное реле для нормальной работы при температуре окружающей среды 25 ° C.

2) Входной ток относится к соответствующему входному току. значение при определенном входном напряжении.

Напряжение включения / Напряжение выключения:

1) Напряжение включения (напряжение включения).Когда входное напряжение (напряжение, приложенное к входной клемме) больше или равно напряжение включения, выходной терминал будет включен.

2) Напряжение выключения (напряжение выключения). Когда входное напряжение (напряжение приложено к входному зажиму) меньше или равно напряжению отключения, выходной зажим будет отключен.

Напряжение перехода через нуль:

Строго говоря, напряжение перехода через ноль — это не точка напряжения, а диапазон напряжений, который определяется внутренними компонентами реле перехода через ноль, который обычно очень низкий и почти несущественный.Если напряжение источника питания ниже напряжения перехода через нуль, реле перехода через нуль не будет включено; и если напряжение превышает напряжение перехода через нуль, переход через нуль реле будет во включенном состоянии.

Выходные параметры:

Номинальное выходное напряжение / номинальный рабочий ток:

1) Номинальное выходное напряжение — это максимальное рабочее напряжение нагрузки, которое могут выдержать выходные клеммы.

2) Номинальный рабочий ток — это максимальный установившийся рабочий ток, который может проходить через выходные клеммы при температуре окружающей среды 25 ° С.

Падение выходного напряжения / выходной ток утечки:

1) Падение выходного напряжения — это измеренное выходное напряжение при номинальном рабочем токе, когда твердотельное реле находится во включенном состоянии.

2) Выходной ток утечки относится к измеренному значению тока, протекающего через нагрузку, при условии, что твердотельное реле находится в в выключенном состоянии, и на выходную клемму подается номинальное выходное напряжение.
Этот параметр является показателем качества и производительности твердотельных реле.Чем меньше падение выходного напряжения и выходной ток утечки, тем лучше твердотельное реле.

Пусковой ток:

Пусковой ток, также известный как ток перегрузки, входной импульсный ток или импульсный ток включения, относится к неповторяющемуся максимальному значению (или перегрузке) тока, при котором устройство не будет необратимо повреждено, и выходные клеммы могут выдерживать, когда твердотельное реле находится во включенном состоянии. Пусковой ток SSR переменного тока составляет 5 ~ 10 раз (за один цикл) номинального рабочего тока, а SSR постоянного тока равен 1.5 ~ 5 раз (за одну секунду) номинального рабочего тока.

Другие параметры:

Потребляемая мощность:

Потребляемая мощность — это максимальное значение мощности, потребляемое самим твердотельным реле во включенном и выключенном состоянии.

Время включения / Время выключения:

1) Время включения (или время включения) — это время, которое требуется нормально разомкнутому твердотельному реле для запуска после включения входное управляющее напряжение до тех пор, пока выходная клемма не начнет включаться и выходное напряжение не достигнет 90% окончательного изменения.

2) Время выключения (или время выключения) — это время, которое требуется нормально разомкнутому твердотельному реле, чтобы начать с момента отключения входного управляющего напряжения до тех пор, пока выходная клемма не начнет отключаться, и выходное напряжение достигает 90% окончательной вариации.

Это также важный параметр для оценки характеристик твердотельных реле. Чем короче время включения и выключения, тем лучше коммутационная способность твердотельного реле.

Сопротивление изоляции / диэлектрическая прочность:

1) Сопротивление изоляции относится к измеренному значению сопротивления между входной клеммой и выходной клеммой твердотельного реле при приложении определенного постоянного напряжения (например, 550 В).Он также может Включите измеренное значение сопротивления между входной клеммой и внешним кожухом (включая радиатор), а также измеренное значение сопротивления между выходной клеммой и корпусом.

2) Диэлектрическая прочность или выдерживаемое напряжение диэлектрика относится к максимальному значению напряжения, которое может выдерживаться между входной клеммой и выходной клеммой твердотельного реле. Он также может включать максимальное напряжение допустимое напряжение между выходной клеммой и корпусом, а также максимальное допустимое напряжение между входной клеммой и внешним корпусом.

Рабочая температура / максимальная температура перехода:

1) Рабочая температура относится к допустимому диапазону нормальной рабочей среды, когда твердотельное реле устанавливает радиатор в соответствии со спецификацией или когда радиатор не установлен.

2) Температура перехода, сокращенно от температуры перехода транзистора, — это фактическая рабочая температура полупроводника в электронном устройстве. В процессе эксплуатации она обычно выше температуры корпуса и внешнего температура компонента.Максимальная температура перехода — это самая высокая температура перехода, допускаемая компонентом переключения выхода.

§6. Каков принцип работы твердотельных реле

Из этой главы вы узнаете, как работают твердотельные реле. Из-за различных условий применения твердотельные реле имеют немного разные внутренние компоненты, но принцип работы схож. Схема внутреннего замещения обычных твердотельных реле представлена ​​на рисунке. ниже (рисунок 6.1). Принцип работы твердотельных реле можно описать просто так: для NO-SSR, когда соответствующий сигнал управления подается на Входной терминал (IN) твердотельного реле, выходной терминал (OUT) будет переключен из выключенного состояния во включенное состояние; если управляющий сигнал отменен, выходной терминал (OUT) будет возвращен в выключенное состояние. В этом процессе твердотельные реле осуществляют бесконтактное управление состояниями переключателя источника питания нагрузки, подключенного к выходным клеммам.Следует отметить, что входной терминал может быть подключен только к управляющему сигналу, а нагрузка должна быть только быть подключенным к выходной цепи.

В зависимости от типа нагрузки SSR можно разделить на два типа: твердотельное реле постоянного тока (DC-SSR) и твердотельное реле переменного тока (AC-SSR). DC-SSR действуют как переключатель нагрузки на источниках питания постоянного тока, а AC-SSR действуют как переключатель нагрузки на питании переменного тока. запасы. Они несовместимы друг с другом и не могут быть смешаны.

1) Твердотельное реле постоянного тока (рисунок 6.1, слева), напряжение управляющего сигнала которого поступает с входной клеммы (IN), а затем подается управляющий сигнал. к приемной цепи через оптопару, и, в конечном итоге, сигнал усиливается усилителем для управления состоянием переключения транзистора. Очевидно, что выходной терминал (OUT) твердотельного реле постоянного тока разделен на положительный Клемма (+ полюс) и отрицательная клемма (- полюс), будьте осторожны, чтобы не допустить ошибок при подключении выходной клеммы реле постоянного тока SSR к управляемой цепи.

2) Твердотельное реле переменного тока (Рисунок 6.1, справа) используется для управления состоянием ВКЛ / ВЫКЛ цепи нагрузки переменного тока. В отличие от твердотельных реле постоянного тока, в реле переменного тока SSR используется двунаправленный тиристор (симистор) или другие электронные переключающие компоненты переменного тока. Следовательно, на выходном терминале нет положительного / отрицательного вывода. (OUT) твердотельного реле переменного тока.

Принцип работы твердотельных реле переменного тока с переходом через ноль

Поскольку твердотельные реле переменного тока с переходом через ноль являются более совершенными и более типичными, чем твердотельные реле других типов, подробности работы твердотельных реле переменного тока с переходом через ноль могут помочь проиллюстрировать Полный принцип работы реле SSR:

1.Функция каждой части:

Ниже представлено представление SSR с переходом через ноль переменного тока (рисунок 6.2). А схема A ~ E на блок-схеме образует тело SSR переменного тока с переходом через ноль. В целом реле SSR представляет собой четырехконтактный переключатель нагрузки, имеющий всего две входные клеммы. (③ и ④) и две выходные клеммы (① и ②). Когда реле SSR с переходом через ноль переменного тока работает, до тех пор, пока к клеммам ③ и добавлен определенный управляющий сигнал, можно управлять состоянием ВКЛ / ВЫКЛ контура между клеммами ① и.

Цепь связи A используется для обеспечения канала ввода / вывода для устройства управления, подключенного к клеммам ③ и, и электрического отключения соединения между входными клеммами и выходными клеммами SSR, чтобы предотвратить выходная цепь от вмешательства во входную цепь. Наиболее часто используемым компонентом в схеме связи является оптопара с высокой чувствительностью срабатывания, высокой скоростью отклика и высокой диэлектрической прочностью (выдерживаемым напряжением) между ними. входные и выходные клеммы.Поскольку входная нагрузка оптопары представляет собой светоизлучающий диод (LED), это позволяет легко согласовывать входное значение твердотельного реле с уровнем входного сигнала устройства управления и дает возможность подключения входные клеммы реле SSR напрямую подключаются к выходному интерфейсу компьютера, то есть твердотельное реле может управляться логическим уровнем «1» и «0».
Функция цепи запуска B заключается в генерации подходящего триггера. сигнал для приведения в действие цепи переключения D .Однако, если не добавить специальную схему управления, схема переключения будет генерировать радиочастотные помехи (RFI), которые будут загрязнять сеть высшими гармониками и выбросами, Таким образом, схема детектора перехода через ноль C специально разработана для решения этой проблемы.
Демпферная цепь E предназначена для предотвращения скачков и скачков напряжения от источника питания, вызывающих удары и помехи (даже неисправности). к переключающим транзисторам. Обычно в качестве демпфирующей цепи используется RC-цепь (цепь резистор-конденсатор, RC-фильтр или RC-цепь) или нелинейный резистор (например, варистор).Варистор, также называемый резистором, зависящим от напряжения (VDR), представляет собой электронный компонент, значение сопротивления которого изменяется нелинейно с приложенным напряжением, и наиболее распространенным типом варистора является варистор на основе оксида металла (MOV), такой как нелинейный резистор на основе оксида цинка (ZNR).

2. Функция каждого компонента:

На рисунке ниже показаны внутренние принципиальные схемы триггера перехода через ноль типа AC-SSR (Рисунок 6.3)

R1 — это токоограничивающий резистор, ограничивающий ток входного сигнала. и гарантирует, что оптопара не будет повреждена. Светодиод используется для отображения состояния входа входного управляющего сигнала. Диод VD1 используется для предотвращения повреждения оптопары при инвертировании положительного и отрицательного полюсов входного сигнала. Оптопара OPT электрически изолирует входные и выходные цепи. Триод M1 действует как инвертор и составляет схему обнаружения перехода через нуль. с тиристором SCR одновременно, а рабочее состояние тиристора SCR определяется транзистором M1 обнаружения нуля переменного напряжения. VD2 ~ VD4 образуют двухполупериодный выпрямительный мост (или двухполупериодный диодный мост) UR . Двунаправленный пусковой импульс для включения симистора BCR может быть получен от SCR и UR. R6 — шунтирующий резистор, используемый для защиты BCR. R7 и C1 образуют сеть, поглощающую скачки напряжения, для поглощения скачков напряжения или скачков тока в электросети для предотвращения ударов или помех. к схеме переключения. RT — это термистор, который действует как защита от перегрева, чтобы предотвратить повреждение твердотельных реле из-за чрезмерных температур. VDR — варистор, который действует как устройство ограничения напряжения, фиксирующее напряжение и поглощает избыточный ток для защиты твердотельного реле, когда выходная цепь перенапряжения.

3. Процесс работы:

Твердотельное реле с переходом через ноль переменного тока имеет характеристики включения, когда напряжение пересекает ноль, и выключения, когда ток нагрузки пересекает ноль.

Когда оптопара OPT выключена (т. Е. Управляющий вывод OPT не имеет входного сигнала), M1 насыщается и включается, получая базовый ток от R2, и, как результат, напряжение запуска затвора (UGT) тиристора SCR зажата к низкому потенциалу и выключили.Следовательно, симистор BCR находится в выключенном состоянии, поскольку на выводе R6 управления затвором нет пускового импульса.
Когда входной управляющий сигнал поступает на входную клемму твердотельного реле, фототранзистор OPT включен (т.е. на управляющую клемму OPT поступает входной сигнал). После деления напряжения питающей сети на R2 и R3, если напряжение в точке A больше, чем напряжение перехода через нуль M1 (т.е. VA> VBE1), M1 будет в состоянии насыщенной проводимости, а тиристоры SCR и BCR будут в выключенном состоянии.Если напряжение в точке А меньше точки перехода через ноль напряжение M1 (то есть VA Благодаря описанному выше процессу можно понять, что M1 используется в качестве детектора напряжения переменного тока для включения твердотельного реле, когда напряжение нагрузки пересекает ноль, и включения выключение твердотельного реле, когда ток нагрузки пересекает ноль.А благодаря функции детектора перехода через нуль влияние цепи нагрузки на нагрузку соответственно уменьшается, и генерируются радиочастотные помехи. в контуре управления также значительно сокращается.

4. Определение перехода через нуль:

Здесь необходимо пояснить, что такое переход через нуль. В переменном токе переход через нуль — это мгновенная точка, в которой отсутствует напряжение, то есть соединение между положительным полупериодом и отрицательным полупериодом. формы волны переменного тока.В каждом цикле переменного тока обычно происходит два перехода через ноль. И если электросеть переключается в момент перехода через нуль, никаких электрических помех не возникает. Твердотельное реле переменного тока (оснащенный схемой управления переходом через ноль) будет находиться в состоянии ВКЛ, когда входная клемма подключена к управляющему сигналу и выходное напряжение переменного тока пересекает ноль; и наоборот, когда управляющий сигнал выключен, SSR находится в выключенном состоянии. состояние до следующего перехода через ноль.
Кроме того, следует отметить, что переход через ноль твердотельного реле на самом деле не означает нулевое напряжение формы волны напряжения источника питания. Рисунок 6.5 — разрез синусоидального сигнала переменного напряжения. волна. В соответствии с характеристиками компонента переключения переменного тока, напряжение переменного тока на рисунке разделено на три области, которые соответствуют трем состояниям выходной цепи SSR. А U1 и U2 соответственно представляют пороговое напряжение и напряжение насыщения переключающего компонента.

1) Область — это зона нечувствительности (область отключения, область отключения или область отключения) с абсолютным значением диапазона напряжения 0 ~ U1. А также в этой зоне переключатель SSR не может быть включен, даже если добавлен входной сигнал.

2) Область Ⅱ — это область ответа (активная область, Область включения, область включения или область включения) с абсолютным значением диапазона напряжения U1 ~ U2. В этой зоне SSR сразу включается, как только добавляется входной сигнал, а выходное напряжение увеличивается по мере увеличения напряжения питания.

3) Область — это область подавления (область насыщения) с абсолютным значением диапазона напряжений, превышающим U2. В этой области, переключающий элемент (тиристор) находится в состоянии насыщения. И выходное напряжение твердотельного реле больше не будет увеличиваться с увеличением напряжения источника питания, но ток увеличивается с увеличением напряжения, что может можно рассматривать как состояние внутреннего короткого замыкания выходной цепи твердотельного реле, то есть твердотельное реле находится во включенном состоянии как электронный переключатель.

На рис. 6.6 показана форма сигнала ввода / вывода твердотельного реле с переходом через ноль. И из-за природы тиристора твердотельное реле будет в состояние включено после того, как напряжение на выходных клеммах достигнет порогового напряжения (или напряжения триггера схемы триггера). Тогда твердотельное реле будет в фактическом включенном состоянии после достижения напряжения насыщения, и в то же время время, генерировать очень низкое падение напряжения в открытом состоянии. Если входной сигнал отключен, твердотельное реле выключится, когда ток нагрузки упадет ниже тиристорного. ток удержания или следующая точка коммутации переменного тока (т.е. первый раз ток нагрузки проходит через ноль после выключения реле SSR).

§7. Каково применение твердотельных реле

Из этой главы вы узнаете, где использовать твердотельные реле и для чего они используются.

Система управления освещением:

Быстрое переключение, длительный срок службы и высокая надежность твердотельных реле отлично подходят для системы управления освещением. В области светофоров рабочая среда светофоров сложна, но твердотельные реле с с ней могут столкнуться отличные характеристики (влагозащищенность, взрывозащищенность, антикоррозийность).И твердотельные реле могут соответствовать требованиям для светофоров с мигающим сигналом, которые часто закрываются и открываются, потому что они могут поддерживать интервалы переключения 10 миллисекунд и более. А в системах управления сценическим освещением (обычно применяемых в постановках театра, танцев, оперы и других исполнительских искусств) твердотельные реле могут работать с компьютерной системой для управления несколькими огни и реализовать сложные световые эффекты, чтобы усилить атмосферу сцены.

Система дистанционного управления:

Для систем дистанционного управления обычно требуются малоточные сигналы для управления мощным оборудованием, таким как электродвигатели, импульсные клапаны и другое оборудование. В качестве электронного переключающего элемента без механических контактов твердотельные реле широко используются в системах дистанционного управления с превосходными преимуществами: гибкое управление, высокая надежность, высокая долговечность, отсутствие искр, отсутствие шума, быстрое переключение, высокая рабочая частота, сильная противоинтерференционная способность и т. д.

Машины с числовым программным управлением:

Многие традиционные механические реле в машинах с числовым программным управлением (станки с ЧПУ) постепенно заменяются твердотельными реле. Благодаря отличной прочности и высокой чувствительности твердотельные реле применяется для обеспечения высокой точности и качества обработки с ЧПУ. В сервосистеме станка с ЧПУ твердотельное реле может непрерывно получать управляющий сигнал и точно управлять обрабатывающим станком.

Оборудование для обогрева / охлаждения:

Обычно существует три способа управления оборудованием для обогрева / охлаждения: твердотельное реле (SSR), тиристорный модуль (модуль SCR) и контактор переменного тока. В настоящее время твердотельные реле и модули SCR очень распространены в охлаждающем / нагревательном оборудовании, но, в отличие от них, модули SCR не рентабельны, поэтому твердотельные реле чаще всего используется в нагревательном / охлаждающем оборудовании, таком как электрические духовки, кофеварки, торговые автоматы, сковороды, фритюрницы, кондиционеры, холодильники и т. д.Твердотельные реле также хорошо работают в оборудовании для контроля температуры. Таймер SSR управления микроконтроллером SSR и SSR ПИД-регулирования (пропорционально-интегрально-производный контроллер) используются в устройстве контроля температуры для поддержания температурной стабильности устройства, например HVAC (Отопление, вентиляция и воздух. Кондиционирование).

Медицинское оборудование:

В области медицинского оборудования оборудование имеет строгие требования к рабочей частоте и точности операций, поэтому компоненты медицинского оборудования должны иметь хорошие характеристики (высокую точность, долговечность и т. д.). Твердотельные реле могут удовлетворить эти требования большинства медицинских устройств, например, устройства инфракрасного излучения имеют огромную тепловую инерцию, но при подключении твердотельных реле к пластине излучения, становится очень легко контролировать температуру устройства инфракрасного излучения через твердотельные реле.

Электромобили:

Твердотельные реле широко применяются в области электромобилей. Например, взрывозащищенные твердотельные реле используются в топливных элементах. транспортных средств (водородные топливные элементы) во избежание возникновения электрической дуги и некорректной работы при вибрации.Кроме того, каждый блок питания высокого напряжения защищен комбинацией нескольких твердотельных реле, предохранителей и фильтрующих конденсаторов.

Химическая и горнодобывающая промышленность:

Учитывая сложные условия работы и особые требования (взрывозащищенность, влагостойкость и антикоррозионные свойства) химической и горнодобывающей промышленности, традиционные механические реле не могут удовлетворить такие требования, поэтому многие твердотельные реле используются для промежуточных контроллеров основного механического оборудования, такого как твердотельные реле, установленные в больших угольных лифтах.

Компьютерная система управления:

Компьютерная система управления (включая периферийные устройства компьютера) предъявляет высокие требования к реле, но типы твердотельных реле различны. может помочь компьютерным устройствам управлять различными блоками питания для управления большим механическим оборудованием автоматизации или гидравлическим и пневматическим оборудованием, потому что твердотельные реле имеют характеристики: переход через ноль, хорошая электромагнитная совместимость, высокая чувствительность, быстрая скорость переключения, низкий уровень управляющих сигналов , совместим с логической схемой (TTL, CMOS, DTL, HTL) и даже может быть напрямую подключен к устройству управления микрокомпьютером и т. д.

Дополнительные приложения:

Промышленные устройства — промышленная обработка, станок с ЧПУ, автоматизированная сборочная линия …

Кухня / бытовая техника — Кухонная техника, бытовая техника …

Электродвигатель — двигатель постоянного тока, двигатель переменного тока , Реверсивный двигатель …

Система автоматического управления — программируемый контроллер, шкаф электрического управления …

Офисное оборудование — принтер, измельчитель …

Система управления батареями — резервный источник питания, зарядная батарея, новая энергия …

Сварочные / режущие аппараты — машина точечной сварки, электросварочная машина, машина плазменной резки …

Система управления освещением — сценическое освещение, интеллектуальное освещение, освещение дорожного движения …

Медицинское устройство — ультразвуковой генератор , Автоклав …

§8. Как выбрать твердотельные реле

При выборе подходящих твердотельных реле следует учитывать следующие варианты на основе фактических требований:

1) Напряжение нагрузки — переменный или постоянный ток

2) Ток нагрузки — максимальный и минимальный Сила тока

3) Тип нагрузки — резистивная, индуктивная или емкостная

4) Входной управляющий сигнал — переменный или постоянный ток

5) Способ монтажа — монтаж на печатной плате, панели или на DIN-рейке

6) Температура окружающей среды — для расчета коэффициента снижения номинальных характеристик и размер радиатора

7) Международная сертификация — Underwriter Laboratories (UL), Канадская ассоциация стандартов (CSA), Британский совет по утверждению телекоммуникаций (BABT), Verband Deutscher Elektrotechniker (VDE), Technischen Uberwachungs Vereine (TUV), Conformite Europeene (CE) или другой.

Напряжение нагрузки:

Первое, что необходимо учитывать, это то, является ли напряжение нагрузки переменным или постоянным, чтобы определить, выбрано ли напряжение на нагрузке: AC-SSR или DC-SSR. Во-вторых, следует учитывать напряжение источника питания нагрузки, которое не может быть больше номинального выходного напряжения и меньше. чем минимальное напряжение твердотельного реле. Затем рассмотрите величину напряжения нагрузки и переходного напряжения. Напряжение нагрузки относится к к установившемуся напряжению, приложенному к выходной клемме переключателя SSR, а переходное напряжение относится к максимальному напряжению, которое выходные клеммы реле SSR выдерживают.Когда индуктивная нагрузка переменного тока, нагрузка однофазного двигателя или нагрузка трехфазного двигателя переключается или активируется, напряжение на выходе реле SSR может быть в два раза больше пикового напряжения источника питания, и это напряжение не может быть больше переходного напряжения SSR, чтобы чрезмерное ударное напряжение не повредило электронный переключатель. Поэтому при выборе SSR лучше всего оставить запас для выходного напряжения и выбрать реле SSR с RC-цепью, чтобы защитить твердотельное реле и оптимизировать dv / dt.

Цепь RC:
Цепь

RC, также известная как RC-фильтр, RC-демпфер или RC-цепь, представляет собой цепь, состоящую из резистора и конденсатора. Рекомендуется выбирать твердые реле состояния с варисторной абсорбционной цепью и RC-демпфирующей цепью. Цепь RC блокирует прохождение определенных частот и позволяет другим частотные сигналы, чтобы отфильтровать мешающие сигналы. Кроме того, RC-цепь также может использоваться для уменьшения скорости нарастания выходного напряжения (dv / dt), для поглощения импульсного напряжения, подавления чрезмерного переходного напряжения / тока и предотвратить выход твердотельного реле из строя из-за перенапряжения.

Ток нагрузки:

Значение выходного тока твердотельного реле — это установившийся ток, протекающий через выходные клеммы SSR, который обычно равен току нагрузки, подключенной к выходной клемме SSR. Поскольку переключающие элементы SSR-переключателей очень чувствительны к температуре, а перегрузка по току может генерировать большое количество тепла, поэтому перегрузочная способность SSR слабый. Следовательно, выходной ток реле SSR не должен превышать его номинальный выходной ток, а импульсный ток не должен превышать перегрузочную способность, особенно для индуктивных / емкостных нагрузок, которые склонны генерировать импульсные токи. а также пусковой ток, генерируемый самим источником питания.
Для выходного тока требуется запас, чтобы избежать чрезмерных пусковых токов, которые сокращают срок службы твердотельного реле. Для обычных резистивных нагрузок номинальное эффективное значение рабочего тока может быть выбрано на основе 60% от номинального значения. Кроме того, можно рассмотреть возможность использования быстрого предохранителя и воздушного переключателя для защиты выходного контура или добавления контура приемника RC. и варистор (MOV) на выходе реле. Спецификация выбора варистора заключается в выборе MOV 500 В ~ 600 В для SSR 220 В переменного тока и MOV 800 В ~ 900 В для SSR 380 В переменного тока.

Пусковой ток:

Практически все контролируемые нагрузки будут генерировать большие пусковые токи в момент включения. Например:

1) Электронагревательные приборы, такие как лампы накаливания, электрические печи и т. д. Это чисто резистивные нагрузки с положительным коэффициентом стабильности, но сопротивление невелико при низкой температуре, поэтому ток при запуске будет в несколько раз превышать ток в установившемся режиме.

2) Некоторые типы ламп в перегоревшем состоянии имеют низкое сопротивление.

3) Когда двигатель включен, ротор заблокирован и выключен, он будет генерировать большой пусковой ток и напряжение. Заблокированный ротор — это ситуация, в которой двигатель все еще выдает крутящий момент при скорости 0 об / мин, в то же время коэффициент мощности двигателя будет чрезвычайно низким, а ток может достигать 7. раз номинального тока.

4) Когда промежуточное реле или соленоидный клапан закрывается ненадежно и отскакивает, это также будет генерировать большой пусковой ток.

5) При переключении конденсаторной батареи или источника питания конденсатора возникает аналогичное короткое замыкание и генерируется очень большой ток.

6) Когда двигатель с конденсаторной коммутацией работает в обратном направлении, напряжение конденсатора и напряжение питания накладываются на выходную клемму SSR, и SSR будет выдерживают скачки напряжения, вдвое превышающие напряжение питания.

Чрезмерный пусковой ток может повредить полупроводниковые переключатели внутри SSR. Следовательно, при выборе реле в первую очередь следует проанализировать импульсные характеристики управляемой нагрузки, чтобы реле могло выдерживать пусковой ток, обеспечивая при этом работу в установившемся режиме.Номинальный ток твердотельного реле следует выбирать в соответствии с фактическими требованиями к коэффициенту снижения номинальных характеристик. И если выбранное реле должно работать в месте с частым срабатыванием, длительным сроком службы и высокой надежностью, номинальный ток следует разделить на 0,6 на основе известного коэффициента снижения номинальных характеристик, чтобы обеспечить надежность работы. Кроме того, резистор или катушка индуктивности могут быть подключены последовательно к выходному контуру для дальнейшего ограничения тока.
Внимание: пожалуйста, не используйте значение импульсного тока SSR в качестве основы для выбора пускового тока нагрузки.Поскольку значение импульсного тока реле SSR основано на импульсном токе электронного переключателя с предварительным условием половины (или одного) цикла питания, то есть 10 мс или 20 мс.

Тип нагрузки:

Нагрузки можно разделить на три типа в зависимости от электрического сопротивления: тип резистивной нагрузки (или чисто резистивная нагрузка), тип индуктивной нагрузки и тип емкостной нагрузки. В обычных электрических сетях нет чисто индуктивной нагрузки и чисто емкостной нагрузки. устройств, потому что эти два типа нагрузки не вырабатывают активной мощности.В последовательно-параллельной цепи, если емкостное реактивное сопротивление больше индуктивного реактивного сопротивления, цепь является емкостной нагрузкой; наоборот.

Резистивная нагрузка:

В двух словах, нагрузка, которая работает только от компонентов резистивного типа, называется резистивной нагрузкой. Однако некоторые нагрузки имеют низкое сопротивление при низких температурах, что приводит к большему пусковому току. Например, при включении электропечи ток в 1,3–1,4 раза больше стабильного; при включении лампы накаливания ток в 10 раз превышает установившийся ток.
Q1: Какие характеристики у резистивной нагрузки (при работе)?
A1: В цепи постоянного тока соотношение между током и напряжением соответствует фундаментальному закону Ома, I = U / R; в AC В цепи фаза тока совпадает с фазой напряжения (по сравнению с источником питания).
Q2: Какие резистивные нагрузки?
A2: Нагревательное устройство, которое нагревается электрическим сопротивлением (например, печь сопротивления, духовка, электрический водонагреватель, горячее масло и т. Д.), И лампы, которые используют резистивный провод для излучения света (например, йодно-вольфрамовая лампа, лампа накаливания и т. Д.)).

Индуктивная нагрузка:

Вообще говоря, индуктивная нагрузка — это нагрузка, которая применяет принцип электромагнитной индукции (с параметрами индуктивности), например, высокомощная. электротехническая продукция (например, холодильники, кондиционеры и т. д.). Индуктивная нагрузка увеличит коэффициент мощности цепи, и ток через индуктивную нагрузку не может резко измениться. При запуске индуктивный нагрузка требует гораздо большего пускового тока (примерно в 3-7 раз), чем ток, необходимый для поддержания нормальной работы.Например, пусковой ток асинхронного двигателя в 5-7 раз превышает номинальное значение, а пусковой ток двигателя постоянного тока немного больше, чем пусковой ток двигатель переменного тока; некоторые металлогалогенные лампы имеют время включения до 10 минут, а их импульсные токи до 100 раз превышают постоянный ток.
Кроме того, когда питание включено или выключено, индуктивная нагрузка будет создавать противодействующую электродвижущую силу (обычно в 1-2 раза превышающую напряжение питания), а противодействующая электродвижущая сила (сокращенно счетная ЭДС или просто CEMF) будет накладываться на источник питания. напряжение, и результирующее напряжение до трех раз превышает напряжение питания.Таким образом, когда тип нагрузки является индуктивной нагрузкой, выходной терминал твердотельного реле следует подключить варистор с выдерживаемым напряжением в 1,6–1,9 раза превышающим напряжение нагрузки. ЭДС счетчика — это неопределенное значение, которое изменяется в зависимости от L и di / dt, и если текущая скорость изменения (di / dt) слишком высока, SSR будет поврежден. В практических приложениях CEMF может быть уменьшена последовательной индуктивностью L, а величина индуктивности L зависит от размера и стоимости.
Q3: Какие характеристики индуктивной нагрузки (при работе)?
A3: Индуктивные нагрузки отстают (ток отстает от напряжения).В цепи постоянного тока индуктивная нагрузка позволяет току протекать через катушку индуктивности и накапливать энергию, а ток отстает от напряжения. В цепи переменного тока текущая фаза отстает от фазы напряжения (по сравнению с источником питания), и фаза может отставать на четверть цикла (или 90 градусов) максимум.
Q4: Какие индуктивные нагрузки?
A4: Лампы, работающие под напряжением. газ для излучения света (например, лампы дневного света, натриевые лампы высокого давления или лампы HPS, ртутные лампы, металлогалогенные лампы и т. д.), а также электрооборудование большой мощности (например, моторное оборудование, компрессоры, реле и т. д.).

Емкостная нагрузка:

Обычно нагрузка с параметром емкости называется емкостной нагрузкой, а емкостная нагрузка снижает коэффициент мощности схемы. Во время зарядки или разрядки емкостная нагрузка эквивалентна короткому замыканию, потому что напряжение на конденсаторе не может быть изменено резко.
Q5: Каковы характеристики индуктивной нагрузки (при работе)?
A5: Емкостные нагрузки идут впереди (напряжение токоведущих проводов).В цепях постоянного тока емкостные нагрузки предотвращают протекание тока, но могут накапливать энергию. В цепях переменного тока фаза тока опережает фазу напряжения (по сравнению с источником питания), а фаза может составлять максимум четверть цикла (или 90 градусов).
Q6: Что такое индуктивные нагрузки?
A6: Устройство с конденсатором, например компенсационным конденсатором. И устройства управления питанием, такие как импульсные источники питания, ИТ-оборудование и т. Д.

Как выбрать твердотельное реле в соответствии с типом нагрузки

1) Для индуктивных и емкостных нагрузок следует использовать твердотельное реле с более высоким значением dv / dt. рекомендуется, если применяется большая dv / dt (скорость экспоненциального нарастания напряжения) к выходной клемме реле во время включения / выключения твердотельного реле переменного тока.

2) Для резистивных нагрузок переменного тока и большинства индуктивных нагрузок переменного тока доступны реле перехода через нуль, которые продлевают срок службы нагрузки и реле и уменьшают собственные радиочастотные помехи.

3) В качестве фазового выходного контроллера следует использовать твердотельное реле произвольного типа.

* Коэффициент мощности:

В электротехнике коэффициент мощности системы переменного тока определяется как отношение реальной мощности, протекающей к нагрузке, к полной мощности в цепи, и является безразмерным числом в замкнутом интервале. от -1 до 1.Если не указано иное, мощность нагрузки обычного продукта представляет собой полную мощность (включает как активную, так и реактивную мощность). Но общая характеристика индуктивной нагрузки часто дает величину активной мощности. Для Например, несмотря на то, что люминесцентная лампа имеет маркировку от 15 до 40 Вт (ее активная мощность), ее балласт потребляет приблизительно 8 Вт мощности, поэтому для расчета общей мощности следует добавить 8 Вт к 15 ~ 40 Вт. Индуктивная часть продукта (т. Е. количество реактивной мощности) можно рассчитать исходя из заданного коэффициента мощности.

Входной управляющий сигнал:

1) Входное управляющее напряжение: входное управляющее напряжение имеет широкий диапазон от 3 до 32 В.

2) Входной управляющий ток: входной ток SSR постоянного тока и однофазных SSR переменного тока обычно составляет около 10 мА, а входной ток трехфазных SSR переменного тока обычно составляет около 30 мА, который также можно настроить на менее 15 мА. .

3) Управляющая частота: рабочая частота управления твердотельных реле переменного тока обычно не превышает 10 Гц, а период управляющего сигнала твердотельного реле постоянного тока должен быть более чем в пять раз больше суммы «времени включения» и «времени выключения». «.

Метод установки:

Во многих случаях мощность нагрузки ограничивает то, устанавливается ли SSR на печатной плате, панели или на DIN-рейке.

Температура окружающей среды:

Когда реле находится во включенном состоянии, оно выдерживает рассеиваемую мощность P = V (падение напряжения в открытом состоянии) × I (ток нагрузки), и это сильно влияет на нагрузочную способность SSR по температуре окружающей среды и собственной температуре. Если температура окружающей среды слишком высока, нагрузочная способность SSR неизбежно соответственно снизится, кроме того, переключатель SSR может выйти из-под контроля или даже постоянно работать. поврежден.Следовательно, необходимо установить определенный запас в соответствии с фактической рабочей средой и выбрать подходящий размер радиатора, чтобы обеспечить условия отвода тепла. Для токов нагрузки более 5А следует использовать радиатор. быть установленным. Для токов выше 100 А радиатор и вентилятор должны быть оборудованы для сильного охлаждения. Если реле SSR работает при высоких температурах (40 ° C ~ 80 ° C) в течение длительного времени, ток нагрузки может быть уменьшен в соответствии с максимальным выходным током и кривой температуры окружающей среды, предоставленной производителем для обеспечения нормальной работы, а ток нагрузки обычно регулируется в пределах 1/2 от номинальное значение.

* Коэффициент снижения номинальных характеристик:

В таблице ниже показан рекомендуемый коэффициент снижения номинального выходного тока твердотельных реле, применяемых к различным нагрузкам при комнатной температуре (допустимая перегрузка и импульсный ток нагрузки). считается).

Существует два способа использования коэффициента снижения номинальных характеристик:

1) Номинальное значение тока твердотельного реле может быть выбрано в соответствии с коэффициентом снижения номинальных характеристик для различных сред и различных типов нагрузки.Номинальный ток реле SSR равен значению продолжительного тока нагрузки, разделенному на коэффициент снижения номинальных характеристик.

2) Если выбрано твердотельное реле и тип нагрузки или изменения окружающей среды, ток нагрузки следует регулировать в зависимости от кривой нагрузки и коэффициента снижения мощности в определенных условиях. Настроенный ток, умноженный на коэффициент снижения мощности, должен быть ниже номинального значения твердотельного реле.

Кроме того, когда SSR используются в приложениях, требующих более частой работы, более длительного срока службы и более стабильной надежности, коэффициент снижения мощности необходимо дополнительно умножить на 0.6 на основании данных таблицы. Однако ток нагрузки не должен быть ниже минимального выходного тока твердотельного реле, в противном случае реле не включится или состояние выхода изменится. быть ненормальным.

§9. Внимание при использовании или установке твердотельных реле

1) Фактические условия применения продукта должны полностью соответствовать требованиям к параметрам и характеристикам твердотельных реле.

2) SSR не следует использовать в приложениях с большим количеством компонентов с низким или высоким уровнем гармоник (например, несколько наборов нагрузок на выходе инвертора необходимо переключать отдельно).Если твердотельное реле используется в инверторе в качестве электронного переключателя, из-за высших гармоник твердотельные реле не смогут надежно переключаться, и RC-цепь внутри реле SSR будет взорвана из-за перегрева.

3) Реле SSR следует держать вдали от источников сильных электромагнитных помех и источников радиопомех, чтобы обеспечить стабильную и безопасную работу SSR, избегая потери управления.

4) За исключением твердотельного реле с номинальным током 1 ~ 5 А, которое может быть непосредственно установлено на печатной плате, другие твердотельные реле должны быть оборудованы соответствующими радиаторами.Термопасту следует нанести между опорной пластиной SSR и радиатором и плотно завинтить, чтобы они были близко друг к другу для оптимального отвода тепла. Или установите переключатель контроля температуры рядом с объединительной панелью реле SSR, и точка контроля температуры обычно устанавливается в диапазоне от 75 ° C до 80 ° C.

5) Когда входное напряжение входного управляющего сигнала слишком велико и превышает номинальный параметр SSR, входной резистор можно подключить последовательно к входной цепи, чтобы уменьшить превышение значения.Точно так же, когда входной ток слишком велик, шунтирующий резистор можно подключить параллельно входному порту.

6) Управляющий сигнал и источник питания нагрузки должны быть стабильными, а колебания не должны превышать 10%, в противном случае следует принять меры по регулированию напряжения.

7) При использовании твердотельного реле для управления первичной цепью трансформатора следует учитывать влияние переходного напряжения вторичной цепи на первичную цепь. Кроме того, поскольку ток асимметричен в обоих направлениях, трансформатор также может генерировать импульсные токи, вызванные насыщением.В этом случае осциллограф можно использовать для измерения пускового тока и напряжения, которые могут быть вызваны, чтобы можно было выбрать соответствующие SSR и меры защиты.

8) Выход твердотельного реле не полностью изолирован, когда мощность нагрузки подается на выходные клеммы, даже если твердотельное реле не работает, на выходных клеммах будет некоторый ток утечки, который должен это следует учитывать при использовании и проектировании схемы. Во время технического обслуживания обслуживающий персонал должен отключить источники питания перед проверкой выходной цепи.

9) Если твердотельное реле необходимо заменить из-за неисправности, рекомендуется использовать реле SSR той же модели или технических параметров, чтобы оно соответствовало исходной схеме применения и обеспечивало надежную работу системы.

§10. Внимание при тестировании твердотельных реле

1) Прежде чем приступить к тестированию, необходимо знать взаимосвязь между выходным током и температурой корпуса (температурой окружающей среды), чтобы избежать необратимого повреждения твердотельного реле из-за перегрузки, поскольку номинальный выходной ток будет падать, когда кейс повышается температура или нет радиатора.

2) При тестировании напряжения включения и выключения DC-SSR входное напряжение не может оставаться в состоянии между включением и выключением слишком долго, в противном случае потребление мощности выходной клеммы возрастет. резко и перегорает выходные коммутационные компоненты.

3) Не увеличивайте произвольно скорость действия во время теста (обычно один период входного сигнала должен более чем в 5 раз превышать сумму времен включения / выключения), в противном случае реле SSR не будет работать из-за большого динамических потерь переключения, или даже компоненты переключения выхода будут выгорены.

4) Твердотельные реле не могут обеспечить полную изоляцию между выходными клеммами в выключенном состоянии, и там будет определенный ток утечки на выходе. Когда выдерживаемое напряжение диэлектрика и сопротивление изоляции проверяются при более высоком напряжении, он подвержен поражению электрическим током, поэтому сопротивление изоляции или выдерживаемое напряжение не должны проверяться на выходных клеммах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *