Узел подмеса для теплого пола: Для чего нужен насосно-смесительный узел для теплого пола?

Содержание

Практические советы по настройке систем напольного отопления. Настройка насосно-смесительного узла

  • Техподдержка
  • Статьи
  • Практические советы по настройке систем напольного отопления. Настройка насосно-смесительного узла

Настройка насосно-смесительного узла не так сложна, как может показаться на первый взгляд, достаточно лишь понять, как какое-либо действие влияет на работу всей системы. Можно вычислить его настройку теоретически (этому посвящена статья «Насосно-смесительный узел VALTEC COMBI. Идеология основных регулировок»). Однако теория не всегда сходится с практикой, да и точнее всё-таки провести настройку на месте по показаниям термометров. Для того, чтобы правильно осуществить настройку без расчетов, необходимо иметь включенным котел и хотя бы минимальный теплосъёмом в помещениях. Желательно, чтобы на улице была температура ниже +5 ºС. В помещениях не должно быть открытых окон или каких-либо крупных тепловыделений (работающего камина и пр.

).

Начнём с того, что опишем работу насосно-смесительного узла (рис. 1, 2).

Горячая вода из патрубка A поступает в насосно-смесительный узел, после чего через насос поступает в патрубок С, который подключается к подающему коллектору системы напольного отопления. Вода, проходя петли систем напольного отопления, делится на два потока. Часть воды идёт на смешение через байпас и клапан байпаса 3. Там она смешивается с новой порцией горячей воды из котла в такой пропорции, чтобы на входе в коллектор получилась необходимая температура воды.

Часть потока воды из патрубка B отводится обратно в котел через настроечный клапан первичного контура

5 в патрубок D. На термоэлементе термостатического клапана 1 либо на контроллере задается требуемая температура воды на входе в систему напольного отопления, при этом термоэлемент либо контроллер, отслеживая температуру в точке 4, приоткрывает или прикрывает термостатический клапан 1, увеличивая или уменьшая количество горячей воды из котла, подмешиваемой к общему потоку.

В большинстве случаев для настройки узла достаточно задать на термоэлементе либо контроллере требуемую температуру теплоносителя, которую необходимо подавать в теплый пол, и требуемую скорость насоса. Мощность, расход воды и разница температур между подающим и обратным трубопроводом взаимосвязаны между собой. К тому же, разница температур между подающим и обратным трубопроводом, как и температура настройки узла, влияют на среднюю температуру пола и его теплоотдачу.

В целом, мощность любой системы напольного отопления зависит от разницы между температурой воздуха и средней температурой на поверхности пола. Повышая эту среднюю температуру, мы повышаем мощность петли.

Теперь на примере рассмотрим – от чего зависит эта самая средняя температура пола. Предположим, что у нас имеется петля напольного отопления уложенная «змейкой», в которую подаётся вода с температурой 40 ˚С, при этом из петли возвращается вода с температурой 30 ˚С (

рис. 3). Допустим при этом, что температуры в точках А и Б будут 30 и 25 ˚С соответственно. Средняя температура такого пола будет около 27,5 ˚С, что соответствует мощности 80 Вт/м².

Но такая работа пола, возможно, не будет устраивать владельца, так как разница температуры поверхности в точке А и в точке Б будет велика. И пользователь, стоя в точке А, будет ощущать перегретый пол, а в точке Б будет считать пол холодным. Данную проблему можно решить, увеличив расход воды. Допустим, мы увеличим расход воды в два раза. В этом случае температура в обратном трубопроводе будет увеличиваться. Причем при увеличении расхода в два раза разница температур между подающим трубопроводом и обратным снизится тоже в два раза и составит 40 ˚С на подаче и 35 ˚С на обратном трубопроводе. В точке

А и Б температуры установятся приблизительно на уровне 30 ˚С и 27,5˚С а средняя температура пола вырастет примерно до 29,5 ˚С (рис. 4).

Чтобы снизить среднюю температуру пола до начального уровня и не допустить перегрева, достаточно снизить температуру воды, подаваемой в теплый пол.

Если установить термостат на 38 ˚С, то температура в обратном трубопроводе установится примерно на уровне 32 ˚С, температуры в точках А и Б будут 29 ˚С и 26,5 ˚С. При этом средняя температура пола будет равна около 27,5 ˚С, то есть такая же, как и в первом примере, но разница температур между точкой А и Б на поверхности пола будет не столь значительна.

Чтобы выровнять температуру пола, можно применять схему «улитка», но ее надо предусмотреть ещё на стадии монтажа.

    Исходя из вышеописанных примеров, можно дать следующие рекомендации по настройке расходов и температур пола:
  • чем больше расход воды через контуры теплого пола, тем меньше разница температур на поверхности пола во всех помещениях. Мощность насоса (и соответственно расход) выставляется в зависимости от разницы температур на подающем и обратном коллекторе. Для петель, уложенных «змейкой», эта разница должна составлять 3–5 ˚С. Для петель, уложенных «улиткой», разница может быть увеличена до 3–10 ˚С.

    Таким образом, чтобы определить наиболее подходящую настройку насоса, необходимо задаться определенной скоростью насоса, и через полчаса замерить разницу температур между подающим и обратным коллектором. Если разница окажется слишком высокой, то скорость насоса необходимо увеличить, либо установить более мощный насос. Нет ничего страшного в том, что разница температур окажется маленькой, в этом случае нагрев помещения будет более равномерным по всей площади.
  • температура воды, подаваемой в коллектор системы напольного отопления, напрямую влияет на среднюю температуру пола, которая в свою очередь влияет на мощность. Чем выше температура, тем выше мощность. Но необходимо выбирать эту температуру так, чтобы максимальная температура пола не превысила 29 ˚С, иначе перегретый пол будет доставлять дискомфорт.

Но зачем же нужны остальные вентили и клапаны на узле, если достаточно выставить настройки насоса и термоэлемента? Дело в том, что насосно-смесительный узел VT.

COMBI за счёт своей конструкции является очень универсальным устройством, способным успешно работать в различных системах. Универсальным его делает наличие дополнительных органов регулирования, которые позволяют расширить зону его работы и увеличить максимальную мощность.

Если требуется внедрить узел в систему со специфическими параметрами теплоносителя или «выжать» из узла максимум возможной мощности, то помимо установки термоэлемента в требуемое положение необходимо так же осуществить несколько простых операций по настройке.

Настройка балансировочного клапана байпаса (рис. 5)

    Для того чтобы лучше понять, на что влияет настройка этого клапана, рассмотрим две гипотетические ситуации:
  1. Из котла к насосно-смесительному узлу поступает теплоноситель с температурой 90 ˚С, при этом термостатический клапан настроен на поддержание температуры теплоносителя на входе в систему напольного отопления 30 ˚С, а из обратного коллектора возвращается теплоноситель с температурой 25 ˚С.
    Термостатический клапан должен принять такое положение, при котором соотношение расходов теплоносителя с температурой 90 ˚С и 25 ˚С обеспечило температуру на выходе 30 ˚С (рис. 3).
    Не сложно догадаться, что такая задача решается обычной пропорцией, и соотношение расходов воды из котла к воде из обратки должно быть 1 : 12. Иными словами, на каждый литр воды из котла должно приходиться 12 л воды из «обратки».
    Если настроечный клапан байпаса настроен в положение близкое к минимуму, то через него и будет проходить минимальное количество теплоносителя. Предположим, что клапан байпаса «3» открыт в такой позиции, что через него в данной системе проходит 12 л/мин. воды. Тогда термостатический клапан должен закрываться до тех пор, пока расход воды через него не будет равен 1 л/мин. В этом случае на выходе мы получим необходимые нам 30 ˚С с расходом 13 л/мин. (12 л/мин. холодной воды и 1 л/мин. горячей).
    А если начать открывать клапан байпаса? В этом случае расход теплоносителя через него начнет увеличиться.
    Предположим, что, открыв клапан до конца, мы получим расход 60 л/мин, при этом термостатический клапан займет такую позицию, чтобы пропускать в 12 раз меньше воды, т.е. 5 л/мин. В итоге мы получим те же 30 ˚С, но с расходом 65 л/мин. (60 л/мин. холодной воды и 6 л/мин. горячей).
    Таким образом, мы видим, что при минимальном и максимальном положении клапана байпаса узел поддерживает необходимый расход теплоносителя, но чем ниже настройка клапана, тем меньше расход будет обеспечивать такой узел, а как было сказано выше увеличение расхода через петли обеспечивает более равномерный прогрев помещения.
    Отсюда возникает вопрос – а зачем вообще закрывать клапан байпаса, если его закрытие приводит лишь к уменьшению расхода теплоносителя и как следствие уменьшение мощности системы? Чтобы ответить на этот вопрос представим себе другую гипотетическую ситуацию.
  2. Допустим, что котел настроен на 60 ˚С, при этом на входе в систему напольного отопления нам необходимо поддерживать 45 ˚С. Температура воды, возвращаемой из обратного коллектора составляет 35 ˚С (рис. 7).
    Как мы видим, пропорция горячей и холодной воды в этом случае должна измениться. Пропорция воды из котла и из обратки при этих температурах составит 1 : 1,5. На каждый литр воды из котла должно приходится 1,5 л воды из «обратки».
    Если настроечный клапан байпаса открыт в максимальное положение, то через него идет максимальный расход. Примем расход такой же, как и в предыдущем примере — 60 л/мин. В этом случае термостатический клапан должен открываться до тех пор, пока расход не будет равен 40 л/мин. Но клапан не может открываться бесконечно, и в какой-то момент он откроется до максимального своего положения.
    Если насос, установленный в этой системе, сможет обеспечить максимальный расход через термостатический клапан только 20 л/мин., то узел даже при полностью открытом клапане сможет обеспечить только 41 ˚С на выходе.
    Для того, чтобы узел смог обеспечить необходимую температуру 45 ˚С на входе в теплый пол, необходимо закрывать клапан байпаса до тех пор, пока пропорция воды не будет достаточной для того, чтобы обеспечить необходимую температуру теплоносителя на выходе из узла.

Исходя из вышесказанного, можно дать общие рекомендации по настройке этого клапана. В случае, если разница температур между температурой теплоносителя, поступающего из котла и температурой настройки узла велика, клапан необходимо открывать. Если температура теплоносителя из котла близка к требуемой температуре после смесительного узла, то клапан следует прикрывать. Но как же настроить точно узел в каждом конкретном случае, если температура теплоносителя, поступающая из котла и температура, которую необходимо поддерживать на входе в систему напольного отопления, не постоянны в течение года? Неужели придётся постоянно его подстраивать? Конечно же, нет! Задача монтажника – сделать так, чтобы узел смог обеспечить требуемую температуру в любой ситуации, которая может возникнуть во время эксплуатации, обеспечивая при этом максимальный расход теплоносителя. В остальные периоды узел будет поддерживать требуемую температуру теплоносителя за счёт термостатического клапана. По большому счету, монтажник задает максимальный диапазон температур, которые насосно-смесительный узел будет поддерживать. Если монтажник задаст слишком низкий диапазон, то узел не сможет обеспечить требуемую температуру в те моменты, когда из котла идёт теплоноситель с низкой температурой. Если монтажник задаст слишком высокий диапазон, то узел будет работать не на полную свою мощность.

Как уже было сказано выше, золотую середину можно найти, используя расчетные формулы, но можно и следующим образом – надо выставить на котле минимальную температуру, которую он будет поддерживать в течение года. Если котел в течение года будет настроен на одну и ту же температуру, то выставляется именно она. Далее с термостического клапана снимается термоголовка или сервопривод. Система в таком режиме должна проработать несколько часов, пока температура на входе в теплый пол не стабилизируется. Именно такой и будет максимальная температура, которую узел сможет поддерживать. Если эта температура намного выше той, которая необходима на входе в теплый пол, то клапан байпаса приоткрывается. В большинстве случаев желательно его открыть на позицию 3 и подождать от получаса до часа, после чего опять проверить температуру на входе в систему напольного отопления. Если она опять будет велика, то продолжать открывать клапан. Если температура будет на 2–5 ºС выше, то настройку можно считать оконченной. Если же температура после узла оказалась ниже требуемой, то балансировочный клапан байпаса следует зарывать. После окончания настройки на термостатический клапан обратно монтируется термоэлемент или сервопривод. Далее узел будет регулировать требуемую температуру самостоятельно.

Внимательный читатель, возможно, скажет: «А зачем эти сложности, если можно поставить трёхходовой клапан, у которого не надо настраивать клапан байпаса?». В какой-то степени читатель будет прав – узлы с трёхходовым клапаном устроены таким образом, что при увеличении потока воды из котла одновременно уменьшается поток воды через байпас, что позволяет обойтись без упомянутого выше балансировочного клапана байпаса. Но, к сожалению, на сегодняшний день не существует идеального узла, который бы без настроек и регулировок вписывался бы в любую систему отопления. И насосно-смесительные узлы с трёхходовым клапаном тоже не лишены недостатков, и тем более, их нельзя рассматривать как узлы, не требующие настройки.

На рис. 8 представлена схема насосно-смесительного узла собранная на базе трёхходового клапана VT.MR03 (рис. 9). Требуемая температура теплоносителя в таком узле достигается за счёт все той же пропорции воды, поступающей из котла и воды, поступающей из «обратки».

Рассмотрим работу такого узла на тех же примерах, что и в предыдущих случаях.

Из котла к насосно-смесительному узлу поступает теплоноситель с температурой 90 ˚С, при этом термостатический клапан настроен на поддержание температуры теплоносителя на входе в систему напольного отопления 30 ˚С, а из обратного коллектора возвращается теплоноситель с температурой 25 ˚С. Как уже было сказано выше, пропорция воды должна быть 1 : 12. Иными словами, на каждый литр воды из котла должно приходиться 12 л воды из «обратки».

Трёхходовой клапан за счёт термоэлемента займет такое положение, при котором из котла будет поступать 1 литр воды, а из байпаса будет поступать 12 литров. При этом, если температура воды на выходе из котла, допустим, снизится, то клапан займет новое положение, увеличив расход воды из котла и одновременно с этим уменьшив расход воды из обратного коллектора, таким образом, поддерживая необходимую температуру воды на входе в теплый пол.

К сожалению, в таком совершенном режиме узел работает только в теории. На практике часто встречаются ситуации, когда такой узел подает воду в систему напольного отопления почти без смешения. Из-за чего это происходит? Предположим, что в доме, отапливаемом напольной системой отопления, днем стало тепло (солнечная теплая погода) и все петли тёплых полов по сигналам термостатов закрылись. Узел стоит долгое время без расхода, так как все петли отключены. Вечером похолодало, и автоматика запустила работу петель напольного отопления. В течение дня вода, находящаяся в трубе между котлом и насосно-смесительным узлом, неизбежно остынет. Трёхходовой клапан в начальный момент времени будет находиться в полностью открытом положении (проход воды из котла будет максимально открыт, проход воды из байпаса будет закрыт). Далее, как только горячая вода из котла достигнет трёхходового клапана, он начнет закрываться, но приводы у клапана, как правило, имеют задержку минимум 2–3 минуты. Всё это время в петли теплого пола будет поступать теплоноситель с температурой близкой к 90 ºС. Скорость воды в петлях в основном составляет около 0,5 м/с. Таким образом, за 2 мин. до температуры 90 ºС прогреется по 60 м всех открытых петель, что, конечно же, не понравится жильцам такого дома.

Кроме описанного выше случая, такая ситуация часто возникает из-за гистерезиса котла при поддержании им определенной температуры. Гистерезис, это разница температуры воды, при которой котел отключается и включается. У некоторых котлов это значение может достигать 20–30 градусов. Получается, что котел, находясь в выключенном состоянии, не греет воду, и она потихоньку остывает до 60–70 ºС, затем, когда котел резко включится, может произойти такой же эффект резкого перегрева петель за счёт задержки трёхходового клапана.

Такие узлы, как VT.COMBI и VT.VALMIX (рис. 14) лишены такого недостатка, так у них смешение происходит постоянно, даже при полностью открытом термостатическом клапане. За счёт этого в этих узлах невозможно резкое увеличение температуры в петлях.

Узлы с трёхходовым клапаном, несмотря на вышеописанный недостаток все же имеют право на существование. Такие узлы хорошо себя зарекомендовали в системах с гидравлической стрелкой. Гидравлическая стрелка выравнивает колебания температур во вторичных контурах.

Установка перепускного клапана в насосно-смесительный узел с трёхходовым клапаном позволяет так же снять негативный момент, возникающий при остывании воды в трубе между котлом и узлом при длительном простое. Специально для таких случаев VALTEC выпустил готовый узел с трёхходовым клапаном MINIMIX, объединяющий в себе компактность и простоту настройки (рис. 10).

Настройка балансировочного клапана первичного контура (рис. 11)

Порой встречается такая ситуация, что при открытии балансировочного клапана байпаса до максимальной позиции (Кv = 5), температура на выходе из узла все равно остается слишком большой. Можно конечно оставить все как есть, ведь термостатический клапан во время своей работы уменьшит её до необходимого значения. Однако в таком режиме узел будет обладать недостатками узла с трёхходовым клапаном описанным выше. А именно, при резких колебаниях температур в первичном контуре узел может не успеть среагировать и подать в теплый пол теплоноситель с завышенной температурой.

Происходит это, как правило, из-за котлового насоса с чрезмерной мощностью. За счёт большого напора котлового насоса при открытом термостатическом клапане в узел поступает слишком большой расход котловой воды, для разбавления которой, не хватает расхода обратки даже с открытым балансировочным клапаном на байпасе.

Конечно же, эту проблему с точки зрения энергосбережения лучше решать, уменьшая мощность котлового насоса, но если его мощность выбрана, исходя из обеспечения необходимым расходом удаленных радиаторов, а на насосно-смесительном узле напор оказался большим из-за близкого расположения к насосу, то на выручку приходит как раз балансировочный клапан первичного контура. При помощи него можно ограничить максимальный расход котловой воды.

Его настройка схожа с настройкой балансировочного клапана байпаса. Если при настройке балансировочного клапана байпаса оказалось так, что он дошёл до максимального значения, при этом температура после узла все ещё слишком велика, то тогда приступаем к закрытию балансировочного клапана первичного контура. Его желательно закрывать постепенно по 0,5–1,0 оборотов, после чего следить за изменением температуры воды после узла. Как только температура после узла станет на 2–5 ºС выше требуемой, то настройку можно считать оконченной.

Настройка перепускного клапана (рис. 12)

К сожалению, на сегодняшний день многие производители насосно-смесительных узлов пренебрегают данным устройством, более того, многие даже не понимают, зачем перепускной клапан нужен, и вводят в заблуждение коллег сомнениями о его необходимости. На самом деле, у него несколько функций, он нужен для защиты насоса от работы на «закрытую задвижку», для предотвращения влияния петель теплого пола друг на друга во время регулировки и для поддержания узла в рабочем режиме в течение длительных простоев.


Перепускной клапан предотвращает работу на закрытую задвижку следующим образом: как только происходит закрытие сервоприводов, расход воды в контуре напольного отопления снижается. При снижении расхода воды через насос увеличивается напор. Перепускной клапан устроен так, что при достижении определенного перепада давлений он открывается. Таким образом, как только напор насоса достигнет определенной точки, это будет свидетельствовать о том, что насос работает при расходе близким к нулю. Максимальный напор, развиваемый насосом, указывается непосредственно на корпусе насоса и, как правило, выбирается из ряда 2, 4, 6, 8 метров водяного столба. Если поставить перепускной клапан на давление чуть меньшее максимального напора насоса, то он откроется, как только расход в системе упадет до минимума и предохранит его от перегрева. Конечно же, подобную защиту от работы «на закрытую задвижку» можно осуществить при помощи средств автоматики.

Например, коммуникатор VT.ZC6 отслеживает сигналы от всех термостатов, и, если все термостаты дали команду на закрытие, то он отключает насос и включает его только тогда, когда хотя бы один термостат даст команду на открытие сервопривода. Но данный коммуникатор не решает остальных проблем, которые решает перепускной клапан.

Вторая проблема — это выравнивание потоков теплоносителя и исключение влияния петель друг на друга. Данная проблема заключается в том, что при работе системы автоматики петли будут закрываться сервоприводами независимо друг от друга. При закрытии одних петель, расход воды на оставшихся петлях будет увеличиваться. Увеличение расхода воды происходит за счёт того, что стандартный трёхскоростной насос устроен таким образом, что при уменьшении расхода, он самостоятельно увеличивает напор, а в петлях теплого пола при увеличении напора создаваемого насосом увеличивается расход. Приведем конкретный пример:

Предположим, что у нас имеется насосно-смесительный узел с насосом 25/4, настроенным на скорость «2». К нему подключен коллекторный блок с пятью выходами. Так же предположим, что длина всех петель одинаковая, и при этом все петли настроены на одинаковый расход 2 л/мин (0,12 м³/ч). По графику (оранжевые линии на рис. 13) можно увидеть, что все петли при таком расходе (суммарный расход составит 0,6 м³/ч) будут иметь потерю давления 3 м вод.ст. (или 30 кПа).

Но что произойдет, если 4 из 5 петель закроют сервоприводы. В этом случае расход воды будет стремиться к расходу через одну петлю, т.е. 0,12 м³/ч. Но при этом такой расход будет идти и через насос. Насос же в свою очередь при изменении расхода, увеличит напор до 4 м вод ст. (зеленые линии на рис. 13). В свою очередь расход по единственной оставшейся петле увеличится. Данная задача выходит за рамки этой статьи и более подробно описана в статье «Особенности расчёта систем отопления с термостатическими клапанами». Стоит отметить, что в результате совместной работы оставшейся петли и насоса в итоге расход и напор установятся в среднем положении. Т.е. расход будет равен примерно 0,3 м³/ч. Отсюда мы видим, что расход воды в оставшейся петле увеличится с 2 до 5 л/мин.

Подобное увеличение расхода повлечет за собой увеличение температуры теплоносителя на выходе из этой петли, что в свою очередь увеличит среднюю температуру пола. Возможно, подобные колебания средней температуры пола для многих пользователей не являются проблемой, однако в грамотной системе отопления недопустимо, чтобы тепловой режим соседних помещений каким либо образом влиял друг на друга.

В этом случае перепускной клапан работает тем же образом, что и для защиты насоса. При закрытии петель напор насоса начинает расти. Перепускной клапан при увеличении напора открывается и перепускает часть теплоносителя в обратный коллектор. За счёт этого напор и расход теплоносителя остается практически неизменным во всех петлях. Для того чтобы перепускной клапан работал в этом режиме, необходимо его настроить на перепад чуть меньший, чем в первом случае. Если коллекторный блок оснащен расходомерами, то определить настройку достаточно просто. Для этого сначала во всех петлях настраивается требуемый расход теплоносителя. Затем выбирается самая короткая петля либо петля с наименьшим расходом. Как правило, это одна и та же петля. Далее при помощи регулирующих клапанов закрываются все петли кроме выбранной, при этом отслеживается изменение расхода в выбранной петле. Как только все петли будут закрыты, необходимо начать открывать перепускной клапан (уменьшать давление открытия). Клапан открывается до тех пор, пока расход воды в оставшейся петле не вернется к изначальному значению. На этом настройка перепускного клапана считается оконченной. Если после насосно-смесительного узла установлен коллекторный блок без расходомеров, то единственный известный автору статьи способ настройки перепускного – это рассчитать потерю давления в самой длинной петле и выставить это значение на клапане.


Как и ранее, данную функцию может взять на себя система автоматики. А именно – насос с частотным управлением типа VT.VRS25/4EA. У такого насоса есть режим, при котором он автоматически изменяет скорость вращения рабочего колеса при изменении расхода, поддерживая постоянный напор. Но подобные насосы, как правило, дороже обычных трёхскоростных наcосов, и их установка требует технико-экономического обоснования.

И наконец, функция поддержания узла в рабочем режиме в течении длительных простоев. Бывают ситуации, особенно в осенне-весенний период, когда средняя температура днём на улице достаточно высокая, и отопление большую часть дня не работает. Ночью температура на улице опускается, и в этот момент отопление включается. Вода в трубах в период простоя днём без циркуляции остывает, и когда автоматика вечером дает команду на запуск системы, требуется некоторое время, пока остывшая вода сменится горячей водой из котла.

Если система достаточно объёмная, то нагрев займет некоторое время. В случае же использования перепускного клапана насосно-смесительный узел будет работать и поддерживать температуру воды на заданном уровне в течении всего дня. При этом, если вода в самом узле остынет, то за счёт термостатического клапана узел подаст небольшое количество горячего теплоносителя в контур и оставит температуру на заданном уровне. Узел в любой момент будет готов подать воду с требуемой температурой в контур системы напольного отопления.

Как уже было сказано выше, функции перепускного клапана не всегда нужны, и при желании их могут на себя взять другие элементы, такие как коммуникаторы или насосы с частотным преобразователем.

Именно поэтому в 2016 году специалистами компании VALTEC был разработан насосно-смесительный узел VT.VALMIX (рис. 14). Данный узел оптимизирован и имеет более компактный корпус и, в отличие от узла VT.COMBI, не имеет встроенного перепускного клапана. Однако в этом узле, так же как и в узле VT.COMBI, имеется балансировочный клапан байпаса, балансировочный клапан первичного контура, которые позволяют осуществить его настройку практически для любой системы.

В конце статьи приведу наиболее часто встречающиеся вопросы, не освещенные выше и ответы на них:

Вопрос 1. Почему регулировка температуры воздуха в комнате, отапливаемой теплым полом, осуществляется только в режиме «открыто/закрыто»? Почему нельзя отрегулировать температуру, как на радиаторе — постепенным уменьшением расхода?

Действительно, можно осуществить регулировку систем напольного отопления «вентилем» и снижать мощность теплого пола, снижая расход через петли. Однако к теплому полу, в отличие от радиаторов, предъявляются дополнительные требования. Одно из таких требований — это распределение температур на поверхности пола. В случае, если разница температур по поверхности пола будет слишком высока, она будет явственно ощущаться человеком, что будет доставлять дискомфорт. Разница температур на поверхности пола зависит от шага укладки трубопроводов и разности температур воды на входе и выходе из петли теплого пола. И если шаг трубы во время эксплуатации вряд ли поменяется, то разность температур — это величина не постоянная, и зависит она в основном от расхода. Уменьшение расхода в два раза приведет к тому, что разница температур теплоносителя увеличиться в два раза.

Вопрос 2. У меня установлен насосно-смесительный узел и контроллер VT.K200. По графику регулирования контроллер должен поддерживать на входе в систему напольного отопления температуру 30 ºС. А у меня по факту термометр на самом контроллере показывает температуру 35 ºС. Почему так происходит?

В этом случае ситуация с завышенной температурой связана с тем, что балансировочный клапан байпаса закрыт сильнее, чем это требуется. Проверить это легко – если в тот момент, когда после узла завышена температура, сервопривод полностью закрыт (цилиндр сервопривода находится в нижнем положении) (рис. 15, 16), то это значит, что контроллер и так уже полностью перекрыл подачу горячей воды в насосно-смесительный узел и в данный момент просто находится в режиме ожидания пока температура в контуре теплого пола опять не опустится до необходимого уровня.


Это произошло из за того, что перед узлом резко выросла температура воды из-за запуска системы после простоя, либо из- за резкого пуска котла. Клапан не смог молниеносно среагировать на подобные изменения, и узел «зачерпнул» слишком много горячей воды.

Данная проблема решается увеличением позиции настройки балансировочного клапана байпаса и, если он и так настроен в максимальное положение, то балансировочным клапаном первичного контура.

Автор: Жигалов Д.В.

© Правообладатель ООО «Веста Регионы», 2010
Все авторские права защищены. При копировании статьи ссылка на правообладателя и/или на сайт www.valtec.ru обязательна.

Смесительный узел для теплого пола: принцип действия и описание

Организация теплых водяных полов в доме с применением высокотемпературного отопительного оборудования (котел, радиаторы) невозможна без использования специального смесителя. Официальное название устройства — смесительный узел, обеспечивающий соблюдения СНиП и строительных норм по эксплуатации систем нагрева воздушных масс снизу помещений. Его необходимо устанавливать и в том случае, когда обогрев объекта выполняется с помощью высоко- и низкотемпературных систем, и в том случае, когда низкотемпературная система играет роль основной и функционирует за счет автономного котла отопления. Выясним, можно ли установить смесительный узел для теплого пола своими руками, как он работает, и зачем используется.

Зачем устанавливать смесительный узел?

При организации системы водяного нагрева пола ее подключают к отопительному оборудованию — котлу. Он подает нагретый до 70-950С теплоноситель (воду) в радиаторы и автоматически в трубы водяного пола. В результате поверхность напольного покрытия раскаляется до 65-850С. Но нормам СНиП такой температурный режим недопустим. Правила четко оговаривают допустимый диапазон — 27-330С — нагрева напольной поверхности. Получить требуемую настроечную температуру позволяет установка смесителя в систему теплого пола — оборудование для принудительного распределения водных потоков. Благодаря ему горячий теплоноситель, поступающий из котла, автоматически смешивается с остывшей водой, поступающей из обратки. В подающую трубу попадает среда оптимальная по температурным данным для нагрева поверхности пола — 35-550С.

Установкой насосно-смесительного узла для теплого пола решают и ряд других проблем:

  • Обеспечение максимально комфортных условий проживания в доме. Оптимальный температурный режим достигается посредством регулировки t0 носителя тепла;
  • Узел смешения позволяет создать безопасные условия для перемещения по полу босиком. Ходить по поверхности, t0 которой достигает даже 400С крайне некомфортно;
  • Гарантия безопасной эксплуатации стяжки;
  • Защита напольного покрытия. Особенно если в качестве отделки выбран ламинат или линолеум, паркетная доска или другой настил;
  • Гарантии безопасной эксплуатации системы нагрева воздушных масс снизу помещений. Грамотно установленный смеситель для теплого пола позволяет обеспечить защиту труб системы от термического расширения.

Как работает и из чего состоит смесительный узел для теплого пола?

Узлы продаются в различных вариантах сборки. Классический смесительный узел состоит из трехходового (предохранительного) клапана и циркуляционного насоса. В магазинах можно встретить и модели с расширительным баком, коллектором. При этом нужно учитывать, что даже в том случае, если котел отопления уже снабжен насосом, его будет недостаточно для нормальной работы системы обогрева. Он будет работать на снабжение горячей средой радиаторов, поэтому узел подмеса для теплого пола обязательно должен иметь автономным насос — нужен для обеспечения регулировки t0 среды в системе нагрева воздушных масс снизу.

Помимо этого смесительный узел для теплого пола оснащается термостатом, который отключает подачу жидкой среды, если в подающей трубе t0 теплоносителя превышает заданную пользователем. То есть предохраняющий датчик соединен непосредственно с насосом системы водяного нагрева пола. Описать принцип работы смесительного узла теплого пола достаточно просто:

  • нагретый до заданной температуры теплоноситель подается насосом к коллектору вспомогательной системы нагрева;
  • у трехходового клапана, работающего совместно с предохранительным датчиком t0, регистрируется его градус;
  • клапан срабатывает, если t0 выше заданных градусов в параметрах;
  • начинается подача остывшей среды из обратки;
  • узел для теплого пола выполняет подмес холодной среды к горячей субстанции;
  • регистрация t0 среды после смешивания;
  • если температура достигла установленной нормы, клапан срабатывает;
  • подача горячей субстанции закрывается;
  • подача в трубы теплоносителя корректной температуры.

Классический смесительный узел выполняет не только функцию подмеса остывшей среды в горячую жидкость, но и обеспечивает его движение по петлям. Именно эту функцию берет на себя циркуляционный насос. Современный термостатический смеситель для теплого пола может оснащаться и отводчиком воздуха, и байпасом (предупреждает перегрузки), и отсекающими/дренажными клапанами. Набор входящего в состав оборудования напрямую зависит от тех задач, которые поставлены перед системой нагрева. Поэтому если перед вами стоит проблема, как собрать смесительный узел для теплого пола своими руками, то первоначально рекомендуют определиться с функциональностью отопительного оборудования, а затем только закупать составляющие.

Устанавливается смесительный узел строго до контура системы. Место размещения не играет существенной роли — в комнате, где оборудован теплый пол, котельной и т.д. Хотя многие эксперты рекомендуют при обогреве свыше 2 комнат монтировать узлы подмеса локально — в обогреваемом помещении. Грамотно продумав устройство смесительного узла для теплого пола, можно организовывать водяные системы в квартирах многоквартирных домов. То есть проводить подключение вспомогательного нагрева к однотрубной системе. Также при сборке узла подмеса можно использовать двухходовые клапаны. Выяснив, из каких составляющих собирается смесительный узел для теплого пола и, разобрав принцип работы оборудования, рассмотрим схемы подключения.

Разновидности узлов смешения для теплого пола и схемы подключения

Недостаточно разобраться с тем, как самому собрать смесительный узел для теплого пола, нужно определиться с типом оборудования. На рынке можно найти:

  • Узел распределительный последовательного вида смешивания.

Этот класс подмеса сред называют наиболее энергоэффективным. Это связано с тем, что среда обратки имеет низкую t0. А это значит, что теплоотдача максимальна. Но при этом узел последовательного смешения для теплого пола еще и наиболее производителен. Доказано, что расход циркуляционного насоса поступает непосредственно в петлю, для которой осуществлялась сверка t0 среды. Благодаря этим особенностям смесительный узел этого класса подмеса является идеальным оборудованием для низкотемпературных систем.

  • Смесительный узел параллельного класса смешивания.

Применяется в системах водяных полов довольно редко, поскольку считается наименее производительным. Полный расход циркуляционного насоса поступает не в петлю водяной системы, а по разные стороны насосного узла для теплого пола, что создает существенные потери. При этом производители предлагают модели оборудования, в которых имеется и внутренние потери. Невысока и его энергоэффективность. Дело в том, что t0 среды идущей от оборудования приблизительно равна t0 настроечной среды. Поэтому эксперты не рекомендуют использовать смесительный узел для теплого пола, а устанавливать на высокотемпературные обогревательные системы.

Выбирая распределительное устройство, обращают внимание, что есть приборы последовательного подмеса с центральным и боковым смешиванием. Тип оборудования подбирается индивидуально по характеристикам системы. Устанавливая смесительный узел для теплого пола своими руками, нужно строго следовать рекомендациям производителя.

Двух- и трехходовой смесительный узел для теплого пола и схемы подключения

При организации вспомогательного нагрева воздушных масс снизу помещения можно установить своими руками смесительный узел для теплого пола с трехходовым краном или двухходовым. Схема и принцип функционирования систем будут разными. Применение двухходовых клапанов обеспечивает создание простейшей конструкции. Их также можно найти в магазин под названием питающие краны. Двухходовый узел теплого пола снабжается термоголовкой и датчиком среды жидкостного класса. Благодаря дополнительным устройствам происходит контроль t0 среды. Принцип функционирования системы будет следующим:

  • постоянно циркулирующей средой системы является обратка — охлажденная субстанция;
  • к ней при значительном остывании подается горячая жидкость от котла;
  • после подачи среды от нагревательного котла установленный своими руками узел подмеса для теплого пола выполняет смешивание субстанции.

Главное преимущество двухходовых устройств — плавность нагрева среды. Они гарантируют отсутствие перегрузок системы, поскольку обладают низкой пропускающей способностью. За счет этого применять питающий смеситель для теплого водяного пола наиболее рационально в небольших помещениях — ванная или детская комната, спальня, кухня. Для обогрева площадей свыше 60 м2 его использование неразумно.

Трехходовой насосно нагревательный узел для теплого пола выполняет две функции — балансировочного и питающего крана. Его принцип работы заключается в смешивании горячей среды с охлажденной обраткой (детально описан выше). Преимущество термосмесительного узла в возможности оборудовать систему дополнительными устройствами, позволяющими расширить ее возможности и упростить регулировку. Его считают универсальным оборудованием. Рекомендуют использовать:

  • при обустройстве водяных систем на больших площадях;
  • при снабжении отопительного оборудования погодными контролерами;
  • в системах с количеством петель от 4 и более.

Имеет трехходовой смеситель теплого пола и недостатки. Главный из них — высокая пропускающая способность. Она при малейших отклонениях в работе заслонки устройства неизбежно приведет к существенному повышению t0 среды. Неизбежны перегревы. Второй недостаток — насосный узел может приводить к скачкам температуры. Если объем среды, идущей от котла, больше объема обратки, нестабильной работы не избежать. Именно поэтому в схемах смесительного узла с трехходовым клапаном всегда присутствует дополнительное контрольное оборудование — сервопривод, датчики, контролеры и пр.

Монтаж обоих видов устройств проводится строго по схеме. А как правильно установить трехходовой клапан на теплый пол, подскажут рекомендации производителя устройства.

Как отрегулировать теплые полы водяные на узле смешивания?

После подключения трехходового клапана к теплому полу, нужно проверить его корректность установки и отрегулировать работу. Для новичка эта процедура может показаться длительной и трудоемкой, но если следовать инструкции, представленной ниже в тексте, можно избежать ошибок. На первом этапе потребуется снять сервопривод. Затем действовать так:

  • Выставить клапан в позицию 0.6 бар. Это предельное значение.
  • Выставить балансировочный клапан петли.

Рассчитываем положение по формуле .

Кv6=〈〈t1 – t2обр/〈t2подачи – t2обр〉-1〉 * Кvt

Цифрой 1 обозначаются контур радиаторов, а двойкой — водяной системы. Чтобы определить, какая должна быть пропускающая способность клапана для выбранной схемы теплого пола с трехходовым клапаном, нужно подставить все известные в формулу. Учитывают, что коэффициент К=0.9.

Кv6=〈〈t1 – t2обр〉/〈t2подачи – t2обр1〉 * Кvt=((95-35)/(45-35)-1)*0,9=4,05

  • Отрегулировать в соответствии с полученными данными расход и потери насоса. Провести отладку его работы непросто. Поэтому эксперты рекомендуют выставить оборудование на минимум. В ходе эксплуатации водяной системы с распределительным узлом для теплого пола станет понятно, что мощности агрегата недостаточно. Значит, добавляется скорость ровно на 1 положении. Снова тестируется система. Если опять не хватает мощности, добавляют еще на 1 положение. Так до тех пор, пока желаемая скорость среды в системе не будет выставлена корректно.
  • Настройка работы петель. Если в схеме коллектора теплого водяного пола с 3 х ходовым клапаном предусмотрен только 1 контур, этот этап можно смело пропустить. Балансировка петель выполняется только при наличии 2 и более контуров.
  • Связывание термосмесительного узла для теплого пола с другими устройствами отопления. Чтобы выполнить эту процедуру необходимо все радиаторные клапаны поставить в положение открыто.
  • Регулировка перепускного крана. Здесь выставляется значение давления на 10% больше максимального параметра насоса. Его можно посмотреть в технической документации к оборудованию.
  • Проверка функциональности насосного смесительного узла в системе. Процедура выполняется для каждой петли по отдельности. На этом этапе также рекомендуется оценить физическую работу системы нагрева воздушных масс — равномерность, прогрев холодных зон и т.д.

На этом регулировка теплых полов в смесительном узле завершена. При выявлении на каком-либо этапе отклонений проводят сброс настроек и повторную регулировку. Процедура непростая, особенно если используется самодельный смесительный узел для теплого пола, поскольку есть немалый шанс некорректного подбора оборудования и сборки конструкции. Поэтому монтаж и регулировку водяной системы (самой сложной в подключении и настройке) разумнее доверить специалисту.

Здесь приведено несколько схем подключения трехходового смесительного клапана теплого пола, а также варианты систем с двух- и 4-ходовыми элементами. Их выбор зависит от индивидуальных особенностей системы и целесообразности. Купить насосно смесительный узел теплого пола можно в специализированных магазинах. Лучшими считаются узлы смешивания для теплого пола производства торговой марки VALTEC, Uni Fitt Solomix, Oventrop, Watts и других. При выборе обращают внимание на комплектацию оборудования — с насосом и клапаном, без насоса и т.д.

Смесительные узлы для теплого пола

  • Меню
  • Каталог
    • НАЗАД
    • Каталог
    • Радиаторы и комплектующие
    • Гидрострелки и коллектора
    • Теплый пол водяной

Как работает смесительный узел для теплого пола?

Чаще всего, при выборе системы теплого пола используется водяная система отопления, одним из основных элементов которой считается смесительный узел для теплого пола. С его помощью обеспечивается нормальное функционирование системы, работающей в низкотемпературном режиме. Достигается это благодаря смешению горячего теплового носителя с обраткой.

Устройство и принцип работы

Если представить себе схему смесительного узла теплого пола, то состоит он из клапана и насоса. Зачастую встречаются более расширенные варианты комплектаций.

Насос может быть вмонтирован на самом отопительном агрегате, но мощности его будет мало. Для системы обогрева пола придется устанавливать отдельную насосную установку на узел. С его помощью температура воды будет легко регулироваться и с 90 градусов снижаться до 35 – 50.

Кроме этого, смеситель обязательно снабжается предохранителем, отключающим насос, когда температура подающейся воды превысит установленную норму.

Труба для обратного хода воды, температура которой составляет 40 градусов, проходит от коллектора. На обратке встроен обратный клапан, предотвращающий движение воды в обратном направлении.

Как выглядит смесительный узел для теплого пола

А как работает узел подмеса теплового пола? После того, как терморегулятор сработает, автоматически откроется заслонка, чтобы подмешать более холодный носитель, находящийся в обратке. Нормализовав температурный режим, заслонка закроется.

Разновидности

Основной элемент насосно-смесительного узла для теплого пола – двухходовой или трехходовой клапан.

Двухходовой тип

Этот вариант имеет датчик жидкости, вмонтированный в головку термостата. Его основным предназначением является контроль температурного режима воды. Клапан перекрывается с помощью головки, перекрывающей поступление воды из кола в случаях, когда в контуре создается высокая температура.

Из обратки тепловой носитель в систему поступает постоянно. Клапан позволяет поступать горячей воде только в том случае, когда температура не достигает требуемого уровня. Регулировка происходит плавно, температурные скачки исключены, так как клапан не обладает большой пропускной возможностью. Узел подмеса для теплого пола помогает не только поддерживать комфортный микроклимат, но обеспечивает всей отопительной системе продолжительный эксплуатационный период.

Клапан двухходового типа прекрасно справляется с функцией контроля требуемого температурного режима. Но использовать его в системе, обогревающей помещения, площадь которых превышает 200 кв. м., не следует.

Трехходовой тип

Такой клапан выполняет сразу две функции – регулирует подачу горячего теплового носителя и выступает в роли балансировочного байпаса. Смешивание горячей и охлажденной воды происходи непосредственно в клапане.

Устройство довольно часто оснащено термостатическим элементом, контролером погодозависимого типа, сервоприводом. С помощью регулировки заслонки появляется возможность создавать в системе нужную температуру носителя.

Комплект на 3 контура до 40 м2 водяного теплого пола с трехходовым клапаном и трубой

Трехходовой тип клапана для смесителя системы отопления пола рекомендуется устанавливать в домах, имеющих несколько контуров обогрева, или в помещениях, отличающихся большой площадью.

Преимущества и недостатки

Насосно-смесительный узел для теплого пола дает много преимуществ, из-за которых отопительная система и стала популярной. Наиболее главными из них считаются:

  • безопасность эксплуатации – зачастую пользователи забывают, что приборы отопления имею высокую температуру, и получаю сильные ожоги. Применение данной системы полностью исключает неприятности такого рода;
  • гигиеничность – организация ухода за системой теплого пола не вызывает сложностей. За счет постоянного обогрева поверхность полов высыхает достаточно быстро, что полностью исключает образование плесени и грибков;
  • экономическая выгода – использование системы теплого пола позволяет экономить энергию на 30 – 50 процентов;
  • продолжительный эксплуатационный период – трубы, наиболее подверженные износу, способны эксплуатироваться не менее пятидесяти лет;
  • возможность управления по наружному температурному режиму – двухходовой клапан имеет электрический привод, соединенный с терморегулирующим устройством. Корректирование степени нагрева выполняется с учетом температуры наружного воздуха;
  • режим ручного управления – блок в этом случае может использоваться без клапана. Степень смешивания в такой ситуации устанавливается вручную. Данный вариант не следует использовать вместе с высокотемпературными тепловыми источниками;
  • режим температурных ограничений – он возможен за счет установленной на клапане головки термостата, имеющей выносной датчик. Температура прогрева пола в этом случае ограничивается по отметке, установленной на головке.

Недостатки в принципе работы узла подмеса пользователями не отмечаются.

Значение основных параметров смесительного узла

Если вы решили монтировать смесительный узел для теплого пола своими руками, при выборе нужных комплектующих рекомендуется отслеживать их параметры, которые должны соответствовать показателям системы. Здесь имеются в виду не диаметры и монтажные размеры комплектующих, а показатели производительности основных элементов. Выполнить необходимые расчеты способен специалист, но и вы сможете справиться с этой задачей самостоятельно.

Производительность

Данный параметр одинаково важен и для насосной установки, и для клапана термостата. Считается, что насос выполняет функции активного элемента, обеспечивающего перекачивание необходимых объемов, а клапан должен обладать достаточной пропускной способностью.

Чтобы определить производительность системы, потребуются следующие данные:

  • теплоноситель не зря имеет такое название – чем больше его перекачивается в единицу времени, тем больше тепла подается от котла к контурам. Получается, что одним из исходников для определения необходимого минимума производительности будет площадь обогреваемого помещения. Здесь допускаются различия по количеству тепловой энергии, ведь система теплого пола может использоваться в качестве основного или второстепенного теплового источника;
  • теплоемкость теплового носителя и температурный перепад в подаче и обратке. Как правило, он не более десяти градусов, при этом для полного комфорта уровень нагрева может быть не выше тридцати градусов;
  • некоторые в качестве теплового носителя использую не воду, а специальную незамерзающую жидкость. Для более точных расчетов необходимо уточнить ее плотность и тепловую емкость.
Монтировать смесительный узел для теплого пола своими руками достаточно трудно

Напор циркуляционного насоса

Кроме узла подмеса, для системы теплого пола предусматривается монтаж насосной установки, отвечающей за оптимальный напор горячей и холодной воды в контуре, которая после смешивания перемещается по трубам, установленным под напольным покрытием. Именно на него возлагаются основные надежды по созданию требуемого напора, потому что циркуляционный насосный агрегат, имеющийся в общей отопительной сети, полностью перекрывает свой клапан.

Итак, как определить напор для насосной установки, своими руками установленной в систему теплого пола, имеющую смесительный узел?

К узлу смешения подсоединяется коллектор, от которого отводятся контуры системы. Как следует из законов гидравлики, создаваемое насосом давление на коллекторе окажется одинаковым для каждого подключенного контура, и чтобы выполнить более точную настройку, для каждого монтируют устройство для балансировки. Но такие клапаны помогают немного понизить избыток давления в контурах, не отличающихся большой протяженностью, а расчеты ведутся именно по максимальной длине труб, потому что именно здесь создается максимальная гидравлическая сопротивляемость.

Гидравлическое сопротивление будет зависеть от диаметра труб, так что этот параметр тоже придется уточнить. Кроме труб, сопротивление может создаваться фитингами и клапанами.

Приобретая насос, рекомендуется изучить его техпаспорт. Как правило, производитель указывает в нем оптимальные соотношения производительности и образующегося напора на различных рабочих режимах.

Основные схемы

Есть несколько вариантов схем подключения смесительных узлов теплового пола. Чаще всего пользуются стандартной, имеющей трехклапанный или двухклапанный узел. Разберемся, как подсоединить узел подмеса для теплого пола своими руками.

  1. Используем двухходовой клапан. Для сборки потребуются:
  • шаровые запорные краны для перекрывания воды;
  • фильтр косого типа – элемент необязательный, но помогает продлить срок эксплуатации системы, защищая трубы о попадания в них твердых частиц;
  • термометр – отслеживает работу узла, требуется для балансировки смесительного узла;
  • однотрубный клапан двухходовой;
  • термоголовка, вмонтированная в клапан;
  • балансировочный клапан или сантехнический вентиль – для очной настройки системы;
  • насосная установка, перемещающая тепловой носитель.

Система работает просто – вода перемещается через фильтр и термометр, достигает клапана. Здесь сила пока уменьшается, термоголовка срабатывает на температурный режим, подавая сигналы для открытия или закрытия. Насос во время работы создает разреженную зону, в которую подается поток холодной воды. После смешивания тепловой носитель получает необходимый температурный режим.

  1. Вариант с трехходовым клапаном. От первой схемы узла подмеса теплого пола  его принцип работы почти не отличается, но особенности имеет. Во время работы в открытом состоянии находятся два клапана, что придает процессу стабильность. Необходимо устанавливать клапан, в который потоки подаются перпендикулярно. Если в работе насоса происходит сбой, задействуется обратный клапан, выполняющий роль стабилизатора любых нарушений в системе. Правда, монтируют его редко.
  2. Схема с термостатическим клапаном. В этом случае оба потока воды смешиваются по одной оси. Клапан отличается особой формой и определенной схемой направления водных потоков. Компактный вариант, в котором роль байпаса выполняет клапан.
  3. Схема параллельного подключения. Отличается некоторыми достоинствами, довольно компактна, применяется на объектах с небольшой площадью прогрева. Правда, производительность оставляет желать лучшего, балансировка схемы выполняется сложно.
  4. С трехходовым клапаном. Отличается от предыдущей наличием трехходового термоклапана, установленного над насосом.

При обустройстве теплого пола можно использовать любой вариант. Здесь все зависит от ваших возможностей и наличия необходимых элементов.

Самостоятельная сборка смесительного узла

Стоимость смесительного устройства существенная, по этой причине многие потребители предпочитают собрать нужный узел самостоятельно.

Необходимые инструменты

Для сборки следует приготовить:

  • клапан двух- или трехходового типа;
  • гайки специальные;
  • ручной отводчик воздуха;
  • клапан на обраку;
  • зажимы;
  • шаровый кран;
  • насосную установку;
  • тройники;
  • устройство, определяющее температурный режим;
  • набор ключей, пакля.
Для монтажа смесительного узла понадобится набор ключей

Схема подключения

Разберем вариант подключения узла Vaitec. Сначала собирается коллектор, тройники которого могу спаиваться или скручиваться. Первый вариант обходится дороже, потому что каждое отверстие оснащается дорогостоящим МРН.

Изготавливается гидрострелка. Для этого можно использовать простой регулировочный кран, устанавливаемый на радиаторах. Потребуются также пара ройников и столько же ниппелей, имеющих резьбы внутреннего и наружного типа.

Собирается насос. Естественно, что его придется приобрести в магазине. Монтируют его ниже гидрострелки на разъемные соединения, имеющиеся в комплекте поставки. Возможна его установка вместо упомянутой стрелки – насос отлично справится с ее функциями.

Гидрострелку соединяют с гребенкой. Для насоса понадобится купить отдельный парубок соответствующей длины.

Теперь можно устанавливать краны, клапаны, устройство для сброса воздуха.

Тонкости монтажа

Потребуется установка отсекающих кранов. Их монтируют на узел и обогревательные конуры. Чтобы не запутаться в действиях, рекомендуется следовать несложному алгоритму – подключать подачу и обратку очередного сегмента последовательно.

Следует учесть вероятность образования конденсата и предусмотреть защиту электрических узлов от попадания на них влаги.

Нужен ли узел подмеса для теплого пола, каждый решает сам. Но выбирать его необходимо индивидуально, чтобы система обеспечивала требуемый для комфортной жизни микроклимат.

Смесительный узел для теплого пола своими руками

 

Для отопления пола может быть использована система «теплый пол». При этом, смесительный узел для теплого пола своими руками сделать возможно. Но необходимо учитывать все особенности самой системы и соблюдать требования, которые регламентируют весь процесс работы. При установке узла смешивания потребуется все делать в соответствии с инструкцией.

Для чего узел необходим

Традиционная система отепления, которая обычно устанавливается в комнатах, имеет высокую температуру, не редко превышающую 75 градусов.

Данная температура является недопустимой для теплого пола по целому ряду причин:

  • При высокой температуре ходить по полу будет, как минимум, не комфортно. Поверхность может стать не просто горячей, а обжигающей. Комфортной температурой является от 25 до 30 градусов;
  • Многие напольные покрытия теряют свой прежний вид, если температура слишком высокая. Часто в них появляются щели и большие трещины;
  • Повышенная температура может привести к порче стяжки;
  • Сами трубы также имеют определенную температуру. Из-за того, что они оказываются вмурованными в бетон, при высокой температуре исчезает возможность расширения стенок, из-за чего создается напряжение, которое со временем полностью выводит их из строя;
  • Дополнительный источник теплоотдачи отрицательно влияет на формировании определенного микроклимата в самом помещении.

Таким образом, узел подмеса для теплого пола необходим для устранения высокой температуры воды, которая и отапливает пол.

«Теплый пол» и монтаж смесительного узла должны устанавливаться специалистом или человеком с большим самостоятельным опытом. Это позволит избежать большинства отрицательных факторов при дальнейшей эксплуатации.

Узел смешения для теплого пола обязателен, то есть в системе отопления распределительный узел необходим при любом варианте обогрева пола с помощью воды. Смесительные узлы компенсируют часть температуры воды и позволяют работать устройствам систем отопления без повреждений в оптимальном режиме.

Сам принцип работы смесительного узла почти не меняется, но имеется несколько основных схем для подключения.

Основные схемы

Схема смесительного узла теплого пола имеет несколько вариантов, но в основном используется стандартная конструкция, в которой узел подмеса теплого пола является трехклапанным или двухклапанным узлом.

Основная группа схем не включает в себя более сложные варианты, так как для самостоятельного устройства достаточно любой первичной схемы, которая не будет действовать хуже более усложненных конструкций.

Первая схема с использованием клапана двухходвого типа

Запорные краны шарового типа. Они используются только для полного прекращения подачи воды. Это может быть необходимо, если в подогреве полов нет необходимости или при проведении каких-либо работ. Данный кран должен быть достаточно прочным, но больше никаких требований к нему нет, так как его роль заключается только в перекрытии подачи воды. Он не вносит никакого вклада в работу самой системы отопления.

Косой фильтр. Этот элемент не является обязательным, но его использование способно увеличить срок службы всей системы. Он способен защитить ее от попадания твердых частичек из самого радиатора. Термометр. Он помогает следить за работой всего узла, а также требуется при стабилизации и балансировке смесительного центра.

Используется клапан двухходового типа. Обычно применяется однотрубный вариант, так как он способен выполнять большой объем и имеет высокий уровень производительности.

Используется термоголовка, у которой есть датчик накладного выносного типа. Прибор устанавливается на термоклапан. Там головка будет открывать или закрывать проход для теплоносителя в зависимости от температурного режима. Используются сантехнические тройники при этом, они прикрываются перемычкой.

Для подробной настройки системы можно использовать балансировочный клапан. При необходимости его заменяют вентилем сантехнического типа. Также необходим циркулярный насос. Именно он проводит обслуживание всей системы. Желательно иметь насос с несколькими режимами, которые можно переключать в зависимости от требований к режиму пола. Для отсутствия протекания используется обратный клапан.

Данная система работает довольно просто. Вода переходит через косой фильтр, а также термометр, после чего доходит до клапана. На данном этапе поток уменьшается, а термоголовка реагирует на изменение температурного режима, давая сигналы на открытие и закрытие.

Циркулирующий насос оставляет специальную зону разрежения. Именно туда и переходит поток. Объем производительности самого насоса не подвержен изменениям. Именно по этой причине поступает поток охлажденной воды, который переходит из линии обработки. Оба потока смешиваются и перемещаются в поток, который имеет уже необходимый температурный режим.

Этот водяной носитель и регулирует теплоснабжение пола. Благодаря тому, что термосмесительный узел совершает действия смешивающего характера, насосный узел насыщает систему водой с комфортным температурным режимом.

Может быть интересно

Вторая схема с трехходовой клапаном

Данный вариант схож с первой схемой, но имеет ряд своих отличий, в том числе используется трехходовой клапан, в котором и идет смешивание. При работе открыты два клапана. Благодаря таким особенностям процесс стабилен. Требуется использовать клапан, у которого подача потоков идет перпендикулярно. Кроме этого, можно использовать обратный клапан, который работает при сбое в работе циркулярного насоса. Обратный клапан используется как стабилизатор всех нарушений в системе, но его устанавливают редко.

Третья схема с термостатическим клапаном

Термостатический клапан совершает смешивание по одной оси двух поточной воды. Такой клапан имеет своеобразную форму, а также определенное схематическое направление всех потоков. Вариант является компактным и имеет байпас, так как его роль выполняет клапан.

Четвертая схема с параллельным подключением

Данный вид системы имеет значительные отличия от предыдущих. Данный вид строения узла позволяет использовать параллельное подключение насоса на байпас, но к его верхней точке подходят сразу несколько потоков, которые идут от общей системы и от обработки коллектора.

Данная система имеет ряд преимуществ, в том числе и компактностью. Особенно часто используется в помещении с ограниченным местом. Но у этой схемы также есть и ряд недостатков, в ом числе низкая производительность. Кроме этого, с данной схемой усложняется процедура балансировки. Большинство уже готовых смесительных узлов имеют именно такую систему сборки, более вероятно, что из-за компактности.

Пятая схема с трехходовым термоклапаном

Данная схема повторяет почти полностью ту, что была ранее. Единственным отличием является трехходовой термоклапан, установленный в верхней части, над самим насосом.

Для тёплых полов можно использовать любую систему. Все будет зависеть от возможностей и наличия комплектационных материалов. Также важен отопительный сезон, так как при различных требованиях к отоплению балансировка будет необходима при любой работе с термосмесителем. То есть узел должен будет не только подмешивать воду с измененным температурным режимом, но и реагировать на резкие изменения. А это потребует большего количества деталей.

При покупке комплектующих не стоит экономить. Для полноценной и бесперебойной работы потребуется приобретать качественные запчасти. Это позволит избежать большинства поломок.

Использование основных схем также может зависеть от особенностей отопительной системы и характеристик пола, например, если площадь пола больше двухсот квадратных метров, то стоит использовать схему с трехходовым клапаном.

Особенности установки

У установки смесителя есть свои нюансы, которые необходимо учитывать. Все правила стоит соблюдать для более полноценной и бесперебойной работы системы. Особенности:

  • двухходовой клапан обладает больше устойчивостью к различным изменениям. Используют его обычно для небольших площадей. Такой тип клапана является более надежным и более простым в обеспечении;
  • трёхходовой клапан имеет множество недостатков, которые возможно устранить с помощью правильной первичной балансировки. Если этого не сделать, то из-за перепадов температур возможно проведение полной системы отопление пола в негодность. Например, при резком изменении температурного режима, если клапан был не настроен, то в трубах создаются скачки давления, которые могут привести к тому, что трубы лопнут;
  • при использовании трёхходового клапана все детали должны быть тщательно проверены на дефекты. Кроме этого, желательно использовать все комплектующие от одного производителя;
  • при наличии различных скачков температурного режима, который может быть связано как с погодными условиями, так с сезонными изменениями, необходимо использовать контроллер, позволяющий системе самостоятельно регулировать уровень стабилизации;
  • место установки подмеса должно быть выбрано заранее. При этом, установка устройства должна быть сделано до контура пола и в специальном ящике коллекторного типа;
  • система сначала устанавливается, затем подключается ко всем трубам. После этого устанавливают дачник температуры, а также напора, давления;
  • если узел закрепляется не на жесткой системе гидроснабжения, то необходимо жесткое крепление к стене;
  • три хода в клапане позволяют процесс смешения регулировать автоматически;
  • использование самый простой системы возможно только в случаях с очень маленькой площадью. Во всех остальных случаях должны использоваться двух- или трехходовые клапаны;
  • при покупке всего комплектующего узла целиком необходимо предварительно ознакомиться с инструкцией, а также техническими характеристиками;
  • на большую площадь можно установить как один большой смеситель, так и несколько маленьких. Всё зависит только от желания, а также от требований к отоплению;
  • если планируется установка нескольких маленьких смесителей, то вся площадь разбивается на равные секции, после чего обеспечивается узлами;
  • электроэнергия подключается к системе только после того как все работы по установке уже были выполнены. Особенно это касается трехходовых клапанов;
  • весь процесс установки должен иметь четкую структуру — выбор смесителя, точка установки, обустройство места, процесс установки, подключение, балансировка и нахождение оптимального режима;
  • сейчас существуют различные модификации смесителей, которые могут использоваться в различных сетях индивидуального и общего характера. Но при этом, стандартная комплектация узла включает в себя вентиль термостатический и настроечный, головку термостатического типа, насосный блок, различные приборы температуры и других показателей.

Весь процесс самостоятельной установки должен проходить поэтапно, то есть все предварительные меры, в том числе и по обустройству места, должны быть выполнены. Большая часть дополнительных приспособлений обычно устанавливается только по желанию установщика.

Это относится и к изменению погодных условий, а также к различным стабилизаторам температурных режимов и давления. Кроме этого, сам процесс установки должен начинаться только после того как произведены расчеты. Например, на 150 квадратных метров будет достаточно одного двухходового клапана, если нет вторичных факторов.

Самостоятельно установить узел вполне возможно, но при этом требуется соблюдать все условия и требования к системе отопления. Кроме этого, необходимо помнить, что многие характеристики различных схем установки должны быть учтены заранее.

Выбор комплектации узла зависит от условий и требований, которые будут устанавливаться для полноценной работы. Установкой должен заниматься специалист или лицо с опытом, так как это позволит избежать большинства ошибок.

 

Рекомендации по коллектору и смесительному клапану для теплого пола

Объяснение принципа работы коллектора и смесительного клапана

Здесь, в компании Underfloor Heating Systems Ltd , мы используем смесительный клапан насоса Reliance Water Controls (RWC) для понижения температуры воды из котла в систему теплого пола. Но что такое смесительный клапан коллектора и зачем он нужен каждому коллектору теплого пола?

Этот смеситель представляет собой самодействующий термостатический 4-портовый TMV (термостатический смесительный клапан), который используется для смешивания потока из котла с обратным потоком из системы теплого пола, чтобы обеспечить правильно смешанную температуру для контуров отопления под вашим полом. .

Выше представлена ​​наша последняя версия смесительного клапана и новый насос класса A.

Пример того, как все работает:

Расход 82 градусов Цельсия (° C) поступает в смеситель от бойлера, смеситель настроен на обеспечение температуры смешанной воды 45 ° C в контурах напольного отопления, температура обратной воды, возвращающейся из контуров в смеситель, составляет примерно 35 ° C. Для более длинных контуров перепад температуры между контурами подачи и обратки может составлять от 5 ° C до 10 ° C.

Вода с температурой 35 ° C будет смешиваться с водой с температурой 82 ° C и подавать смешанную воду с температурой 45 ° C в проточный коллектор u.f.h. система. Любая вода, которая не требуется, будет отправлена ​​обратно в котел для повторного нагрева до 82 ° C. Температурный диапазон термостатического смесительного клапана RWC составляет от 35 ° C до 65 ° C. Между смесительным клапаном и коллектором потока всегда должен быть установлен насос теплого пола для обеспечения циркуляции воды в контурах отопления.

Мы используем насос Grundfos UPS2 A для наших систем отопления.Рейтинг A означает экономию энергии для конечного пользователя. Этот насос имеет три варианта скорости: первая скорость — 4 метра, вторая скорость — 5 метров, а третья скорость — 6 метров. Также доступна переменная скорость, однако эта настройка не рекомендуется для любых u.f.h. систему, так как она не обеспечивает достаточного давления.

Смесительный клапан имеет резьбовое соединение ¾ ”для сантехника для подсоединения труб F&R. Блок насоса смесителя может быть установлен либо с левой, либо с правой стороны коллектора, что дает монтажникам дополнительную гибкость.

Благодаря их надежности, за более чем 10 лет работы мы всегда использовали исключительно смесительные клапаны RWC. Качество всегда превыше всего, и это основная причина, по которой мы выбрали RWC. Фактически, это также дополнительный бонус, что они являются производителем из Великобритании.

Посетите нашу страницу технической информации для получения дополнительных полезных советов и информации. Или свяжитесь с нами здесь

Copyright (c) 2013 ООО «Системы теплого пола»

Опубликовано:

Руководство по коллектору для теплого пола

Как работает коллектор Warmup S3?

Коллектор соединяет источник тепла — бойлер, тепловой насос или другое — с водяными контурами теплого пола, регулирует температуру поступающей воды через смесительный блок и распределяет эту теплую воду по контурам пола для экономии энергии. система отопления.После успешной установки и выполнения соединений трубопроводов контуры теплого пола сначала заполняются водой и продуваются.

Подключение контуров к источнику тепла

Подключение к источнику тепла осуществляется через первичный контур отопления. Источник тепла подает воду в коллектор через смесительный блок коллектора, чтобы гарантировать расчетную температуру воды (ее можно установить в пределах 20–60 градусов Цельсия). Однако, если источник тепла может постоянно обеспечивать необходимую температуру воды для системы без перегрева, то смесительный узел может не потребоваться.

Смесительный блок регулирует температуру воды с помощью смесительного клапана, управляемого приводом, и смешивает нагретую воду из первичного контура отопления с более холодной водой из контуров пола для достижения идеальной расчетной температуры. Эта температура настраивается в процессе установки в соответствии с расчетными требованиями к теплу; который определяется тепловыми потерями, конструкцией пола, теплопроизводительностью и другими переменными.

Установка скорости потока

Через циркулятор смесительного устройства давление потока нагретой воды устанавливается и поддерживается во всех контурах подпольного отопления.Коллектор может поддерживать до 120 метров труб теплого пола на контур, поэтому перед подачей воды в эти трубы расход для отдельных контуров устанавливается с помощью расходомеров в соответствии с потребностями конкретного контура. При правильной настройке это гарантирует, что зоны нагрева будут равномерно обогревать пространство, даже если использовалась разная отделка пола.

Распределение нагретой воды

Оптимально нагретая вода с правильным давлением потока и скоростью потока подается из коллектора в пол через рычаг потока коллектора, и после циркуляции контуров пола вода снова поступает в коллектор через обратная рука.Обратный рычаг оснащен клапанами контура, которые обычно устанавливаются с приводами, которые открываются и закрываются по команде термостата (через центр коммутации), что позволяет воде течь в контуры пола и нагревает или охлаждает систему подогрева пола.

Управление коллектором

Коллектор и его электрические компоненты эффективно контролируются центром коммутации. Это обеспечивает связь между приводами коллектора, циркуляторами и любыми зонными клапанами с термостатом и источником тепла.Когда термостат требует тепла в определенной зоне нагрева, центр коммутации будет подавать напряжение на соответствующий привод (или несколько, если используется более одного контура на зону обогрева), который открывает клапаны ввода в эксплуатацию и позволяет теплой воде течь через контуры. . Центр коммутации также одновременно вызывает котел на подачу тепла, открывает все клапаны зоны коллектора и управляет циркуляцией смесительного узла.

Использование интеллектуального термостата от Warmup для управления нагревателем пола обеспечивает энергоэффективное отопление и долгосрочную экономию ваших счетов за отопление.

Области применения коллектора подогрева пола — Emmeti

Подогрев пола становится все более популярным в Великобритании благодаря своей способности обеспечивать эффективное и равномерное тепло. Лучистое тепло, обеспечиваемое на уровне пола, создает большую нагретую поверхность, которая равномерно рассеивает тепло в жилом пространстве, тогда как радиатор создает конвекционные потоки, которые поднимаются в самую высокую часть комнаты, а это означает, что большая часть тепла теряется на высоте потолка. Полы с подогревом могут создать идеальный уровень комфорта для домовладельца или жильца и являются гораздо более энергоэффективными из-за использования более низких температур воды в системе отопления и меньших потерь тепла.Эта экономия энергии в сочетании с бесшумной работой и повышенной гибкостью планировки помещений дает решение, которое повысит реальную ценность собственности.

Полы с подогревом могут работать с различными источниками тепла, такими как газовые и масляные котлы, и особенно подходят для возобновляемых технологий, таких как воздушные и наземные тепловые насосы. Его также можно установить практически на любой тип пола, от бетонной плиты до деревянного перекрытия, а также в качестве ретро-системы поверх существующих полов.

Ключевые преимущества теплого пола по сравнению с традиционным отоплением

Для установщика

  • При необходимости обеспечивает индивидуальную изоляцию контуров теплого пола (UFH).Вы можете изолировать части системы, в то время как остальные остаются в рабочем состоянии, что сокращает время простоя при установке и обслуживании.
  • Каждая комната снабжается непрерывным контуром гибкой трубы, единственные соединения находятся на подаче и обратной линии коллектора, что исключает все скрытые промежуточные соединения, которые могут потенциально протекать
  • Обеспечивает хороший доступ в случае возникновения проблемы — Отсутствие скрытых промежуточных швов под половыми досками или сплошным полом ограничивает места, в которых может произойти утечка в коллекторе, что значительно сокращает время на поиск неисправности.

Главному подрядчику / застройщику

  • Дает вам душевное спокойствие. Благодаря меньшему количеству и более легкому доступу к стыкам снижается риск задержек и обратных звонков.
  • Обеспечивает здоровье и безопасность вашего проекта и сокращает количество горячих работ на объекте. Каждая комната снабжается непрерывным контуром гибкой трубы, единственные соединения на подающей и обратной линии коллектора.

Для арендатора / владельца здания

  • Использование системы UFH с зональным контролем позволит вам адаптировать отопление в соответствии с деятельностью здания, позволяя управлять комнатами индивидуально, предотвращая нагрев комнат, когда в них нет людей.
  • Температура воды в системе UFH обычно составляет от 35 ° C до 55 ° C по сравнению с 65-75 ° C в радиаторах, обеспечивая более энергоэффективное решение, экономя деньги на счетах за отопление и выбросы CO2.
  • Использование UFH-системы с непрерывными петлями труб обеспечивает плавный поток воды вокруг системы, сводя к минимуму шум при работе и создавая более комфортные условия.
  • Лучистое тепло, производимое UFH, создает очень желаемую среду, обеспечивая более равномерный обогрев помещения, чем радиаторы.
  • Повышенная гибкость в планировке комнат за счет отказа от радиаторов даст вам свободу при декорировании и даст больше полезного пространства при планировании расположения мебели.
  • Не нужно красить радиаторы или пытаться украсить радиаторы.
  • Обеспечивает гибкость централизованного и индивидуального управления — когда требуется обслуживание и ремонт, вместо того, чтобы изолировать всю систему, инженер по обслуживанию может изолировать отдельные контуры без необходимости опорожнять всю систему.
  • В маловероятном случае утечки у вас есть значительное преимущество, заключающееся в том, что вы можете изолировать только петлю, в которой есть утечка, при этом продолжая использовать остальную часть системы, пока не будут организованы ремонтные работы.
  • Ваши коллекторы могут быть установлены в удобном месте, например на стояке или в сервисном шкафу, для легкого доступа, что означает меньшие неудобства для жителей здания и простоту ремонта / обслуживания для инженеров и подрядчиков.

Для спецификатора

  • Задавая эту систему, она позволяет вам повысить ценность проекта с повышенным комфортом для арендатора здания.
  • Выбор коллекторной системы позволит вашим клиентам адаптировать их отопление в соответствии с деятельностью здания, позволяя управлять помещениями индивидуально.
  • Температура воды в системе UFH обычно составляет от 35 ° C до 55 ° C по сравнению с 65-75 ° C в радиаторах, что обеспечивает более энергоэффективное решение, экономит деньги на счетах за отопление для клиента и снижает выбросы CO2 в окружающую среду.
  • Инновационная концепция, которая выделит ваш проект среди других дизайнеров.

Информация

Брошюра по продажам коллекторов для теплого пола Emmeti

Руководство по продукту и системе с информацией об ассортименте, особенностями продукции и примерами для систем подпольного отопления

Технические данные


America Field

Коллекторы и элементы управления Emmeti, используемые как для теплого пола, так и для подвесные радиаторные системы с Gerpex MLCP 16 x 2 мм для радиаторов и AL-PERT 16 x 2 мм для системы теплого пола.

Greenhall

Коллекторы и элементы управления Emmeti, используемые как для систем теплого пола, так и для настенных радиаторных систем, с 16 x 2 мм Gerpex MLCP, используемым для питания радиаторов, и 16 x 2 мм ALPERT, используемым для контуров теплого пола

Можно ли установить теплый пол на Этаж | Разминка

Часто задаваемый вопрос: можно ли заменить теплый пол на существующий пол.Термины «переоборудование» и «переоборудование» часто путают, и в большинстве случаев люди имеют в виду переоборудование. Мы здесь для того, чтобы внести ясность в вопрос о применимости полов с подогревом для любого типа улучшения дома, переоборудования или переоборудования, а также ответить на все вопросы, которые могут у вас возникнуть по ним.

Начнем с того, что теплые полы с подогревом могут быть встроены как в новые постройки, так и в старые дома, и почти все электрические системы теплых полов могут быть установлены на существующих черновых полах.

МОНТАЖ СИСТЕМЫ НАПОЛЬНОГО ОТОПЛЕНИЯ

Прежде всего, давайте начнем с определения — дооснащение. Модернизация означает процесс добавления компонентов в уже существующие проекты. В этом контексте мы имеем в виду установку полов с подогревом на существующие полы при ремонте комнаты или дома. Электрические полы с подогревом хорошо подходят для проектов модернизации. В этом разделе мы ответим на вопросы:

Как упоминалось ранее, электрические полы с подогревом могут быть установлены как в новых, так и в старых зданиях, а также на существующих черновых полах.Однако фактическую отделку пола, такую ​​как плитка, ламинат или винил, необходимо удалить и заменить новой отделкой пола. Другими словами, установка теплого пола на существующие полы означает удаление существующего напольного покрытия, добавление теплоизоляционных плит (при необходимости), установку на них обогревателя и затем укладку нового напольного покрытия над системой отопления. После установки системы теплого пола очень сложно поднять существующую отделку пола и снова уложить тот же пол.Само собой разумеется, что большая часть отделки пола, например плитка, обречена на повреждение при подъеме пола. Таким образом, электрические полы с подогревом являются идеальным вариантом для людей, которые хотят поменять пол во время ремонта, потому что обогреватель очень тонкий и не увеличивает высоту пола заметно.

Монтаж системы электрического теплого пола также выполняется быстро, легко и чисто. Тем не менее, важно привлечь к проекту квалифицированного и сертифицированного электрика, чтобы убедиться, что распределение электроэнергии спроектировано и выполнено правильно.

Модернизация других систем отопления обычно означает более трудоемкие работы, включая удаление старых полов (не только отделку пола, но и всего пола), установку новых и, наконец, установку трубопроводов и котлов в случае гидравлических систем. Это снова увеличивает общую стоимость ремонта.

УСТАНОВКА СИСТЕМЫ НАПОЛЬНОГО ОТОПЛЕНИЯ

Как обсуждалось ранее, многие путают термины «переоборудование» и «модернизация». Тем, кто, тем не менее, действительно хочет переоборудовать систему, мы должны сказать, что электрическую систему подогрева пола следует устанавливать только один раз.Невозможно перенести существующую систему и установить ее в другом помещении. Это связано с рядом проблем:

Провода могут быть повреждены при снятии отделки пола, в частности плитки или камня:

  • Провода можно повредить при снятии их с клея, особенно если их потянуть, растянуть или согнуть.

  • Если проволока предварительно проложена на сетке, может оказаться невозможным удалить систему, не повредив ее, поскольку сетка должна полностью погрузиться в клей.

Также хорошо иметь в виду, что переоборудование системы отопления приведет к аннулированию гарантии.

КАК Я МОГУ УПРАВЛЯТЬ НАПОЛЬНЫМ ОТОПЛЕНИЕМ?

Простота установки систем электрического теплого пола позволила миллионам домовладельцев установить теплое, удобное и хорошо управляемое отопление в отдельных комнатах или в целом доме.

Теплый пол можно регулировать с помощью любого термостата. Развитие технологий в системах термостатического контроля позволило системам отопления работать автоматически, без необходимости ручного управления ими.Термостат Warmup 4iE Smart WiFi изучает ваши привычки, знает, когда вы находитесь, и даже может предсказать, когда вы вернетесь домой, соответствующим образом регулируя температуру. С помощью приложения MyHeating в комплекте с термостатом вы можете управлять отоплением в своем доме из удаленного места. Интеллектуальный термостат не только повышает общий комфорт, но и снижает потребление энергии, поскольку отопление работает меньше времени и только тогда, когда оно вам нужно, что приводит к экономии средств.

Во многих случаях пол можно запитать от существующей кольцевой сети с плавким ответвлением, питающим термостат.

НУЖНА ЛИ МНЕ ИЗОЛЯЦИЯ ПОЛА?

Существует широкий спектр систем пола для различных напольных покрытий, а также типов чернового пола, включая бетон, камень и конструкционную древесину. Для всех типов полов рекомендуется обеспечить адекватную изоляцию пола при рассмотрении вопроса о модернизации системы теплого пола. Изоляцию черного пола можно без труда установить с помощью теплоизоляционных плит (WIB). Эти плиты обладают прекрасными изоляционными качествами. В ассортименте есть изоляционные плиты для различных нужд изоляции.Если беспокоиться о высоте пола, то изоляционная плита Warmup для бетонных полов имеет толщину всего 3/8 дюйма или 1/4 дюйма. Хотя изоляция не является обязательным условием, рекомендуется направлять тепло вверх, а не на черновой пол. Хорошая изоляция сокращает время нагрева и обеспечивает максимальную эффективность системы.

При укладке плитки или каменного пола всегда важно следить за тем, чтобы пол был прочным и не деформировался, независимо от установки системы теплого пола.В случае сомнений пол может потребовать дополнительного укрепления из качественной фанеры или другого подходящего материала.

Наконец, электрические полы с подогревом не требуют обслуживания, в отличие от обычных систем отопления, работающих от котлов. Таким образом, это безопасная и экономичная система обогрева, которая служит на всю жизнь, сохраняя при этом ваши пальцы ног в тепле и уюте. Позвоните в службу технической поддержки Warmup по телефону (888) 927-6333, чтобы получить дополнительную консультацию или запросить расценки, чтобы узнать цены для вашего проекта.

Электрическая плитка для теплого пола | Фитиль

перейти к содержанию Перейти в меню навигации Wickes
  • Строка заказа 0330123 4123
  • Список проектов
  • Обслуживание клиентов
  • Войдите или зарегистрируйтесь
Поиск Корзина Корзина 0 вернуться наверх

Просматривать

Назад
  • Магазин
    • Новое в
      • Ванные комнаты
      • Отопление
      • Кухни
      • Наружное освещение
      Просмотреть все Новое в
    • Кухни
      • Выставочный зал Кухни
        • Посмотреть все диапазоны
        • Продажа кухни
        • Кухня Галерея
        • Забронируйте БЕСПЛАТНУЮ встречу по дизайну
        • Брошюра о кухне
        • Офисная мебель
      • Готовые кухни
        • Посмотреть все диапазоны
        • Кухонные гарнитуры
        • Мэдисон Кухня
        • Орландо Кухня
        • Дакота Кухня
        • Кухня Огайо
      • Кухонный гарнитур
      • Метчики
        • Все смесители для кухни
        • Кухонные моноблочные смесители
        • Смесители для кухни
      • Аксессуары
        • Ручки и ручки для шкафа
        • Хранение на кухне
        • Отопление и электричество
        • Ящики для кухни
        • Освещение Кухни
        • Краска для кухни
        • Плитка для кухни
      • Раковины
        • Раковины из нержавеющей стали
        • Керамические мойки
        • Раковины из гранита и композитных материалов
        • Установки для утилизации отходов
      • Бытовая техника
        • Духовки
        • Варочные поверхности
        • Плиты
        • Вытяжки
        • Холодильники и морозильники
        • Посудомоечные машины
      • Обувь для скинали
      • Шкафы
        • Кухонные гарнитуры
        • Декоративные панели
        • Двери для бытовой техники
        • Цоколи и карнизы
        • Винные шкафы
      • Столешницы и Тумбы
        • Столешницы из ламината
        • Столешницы из массива дерева
        • Подставки
        • Фартуки
        • Рабочие поверхности из инженерного дерева
        • Столешницы барной стойки
      Посмотреть все кухни
    • Ванные комнаты
      • Выставочный зал Ванные комнаты
        • Посмотреть все люксы
        • ПРОДАЖА ВАННОЙ
        • Галерея Ванной
        • Брошюра для ванной
        • Забронируйте БЕСПЛАТНУЮ встречу по дизайну
      • Ванная комната
        • Мебель и шкафы
          • Мебель для умывальника
          • Шкафы и Хранение
          • Туалеты
          • Встроенная мебель для ванной
          • Модульная мебель для ванных комнат
          • Столешницы для ванной
          • Зеркала для ванной
        • Метчики
          • Все смесители для ванной
          • Смесители для бассейнов
          • Смесители для ванны
          • Шайбы для кранов и ремонт
        • Душевые и ограждения
          • Душевые кабины
          • Душ
          • Аксессуары для душа
          • Поддоны для душа
          • Душевые Панели
          • Прогулка в душевых и влажных помещениях
          • Шторки для ванной
        • Раковины
          • Мебель для умывальника
          • Раковины столешницы
          • Гардеробные Раковины
          • Пьедестал бассейнов
          • Настенные бассейны
          • Подставка для бассейна
        • Ванны и аксессуары
          • Все ванны
          • Прямые ванны
          • Душевые ванны
          • Панели для ванны
          • Отдельностоящие ванны
          • Двухсторонние ванны
          • Фигурные ванны
        • Туалеты и аксессуары
          • Все туалеты
          • Комбинированные туалеты
          • Сиденья для унитаза
          • Туалеты
          • Вернуться к стене туалета
          • Подвесные туалеты
          • Низкие и высокие туалеты
        • Аксессуары
          • Все аксессуары для ванной
          • Аксессуары для душа
          • Сиденья для унитаза
          • Зеркала для ванной
          • Полки для ванной
          • Держатели туалетной бумаги
        • Полотенцесушители
          • Клапаны радиатора
          • Вертикальные радиаторы для полотенец
          • Горизонтальные радиаторы для полотенец
          • Электрические радиаторы для полотенец
          • Радиаторы для черных полотенец
          • Современные радиаторы для полотенец
        Посмотреть все ванные комнаты
      • Строительные материалы
        • Древесина
          • Строганная древесина с квадратными кромками
          • Обработанные пиломатериалы
          • CLS Studwork Древесина
          • Обработанный пиломатериал C16
          • Сушеные пиломатериалы в печи
          • Сушеный Пиломатериал C16
          • Доска для строительных лесов
        • Листовые материалы
          • Листы фанеры
          • Листы МДФ
          • Декоративные панели
          • Листы OSB
          • ДСП
          • Оргалит
        • Гипс и гипсокартон
          • Угловой бус и арочные углы
          • Ковинг
          • Соединения Соединения
          • Штукатурка
          • Гипсокартон
          • Ленты и клеи для штукатурки
          • Дюбели и крепления для гипсокартона
        • Цемент и агрегаты
          • Балласт и вспомогательная база
          • Цемент
          • Бетон
          • Строительство и ландшафтный дизайн
          • Декоративный камень и гравий
          • Миномет
          • Песок
        • Кровля
          • Битумные гофрированные листы
          • Стеклопластик и плоская кровля
          • Листы поликарбоната
          • Гофрированные листы ПВХ
          • Кровельный Войлок
          • Клеи и грунтовки для кровельного войлока
          • Черепица
        • Изоляция
          • Изоляция чердака
          • Изоляционная плита
          • Акриловые листы
          • Исключители проекта
          • Изоляция стен полостей
          • Трубы и куртки
        • Водостоки и дренаж
          • Эффект чугуна
          • Канальный дренаж
          • Водосточные желоба большой емкости
          • Водосточный желоб Mini Line
          • Водосточные желоба круглой линии
          • Почва и вентиляция
          • Квадратная линия водостока
        • Облицовка
          • Внешняя деревянная облицовка
          • Наружное покрытие из ПВХ
          • Внутренняя деревянная облицовка
          • Внутренняя облицовка ПВХ
          • Оконные доски
        • Кирпичи, блоки и перемычки
          • Блоки
          • Кирпичи
          • Бетонные перемычки
          • Стальные перемычки
        • Фасции и софы
          • Фасции и крышки
          • Доски для Софита
          • Профили и стыки
          • Вентиляторы и крепления
        • Защита от воды и влаги
          • Курс защиты от влаги
          • Влагостойкие мембраны
          • Защита от наводнений
          • Жидкости для ремонта крыш
          • Жидкости для защиты от воды и влаги
        Посмотреть все строительные материалы
      • Двери и Окна
        • Внутренние двери
          • Двери из дубового шпона
          • Внутренние белые двери
          • Внутренние двери из сосны
          • Внутренние противопожарные двери
          • Внутренние застекленные двери
          • Внутренние двустворчатые двери
          • Внутренние французские двери

    Термостат для теплых полов — Руководство для термостата лучистого отопления

    В этой статье мы расскажем о термостатах полов с подогревом или термостатах лучистого тепла или термостатах полов с подогревом, которые являются термостатами, предназначенными для управления системами теплого пола.Прежде чем углубляться в различные модели термостатов, давайте подробнее поговорим о теплых полах и используемых системах. «Полы с подогревом» или «напольное отопление» часто называют «лучистым отоплением», обычно в США, и для обогрева полов до оптимальной температуры в зимний период устанавливаются системы подогрева пола.

    Несмотря на то, что в большинстве домов в США используется отопление на основе центральной печи или тепловые насосы, энергия этих систем HVAC не нагревает полы должным образом.Системы отопления, вентиляции и кондиционирования воздуха (например, печи или тепловые насосы) предназначены для нагрева воздуха и циркуляции горячего воздуха по всему помещению. Они сохраняют тепло в помещении, но не нагревают пол до желаемой температуры. В таких ситуациях вам будет холодно!

    Решением здесь является «теплые полы» — система обогрева устанавливается под полом для поддержания надлежащей температуры зимой. Для создания «теплого пола» доступны два типа систем — электрическая или водная (известная как водяное лучистое отопление).Эти системы теплого пола регулируются с помощью специально разработанных термостатов, известных как термостаты с подогревом пола.

    Термостаты для теплого пола

    Как вы знаете, система подогрева пола устанавливается отдельно, независимо от общей системы отопления, вентиляции и кондиционирования в вашем доме. Термостаты, которые вы используете для систем отопления, вентиляции и кондиционирования воздуха (например, центральная печь или тепловой насос), могут не подходить для регулирования вашей системы теплого пола. Однако есть некоторые модели, которые совместимы как с системами отопления, вентиляции и кондиционирования, так и с системами теплого пола.Термостат Nest — классический пример, который можно использовать для регулирования систем теплого пола (подходит только для водяных излучающих систем). С другой стороны, такие компании, как Honeywell, Nuheat и SunTouch, имеют модели термостатов, предназначенные для систем напольного отопления. Давайте посмотрим на некоторые из лучших термостатов для систем лучистого теплого пола и на то, чем они отличаются друг от друга!

    2 типа — Электрические и гидравлические термостаты

    Как мы писали выше, существует два типа систем теплого пола — электрическая и водяная.Термостат, разработанный для системы электрического теплого пола, не подходит для системы водяного / водяного лучистого отопления (и наоборот). Поэтому мы перечислили 2 типа отдельно, чтобы избежать путаницы.

    Электрические термостаты для теплого пола

    Давайте сначала познакомимся с некоторыми из лучших моделей термостатов электрического теплого пола. Система электрического теплого пола использует электричество для обогрева полов (под ним устанавливается хорошо изолированное электрическое гнездо). Обычно они работают от сетевого напряжения — 110 или 240 вольт.Итак, вам нужен термостат сетевого напряжения, совместимый с системами теплого пола.

    Программируемый термостат для теплого пола

    Рассмотрим сначала лучшие программируемые термостаты для систем электрического теплого пола. Программируемые термостаты можно запрограммировать так, чтобы они следовали предпочтительному графику (в зависимости от вашего образа жизни) и соответствующим образом управляли вашей системой отопления. Существуют также модели термостатов с поддержкой Wi-Fi для систем теплого пола, которые вы можете увидеть ниже (термостат Nuheat WiFi № 3), которыми можно управлять через Интернет.

    # 1 — Honeywell Th215-AF-GA / U — Термостат подогрева пола

    Honeywell — Электрический термостат для подогрева пола

    Honeywell (Th215-AF-GA / U) — один из самых продаваемых электрических термостатов для подогрева пола. Эта модель с 7-дневным программированием и поставляется с датчиком температуры пола (для лучшего контроля температуры) и GFCI (защита от замыкания на землю), который необходим для систем линейного напряжения. Эта модель предлагает три режима обогрева: окружающий, пол и окружающий с режимами пола, которые можно настроить в соответствии с предпочтениями вашей системы.

    Проверить цену и просмотреть подробности

    Термостат с датчиком температуры пола обеспечивает постоянное поддержание заданной температуры полов (не становится слишком холодным / горячим). Если датчик температуры пола отсутствует, существует редкая вероятность того, что полы перегреются или станут слишком холодными, в то время как система подогрева пола пытается достичь температуры воздуха.

    Следует помнить о технических характеристиках:

    • Этот термостат подходит только для систем электрического теплого пола.
    • Только резистивная нагрузка — Убедитесь, что тип нагрузки вашей системы теплого пола резистивная.
    • Максимальный ток составляет 15 А (120 или 240 вольт). Если ваша система отопления потребляет более 15 А, этот термостат несовместим.
    • Максимальная мощность составляет 1800 Вт при 120 В и 3600 Вт при 240 В. Проверьте требования к мощности вашей системы теплого пола и убедитесь, что она находится в пределах указанной номинальной мощности.

    # 2 NuHeat Радиантный напольный термостат (двойное напряжение)

    Nuheat Home — Термостат излучающего теплого пола

    Наш выбор № 2 — это термостат NuHeat для систем электрического теплого пола.Эта модель программируется на 2 дня (будний / выходной), поставляется с 3,5-дюймовым цветным сенсорным дисплеем и совместима с двумя напряжениями (120 или 240 вольт). Эта модель поставляется с «Монитором использования энергии», который помогает отслеживать потребление энергии в течение недели или месяца. Вы можете перепрограммировать свой термостат (на основе данных об использовании энергии), чтобы сэкономить электроэнергию и счета.

    NuHeat — Проверить цену

    Хотя мы назвали Nuheat Home вторым выбором (из-за высокой цены по сравнению с Honeywell), эта модель на самом деле является одним из лучших доступных термостатов для пола с подогревом.Модель Nuheat home имеет два датчика температуры, датчик температуры пола и датчик температуры воздуха. Включена защита GFCI для предотвращения поражения электрическим током из-за утечки тока снизу.

    Основные моменты:

    • Подходит для всех типов электрических систем теплого пола. Поддерживает двойное напряжение (120/240 вольт)
    • GFCI — обнаружение и отключение замыкания на землю встроено и установлено на утечку 5 мА.
    • Тип пола — подходит для полов из плитки и камня.Предел отсечки температуры установлен на 82 ° F для деревянных полов (ламинат и паркетные полы)
    • Языковая поддержка для английского / французского / испанского
    • Настройки — например, установка часов в 12-часовой или 24-часовой режим, яркость экрана, отображение температуры в ° C или ° F и множество других параметров настройки.
    • Автоматический / ручной режим — Выберите «автоматический» режим, чтобы следовать запрограммированному расписанию, и «ручной» режим, чтобы обойти запрограммированное расписание и установить собственную температуру.
    • 3 режима измерения температуры — как и в модели Honeywell, описанной выше, этот термостат может регулировать температуру окружающего воздуха, температуру пола или и то, и другое вместе в комбинированном режиме.

    # 3 WiFi термостат для обогрева полов от NuHeat

    Nuheat Signature — Wi-Fi термостат для подогрева пола

    Нашим выбором № 3 является вариант WiFi вышеупомянутой модели — NuHeat Signature беспроводной / WiFi излучающий термостат для теплого пола. Эта модель имеет дополнительную функцию Wi-Fi вместе со всеми функциями вышеперечисленной модели №2.Если вы предпочитаете термостат с поддержкой Wi-Fi для вашей системы теплого пола, Nuheat Signature — это модель goto.

    Проверить цену и подробности

    Nuheat Signature совместим с Amazon Alexa, Google Home, а также поддерживает протоколы IFTTT. Если у вас дома есть термостат Nest, Nuheat Signature может использовать датчики присутствия (внутри Nest) для экономии энергии, когда никого нет дома.

    # 4 SunTouch Command — Термостат для подогрева пола

    SunTouch Command — термостат для подогрева пола

    Наш выбор №4 — это SunTouch Command, который представляет собой 7-дневный программируемый термостат с подогревом пола с сенсорным экраном.Эта модель также оснащена датчиком температуры пола, и доступна опция измерения температуры воздуха. Цвет дисплея регулируется, а размер шрифта большой для удобства чтения.

    Проверить цену и подробности

    Регулируемый цветной дисплей и красочное кольцо можно настроить так, чтобы он соответствовал интерьеру вашего дома.

    Основные моменты:

    • 3,5-дюймовый сенсорный экран с ярким дисплеем, 7 дней программирования и мониторинг потребления энергии.
    • Совместимость с электрическими системами теплого пола с номинальным током до 15 А.
    • Поддержка двух напряжений (120 В / 240 В) и защита GFCI включена.
    • Доступны режимы измерения пола и воздуха.
    • Датчик температуры пола — 15 футов 10K провод датчика, входящий в комплект поставки модели.
    • К одному термостату можно подключить до 3 электрических матов для теплого пола (при условии, что комбинированная нагрузка соответствует техническим требованиям)

    Термостаты водяного отопления для пола

    Термостаты водяного теплого пола используются для регулирования водяных систем теплого пола, которые в основном являются системами водяного отопления.Системы водяного отопления обычно бывают двух типов: 1) подземные системы — в которых трубы диаметром 1,6 см заглублены глубоко под полом; 2) Системы поверхностного монтажа — где трубы диаметром 1,2 см укладываются прямо поверх существующего пола. Гидравлические термостаты подходят для обоих типов систем водяного отопления, независимо от того, монтируются они под землей или на поверхности. Давайте посмотрим на некоторые из лучших доступных гидравлических термостатов.

    # 1 Aube от Honeywell — Th240-28-01-B / U — Программируемый гидравлический термостат

    Эта модель от Aube (от Honeywell) — наш выбор №1 среди гидравлических термостатов.Aube Th240-28-01-B / U — это 7-дневный программируемый многоцелевой термостат, подходящий для систем водяного теплого пола, милливольтных газовых каминных обогревателей, водяных систем котлов, систем лучистого отопления и систем обогрева сетевого напряжения.

    Давайте посмотрим основные моменты:

    • Совместимость с широким спектром систем — 120 В, 240 В, милливольт и 24 В (низкое напряжение).
    • Подходит для водяных теплых полов, газовых каминов, систем сетевого напряжения (например, отопления плинтусов).гидросистемы котлов и многое другое.
    • Номинальный ток — 5А (резистивный)
    • Защита насоса для предотвращения заклинивания насоса (включает насос на 1 минуту каждые 24 часа)
    • Предупреждение о низком заряде батареи в течение 60 дней

    # 2 Nest Smart Thermostat для систем отопления полов

    Если вы хотите установить интеллектуальный термостат для вашей системы водяного отопления, Nest — лучший вариант. . Если у вас уже есть термостат Nest в вашем доме, вы можете использовать ту же модель для управления вашей системой водяного лучистого отопления.Термостат Nest оснащен функцией «истинное излучение» , которая специально встроена в системы лучистого отопления под полом или радиаторные системы отопления.

    Nest — хороший выбор (особенно с функцией истинного излучения), если вы ищете интеллектуальный термостат для регулирования всей системы отопления вашего дома (в том числе системы лучистого отопления в полу). Вам не нужно покупать отдельный термостат для системы теплого пола, если вы выбираете Nest (который также можно использовать для обычной системы центрального отопления).

    # 3 Aube by Honeywell Th235-01-B / U — Непрограммируемый термостат водяного отопления

    Наш выбор № 3 — непрограммируемый термостат жидкостного отопления от Aube by Honeywell. Если вы предпочитаете недорогую модель (без возможности программирования), эта модель — лучший выбор, который вы можете получить со всеми основными функциями. Эта модель в основном очень похожа на нашу модель № 1 в гидравлических термостатах (Aube Th240-28-01-B / U) без возможности программирования.

    Давайте посмотрим на основные моменты:

    • Совместимость с системами водяного теплого пола, системами центрального отопления, милливольтными системами и электрическими нагревательными приборами, использующими реле.
    • Номинальный ток: 2 А (индуктивная нагрузка)
    • Термостат низкого напряжения — 24 Вольт R, W
    • Функция удаленного входа — изменение температуры по телефону (если у вас телефонный контроллер)
    • Индикатор разряда батареи — до 60 дней.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *