Мини-гидроэлектростанции для частного дома, дачи
Регулярный рост цен на электроэнергию заставляет многих задумываться над вопросом альтернативных источников получения электричества. Одно из лучших решений в данном случае – гидроэлектростанция. Поиски решения данного вопроса касаются не только масштабов страны. Все чаще можно увидеть мини-гидроэлектростанции для дома (дачи). Затраты в таком случае будут только на строительство и техническое обслуживание. Минус подобного сооружения в том, что его возведение возможно только в определенных условиях. Необходимо наличие водяного потока. К тому же возведение данной конструкции у себя во дворе требует разрешения местных органов власти.
Схема мини-гидроэлектростанции
Принцип работы гидроэлектростанции для дома достаточно прост. Схема сооружения выглядит следующим образом. На турбину падает вода, заставляя вращаться лопасти. Они, в свою очередь, за счет крутящего момента или перепада давления приводят в движение гидропривод. От него передается полученная мощность на электрогенератор, который и вырабатывает электричество.
В настоящее время схема ГЭС чаще всего укомплектовывается системой управления. Это позволяет конструкции работать в автоматическом режиме. В случае необходимости (к примеру, аварии) имеется возможность перехода на ручное управление.
Разновидности мини-ГЭС
Стоит понимать, что мини-гидроэлектростанции позволяют получать не более трех тысяч киловатт. Это максимальная мощность подобного сооружения. Точное значение будет зависеть от типа ГЭС и конструкции используемого оборудования.
В зависимости от вида водяного потока выделяют следующие типы станций:
- Русловые, характерные для равнин. Они устанавливаются на реках с несильным потоком.
- Стационарные используют энергию водных рек с быстрым потоком воды.
- ГЭС, устанавливающиеся в местах перепада водного потока. Встречаются чаще всего в промышленных организациях.
- Мобильные, которые строятся с применением армированного рукава.
Для строительства ГЭС достаточно даже небольшого ручья, протекающего по участку. Владельцы домов с центральным водоснабжением не должны отчаиваться.
Одной из американских компаний разработана станция, которую можно встраивать в водоснабжающую систему дома. В водопровод встраивается турбина маленьких размеров, которая приходит в движение за счет потока воды, двигающегося самотеком. Это снижает скорость потока воды, но снижает себестоимость электроэнергии. К тому же данная установка полностью безопасна.
Устраиваются даже мини-гидроэлектростанции в канализационной трубе. Но их строительство требует создания определенных условий. Вода по трубе должна стекать естественным образом за счет уклона. Второе требование – диаметр трубы должен быть подходящим для устройства оборудования. А это невозможно сделать в отдельно стоящем доме.
Классификация мини-ГЭС
Мини-гидроэлектростанции (дома, в которых они используются, в большинстве относятся к частному сектору) чаще всего относятся к одному из следующих типов, которые различаются принципом работы:
- Водяное колесо – традиционный тип, который наиболее прост в исполнении.
- Пропеллер. Используют в тех случаях, когда река имеет русло шириной более десяти метров.
- Гирлянда устанавливается на реках с несильным потоком. Для усиления скорости течения воды используют дополнительные сооружения.
- Ротор Дарье устанавливается обычно на промышленных предприятиях.
Распространенность этих вариантов обусловлена тем, что они не требуют строительства плотины.
Водяное колесо
Это классический вид ГЭС, который наиболее популярен для частного сектора. Мини-гидроэлектростанции данного типа представляют собой большое колесо, способное вращаться. Его лопасти опускаются в воду. Вся остальная часть конструкции находится над руслом, заставляя двигаться весь механизм. Мощность передается через гидропривод генератору, вырабатывающему ток.
Пропеллерная станция
На раме в вертикальном положении располагается ротор и подводный ветряк, опускаемый под воду. Ветряк имеет лопасти, которые вращаются под воздействием потока воды. Лучшее сопротивление оказывают лопасти шириной два сантиметра (при быстром потоке, скорость которого, тем не менее, не превышает двух метров в секунду).
В данном случае лопасти приводятся в движение за счет возникающей подъемной силы, а не за счет давления воды. Причем направление движения лопастей перпендикулярно направлению течения потока. Этот процесс похож на работу ветровых электростанций, только работает под водой.
Гирляндная ГЭС
Данного типа мини-гидроэлектростанции представляют собой трос, натянутый над руслом и закрепленный в опорном подшипнике. На нем в виде гирлянды навешены и жестко закреплены турбины небольшого размера и веса (гидровингроторы). Они состоят из двух полуцилиндров. За счет совмещения осей при опускании в воду в них создается крутящий момент. Это приводит к тому, что трос изгибается, натягивается и начинает вращаться. В данной ситуации трос можно сравнивать с валом, который служит для передачи мощности. Один из концов троса соединен с редуктором. На него и передается мощность от вращения троса и гидровингроторов.
Повысить мощность станции поможет наличие нескольких «гирлянд». Их можно соединить между собой. Даже это не сильно повышает КПД данной ГЭС. Это один из минусов подобного сооружения.
Еще один недостаток данного вида – создаваемая им опасность для окружающих. Подобного рода станции допустимо использовать только в безлюдных местах. Наличие предупредительных знаков обязательно.
Ротор Дарье
Мини-гидроэлектростанция для частного дома данного вида названа так в честь ее разработчика — Жоржа Дарье. Запатентована данная конструкция была еще в 1931 году. Представляет собой ротор, на котором находятся лопасти. Для каждой из лопастей в индивидуальном порядке подбираются нужные параметры. Ротор опускается под воду в вертикальном положении. Лопасти вращаются за счет перепада давления, возникающего под действием протекания по их поверхности воды. Этот процесс подобен подъемной силе, заставляющей самолеты взлетать.
Данный вид ГЭС имеет хороший показатель КПД. Втрое преимущество – направление потока не имеет значение.
Из недостатков данного вида электростанций можно выделить сложную конструкцию и непростой монтаж.
Преимущества мини-ГЭС
Независимо от вида конструкции мини-гидроэлектростанции обладают рядом преимуществ:
- Экологически безопасны, не вырабатывают вредных для атмосферы веществ.
- Процесс получения электричества проходит без образования шума.
- Вода остается чистой.
- Электричество вырабатывается постоянно, вне зависимости от времени суток или погодных условий.
- Для обустройства станции достаточно даже небольшого ручья.
- Излишек электроэнергии можно продать соседям.
- Не нужно много разрешающей документации.
Мини-гидроэлектростанция своими руками
Построить водяную станцию для получения электроэнергии можно самостоятельно. Для частного дома достаточно двадцати киловатт в сутки. С таким значением справится даже мини-ГЭС, собранная своими руками. Но при этом следует помнить, что данный процесс характеризуется рядом особенностей:
- Точные расчеты провести достаточно трудно.
- Размеры, толщина элементов выбирается «на глаз», только опытным путем.
- Самодельные сооружения не имеют защитных элементов, что приводит к частым поломкам и связанным с этим затратам.
Поэтому если нет опыта и определенных знаний в данной сфере, лучше отказаться от идеи подобного рода. Дешевле может оказаться приобретение уже готовой станции.
Если все же решаетесь делать все своими руками, то начинать необходимо с измерения скорости потока воды в реке. Ведь от этого зависит мощность, которую можно получить. Если скорость будет меньше одного метра в секунду, то строительство мини-гидроэлектростанции в данном месте не оправдает себя.
Еще один этап, который нельзя опускать – это расчеты. Необходимо тщательно рассчитать размер затрат, которые уйдут на строительство станции. В результате может оказаться, что гидроэлектростанция – не лучший вариант. Тогда стоит обратить внимание на другие виды альтернативной электроэнергии.
Мини-гидроэлектростанция может стать оптимальным решением в вопросе экономии затрат на электроэнергию. Для ее строительства необходимо наличие реки недалеко от дома. В зависимости от желаемых характеристик можно подобрать подходящий вариант ГЭС. При правильном подходе выполнить подобное сооружение можно даже своими руками.
виды, принципы работы, самые крупные электростанции на Земле
Гидроэлектростанция или ГЭС – сложное устройство, представленное различными конструкциями и специальным оборудованием для получения и передачи электроэнергии. Существует несколько видов гидроэлектростанций: деривационные, приливные, плотинного типа, а также аккумулирующие и волновые. У каждого вида свои особенности.
Немного истории
Первые упоминания о водяных конструкциях приходятся на 4 тысячелетие до нашей эры. Вплоть до девятнадцатого века на реках и озерах строились водяные мельницы. Они использовались для изготовления муки, бумаги. Эти конструкции помогали кузнецам обрабатывать железо. В 1834 году появилась первая гидротурбина. Спустя тридцать лет, англичанин У. Армстронг разработал первую систему электропитания. Она помогла создать уникальную ГЭС на Ниагарском водопаде. Она подпитывала несколько ламп. А через семь лет по США было свыше 200 гидроэлектростанций, обеспечивающих электричеством большое количество населенных пунктов.
С 1930-х гг. в мире начался настоящих гидроэнергетический бум: по всему миру стали появляться ГЭС разных мощностей.
В России первой ГЭС считается Березовская гидростанция (1892 г.), располагающаяся на Алтае. Она вырабатывала 200 кВт. Почти в то же время была построена Ныгринская станция в Иркутской области. К 1913 г. в России насчитывалось свыше 50 тысяч гидроустановок мощностью в миллион л. с. После разработки ГОЭЛРО, гидроэлектростанции стали более мощными. Эту установку использовали при строительстве Волховской ГЭС.
Виды ГЭС и как работают
Для получения электроэнергии применяют разные виды ГЭС. Самый распространенный вид – плотинный. Его основными элементами являются:
- дамба;
- задвижка и напорный трубопровод;
- водохранилище;
- турбина с линиями электропередач;
- генератор.
Принцип работы плотинной ГЭС основывается на формировании небольшого водоема, поднимающего уровень воды выше машинного зала. При открывании задвижки вода поступает к турбине, приводя ее в движение. Она связана с генератором электрического тока. Вся вырабатываемая электроэнергия передается по линиям электропередач.
На втором месте по популярности деривационные ГЭС. Их возводят в местах большого перепада рек. Подобные конструкции имеют следующие элементы:
- трубопровод водонапорный с заборным сооружением;
- турбина и генератор;
- приемная плотина;
- линии электропередачи.
Подобная электростанция вырабатывает электроэнергию при частичном заборе воды с реки. Потоки проходят по трубопроводу, приводя в движение турбину.
Аккумулирующие виды ГЭС применяются для выработки и накопления электроэнергии. Для этого применяется технология конвертации энергии реки.
ГЭС на Земле
На территории России насчитывается свыше двухсот ГЭС. Из них 14 вырабатывают свыше 1 000 МВт электроэнергии. Эти гиганты располагаются на Енисее, Ангаре, Волге, Бурее, Каме.
Самая крупная ГЭС построена в Китае. Дамба построена на реке Янцзы и считается самой крупной электростанцией в мире. Популярная плотина Гранд-Кули, расположенная в Вашингтоне на реке Колумбия, состоит из нескольких турбин и генераторов и вырабатывает 21 млрд кВт в год. ГЭС обеспечивает электроэнергией несколько штатов: Айдахо, Колорадо, Вайоминг, Неваду и другие. В России самой крупной считается Саяно-Шушенская ГЭС на реке Енисей. В 2009 г. здесь был взрыв, из-за которого рухнула часть строения зала с турбиной.
Мини ГЭС. Виды и работа. Применение и устройство.Особенности
Мини ГЭС представляет собой небольшую гидроэлектростанцию, которая вырабатывает относительно малое количество электрической энергии. Данное оборудование не имеет четко обозначенного понятия, единственной его характеристикой выступает мощность. По своему принципу работы малые гидроэлектростанции практически ничем не отличаются от станций, которые вырабатывают большую мощность. Вода здесь также выступает в качестве источника силы, которая и вращает лопасти турбины.
Необходимость использования подобного оборудования часто вызвана отсутствием полноценного снабжения электричеством, а также ростом тарифов на электрическую энергию. При наличии реки или даже речки и грамотном подходе к установке данного оборудования вполне можно обеспечить электроэнергией целый дом или даже небольшого поселения. В некоторых случаях даже при небольшой скорости речки можно создать необходимый поток воды с помощью создания перепадов высот.
Виды
Мини ГЭС может выдавать разную мощность электрической энергии, это зависит от ее типа и разновидности применяемого оборудования.
Исходя из типа водяных потоков, могут применяться следующие виды гидроэлектростанций:
- Русловые. В большинстве случаев их можно наблюдать на равнинах. Их ставят на реках, где вода имеет небольшой поток.
- Стационарные. Их применение свойственно местам, где реки имеют быстрый поток воды. Это позволяет рассчитывать на получение большей энергии воды.
- Гидроэлектростанции, которые ставятся в точках перепада водяного потока. В большинстве случаев их можно наблюдать поблизости от промышленных предприятий и организаций.
- Мобильные установки. В большей части случаев они сооружаются с использованием рукава из армированных материалов. Для мобильных гидроэлектростанций часто достаточно лишь небольшого ручейка.
По принципу функционирования Мини ГЭС бывают:
- «Водяное колесо». Это значит, что колесо с лопатками располагается параллельно текущей поверхности воды, но в то же время в воде находится только часть колеса. Водная масса оказывает давление, в результате чего колесо начинает вращаться. Указанное вращение заставляется вращаться генератор.
- Мини ГЭС в виде гирляндной конструкции предполагает укладку троса или оси между двумя берегами. На нем жестко устанавливаются роторы. Под действием перемещения водных масс роторы начинают вращаться. Их вращение также передается тросу, оно же в итоге передается генераторной установке. Она стоит на поверхности берега.
- Установка с ротором Дарье. Принцип данного устройства базируется на использовании разности давлений, возникающих на лопастях ротора. Вызывается такая разность вследствие обтекания водой сложно устроенных плоскостей ротора.
- Установка с пропеллером. Данное устройство напоминает ветрогенератор, однако в данном случае лопасти установки находятся в воде.
По разновидности конструкций устройства турбины могут быть:
- Осевыми. В них вода направляется по оси турбины и идет на лопасти, что и приводит во вращение турбину.
- Радиально-осевыми. Здесь вода первоначально направляется радиально к оси, а впоследствии по оси ее вращения.
- Ковшовыми. В данном случае вода направляется на лопатки (ковш) посредством сопел, где происходит увеличение скорости воды. Ударяясь о лопатки, турбина приводится во вращение.
- Поворотно-лопастными. В данном случае лопасти вращаются вокруг оси вместе с турбиной.
В зависимости от условий монтажа данное оборудование может быть:
- Низконапорными, они предполагают перепад высот до 25 м.
- Средненапорными, они предполагают перепад высот в пределах 25-60 м.
- Высоконапорными, они предполагают перепад высот выше 60 м.
Устройство
Гирляндная гидроэлектростанция выполнена из турбин, которые имеют небольшой вес. Они нанизываются на трос в виде гирлянды. Данный трос перебрасывается через реку и крепится в опорных подшипниках. Эти подшипники обеспечивают свободное вращение и возможность раскручивания вала генератора.
Турбины, которые также называют гидровингроторами, выполнены в виде двух полуцилиндров со смещенными осями. Когда они погружаются в воду, то течение воды обеспечивает создание крутящего момента. В результате течения потока воды трос выгибается и натягивается, что обеспечивает его свободное вращение. Концами трос соединяется с редуктором, именно ему передается мощность крутящегося троса. В результате трос выполняет функцию вала, который передает мощность генератору.
В обычной промышленной или бытовой сети постоянство частоты тока поддерживается сетью и специальным оборудованием. Однако для потребителя генератор может выдавать большую мощность, в зависимости от скорости течения воды. Поэтому в генераторе предусматриваются дополнительные регулировочные механизмы. К примеру, в схему может быть введена регулируемая балластная нагрузка, она может использоваться для подогрева воды в случае выработки излишней мощности. В промышленных установках мини ГЭС для этого специально предусматривается дополнительное оборудование.
Схема электрогенерирующей установки в целом предполагает наличие следующих элементов:
- Гидротурбина с лопатками, которая соединяется с валом генератора.
- Генератор. Используется для создания переменного тока. Он подсоединяется к валу турбины. Так как параметры создаваемого тока являются сравнительно нестабильными, то применяется дополнительное оборудование.
- При помощи блока управления турбиной можно запускать и останавливать агрегат, синхронизировать работы, контролировать режимы работы и аварийно останавливать установку.
- Блок балластной нагрузки, который используется для рассеивания неприменяемой мощности, то есть энергии, которую потребитель в данный момент не использует. Это дает возможность избежать выхода из строя генератора, а также системы контроля и управления.
- Контроллер заряда или стабилизатор. Данные устройства необходимы, чтобы управлять зарядом аккумуляторов, преобразования напряжения.
- Аккумуляторные батареи, которые накапливают заряд и обеспечивают автономность работы устройства.
- Инверторная система, используемая для преобразования напряжения.
Принцип действия мини ГЭС
Принцип действия аналогичен функционированию крупных электрических станций. Отличие кроется только в мощности установок и объема создаваемого электричества.
Напор воды может создаваться обычным течением водоема или образовываться путем возведения плотины или другого сооружения. К примеру, может быть создан искусственный перепад высот, что позволяет за счет силы тяжести усилить поток воды. В свою очередь, благодаря силе тяжести гидравлическая турбина будет вращаться быстрее, а значит, будет вращаться быстрее и генератор. В ряде случаев могут применяться одновременно два способа создания напора.
Под действием напора вода направляется в необходимом направлении, где и устанавливается турбина. На ее лопасти попадают водные массы, которые передают им свою энергию. Источником водной энергии могут являться реки и речки, перепады высот, расположенные на всевозможных водяных сбросах, трубопроводов разного назначения и так далее. Указанная водная энергия преобразовывается при помощи гидротурбины в движение вращения. Далее, проходя через редуктор или другую механическую передачу, эта энергия направляется на вал генератора.
Применение
Мини ГЭС могут применяться повсеместно. Ограничением их применения может быть только отсутствие рек и речек. Если возле дома течет маленькая река, в том числе имеются плотины, высотные перепады на водяных сбросах, то это значит, что в данной местности созданы все условия для монтирования мини гидроэлектростанции. Естественно, что на ее покупку, монтаж или создание своими руками потребуется вложение денег. Однако, необходимо отметить, что такая установка сможет довольно быстро окупиться. В любой момент времени Вы будете иметь дешевую электроэнергию, за которую не нужно будет платить. Вы не будете зависеть от всевозможных внешних факторов.
Мини ГЭС могут использоваться в следующих целях:
- Для промышленно применения. Это установки мощностью 200 кВт и выше. Данное оборудование производится специализированными предприятиями, однако их не так много. Данные гидроэлектростанции применяются для электрического снабжения промышленных предприятий и организаций, а также реализации электрической энергии потребителям.
- Для коммерческого применения. Это установки мощностью до 200 кВт. Данные гидроэлектростанции применяются для электрического снабжения мало энергоемких предприятий, поселений, а также небольших групп домов.
- Для бытового применения. Это установки мощностью до 20 кВт. Данные гидроэлектростанции применяются для электрического снабжения небольших всевозможных объектов, а также загородных домов.
Мини ГЭС для личного потребления вполне можно соорудить собственными руками. Для этого можно использовать как готовые комплектующие, так и подручные материалы.
Похожие темы:
начало большого пути / Блог компании Toshiba / Хабр
Ранее мы рассказывали про то, каким экологичным видом транспорта являются электробусы. Однако не упомянули один важный момент: c ростом числа электротранспорта городам потребуется больше электричества, которое зачастую получают экологически небезопасными способами. К счастью, сегодня мир научился получать энергию при помощи ветра, солнца и даже водорода. Новый материал мы решили посвятить последнему из источников и рассказать об особенностях водородной энергетики.
На первый взгляд, водород — идеальное топливо. Во-первых, он является самым распространенным элементом во Вселенной, во-вторых, при его сгорании высвобождается большое количество энергии и образуется вода без выделения каких-либо вредных газов. Преимущества водородной энергетики человечество осознало уже давно, однако применять ее в больших промышленных масштабах пока не спешит.
Водородные топливные элементы
Позже, в 1959 году, Фрэнсис Т. Бэкон из Кембриджа добавил в водородный топливный элемент ионообменную мембрану для облегчения транспорта гидроксид-ионов. Изобретением Бэкона сразу заинтересовалось правительство США и NASA, обновленный топливный элемент стал использоваться на космических аппаратах «Аполлон» в качестве главного источника энергии во время их полетов.
Водородный топливный элемент из сервисного модуля «Аполлонов», вырабатывающий электричество, тепло и воду для астронавтов. Источник: James Humphreys / Wikimedia Commons
Сейчас топливный элемент на водороде напоминает традиционный гальванический элемент с одной лишь разницей: вещество для реакции не хранится в элементе, а постоянно поставляется извне. Просачиваясь через пористый анод, водород теряет электроны, которые уходят в электрическую цепь, а сквозь мембрану проходят катионы водорода. Далее на катоде кислород ловит протон и внешний электрон, в результате чего образуется вода.
Принцип работы водородного топливного элемента. Источник: Geek.com
С одной топливной ячейки снимается напряжение порядка 0,7 В, поэтому ячейки объединяют в массивные топливные элементы с приемлемым выходным напряжением и током. Теоретическое напряжение с водородного элемента может достигать 1,23 В, но часть энергии уходит в тепло.
С точки зрения «зеленой» энергетики у водородных топливных элементов крайне высокий КПД — 60%.
Как мы видим, по этому параметру водородная энергетика является наиболее привлекательным источником энергии, но все же существует ряд проблем, мешающих ее массовому применению. Самая главная из них — процесс добычи водорода.
Проблемы добычи
Водородная энергетика экологична, но не автономна. Для работы топливному элементу нужен водород, который не встречается на Земле в чистом виде. Водород нужно получать, но все существующие сейчас способы либо очень затратны, либо малоэффективны.
Трубчатая печь для паровой конверсии метана — не самый эргономичный способ добычи водорода. Источник: ЦТК-Евро
Более удобный и простой метод — электролиз воды. При прохождении электрического тока через обрабатываемую воду происходит серия электрохимических реакций, в результате которых образуется водород. Существенный недостаток этого способа — большие энергозатраты, необходимые для проведения реакции. То есть получается несколько странная ситуация: для получения водородной энергии нужна… энергия. Во избежание возникновения при электролизе ненужных затрат и сохранения ценных ресурсов некоторые компании стремятся разработать системы полного цикла «электричество — водород— электричество», в которых получение энергии становится возможным без внешней подпитки.
Мобильная электростанция Toshiba h3One
Мы разработали мобильную мини-электростанцию h3One, преобразующую воду в водород, а водород в энергию. Для поддержания электролиза в ней используются солнечные батареи, а излишки энергии накапливаются в аккумуляторах и обеспечивают работу системы в отсутствие солнечного света. Полученный водород либо напрямую подается на топливные ячейки, либо отправляется на хранение во встроенный бак. За час электролизер h3One генерирует до 2 м3 водорода, а на выходе обеспечивает мощность до 55 кВт. Для производства 1 м3 водорода станции требуется до 2,5 м3 воды.
Пока станция h3One не способна обеспечить электричеством крупное предприятие или целый город, но для функционирования небольших районов или организаций ее энергии будет вполне достаточно. Благодаря своей мобильности она может использоваться также как и временное решение в условиях стихийных бедствий или экстренного отключения электричества. К тому же, в отличие от дизельного генератора, которому для нормального функционирования необходимо топливо, водородной электростанции достаточно лишь воды.
Сейчас Toshiba h3One используется лишь в нескольких городах в Японии — к примеру, она снабжает электричеством и горячей водой железнодорожную станцию в городе Кавасаки.
Монтаж системы h3One в городе Кавасаки
Водородное будущее
Сейчас водородные топливные элементы обеспечивают энергией и портативные пауэр-банки, и городские автобусы с автомобилями, и железнодорожный транспорт (более подробно об использовании водорода в автоиндустрии мы расскажем в нашем следующем посте). Водородные топливные элементы неожиданно оказались отличным решением для квадрокоптеров — при аналогичной с аккумулятором массе запас водорода обеспечивает до пяти раз большее время полета. При этом мороз никак не влияет на эффективность. Экспериментальные дроны на топливных элементах производства российской компании AT Energy применялись для съемок на Олимпиаде в Сочи.
Стало известно, что на грядущих Олимпийских играх в Токио водород будет использоваться в автомобилях, при производстве электричества и тепла, а также станет главным источником энергии для олимпийской деревни. Для этого по заказу Toshiba Energy Systems & Solutions Corp. в японском городе Намиэ строится одна из крупнейших в мире станций по производству водорода. Станция будет потреблять до 10 МВт энергии, полученной из «зеленых» источников, генерируя электролизом до 900 тонн водорода в год.
Водородная энергетика — это наш «запас на будущее», когда от ископаемого топлива придется окончательно отказаться, а возобновляемые источники энергии не смогут покрывать нужды человечества. Согласно прогнозу Markets&Markets объем мирового производства водорода, который сейчас составляет $115 млрд, к 2022 году вырастет до $154 млрд. Но в ближайшем будущем массовое внедрение технологии вряд ли произойдет, необходимо еще решить ряд проблем, связанных с производством и эксплуатацией специальных энергоустановок, снизить их стоимость. Когда технологические барьеры будут преодолены, водородная энергетика выйдет на новый уровень и, возможно, будет так же распространена, как сегодня традиционная или гидроэнергетика.
Типы, Строение, Изготовление Своими Руками
Гидрогенератор на одной из кубанских ГЭС
Все мы приблизительно представляем, что для промышленной выработки электрической энергии люди используют атомные, ветровые и гидроэлектростанции. За исключением первого варианта, практически каждый может установить такие генераторы у себя дома, и пользоваться практически бесплатной энергией, естественно, при соблюдении определенных условий. Например, чтобы поставить у себя ветряк, необходимо проживать в достаточно ветреном районе, где средняя скорость ветра будет составлять 5-6 м/с, соответственно, для водяной установки требуется наличие реки.
Гидрогенераторы имеют неоспоримое преимущество перед ветряными аналогами – их работа не зависит от условий погоды, речной поток практически не меняет скорости, что в значительной мере упрощает конструкцию агрегата. Сегодня мы поговорим с вами про устройство гидрогенератора, расскажем много интересного про их параметры и характеристики, а также попробуем собрать такое устройство своими руками.
Строение гидрогенераторов и их типы
Горизонтальный гидрогенератор (Ленинградский электромеханический завод)
Состоит гидрогенератор их двух частей: гидравлической машины (турбины, обратимой гидромашины или насоса) и электрической машины (генератор, двигатель, двигатель-генератор) – результате гидроагрегаты можно подразделять на турбинные, обратимые или насосные.
Строение гидрогенераторов разных типов
- Две указанные части машины обычно имеют жесткое механическое соединение деталей, отчего скорость вращения двух элементов является одинаковой.
- В некоторых случаях, например, для уменьшения размеров гидромашины, соединение валов турбины и гидрогенератора (при небольшой мощности всей системы) выполняется через специальные устройства, которые могут повысить либо, наоборот, понизить частоту вращения ведомого устройства, то есть генератора. В первом случае применяется мультипликатор, а во втором – редуктор.
Интересно знать! Эффективно применяется мультипликатор в капсульных гидрогенераторах на ГЭС, позволяя снизить диаметры статора и капсулы. Для аналогичных целей применяются редукторы, но уже в капсульных наносных станциях.
Строение капсульного гидроагрегата киевской ГЭС
- Если агрегат является обратимым, то применяемое в нем передаточное устройство называется мультипликатором-редуктором.
Конструкции гидрогенераторов
Массивная турбина гидрогенератора
Итак, на гидроэлектростанциях в основном устанавливают трехфазные генераторы синхронного типа. Иногда ставят и гидрогенераторы асинхронные, но они, несмотря на большую надежность не столь эффективны
- Все гидрогенераторы можно разделить на три типа по расположению оси вращения – бывают вертикальные агрегаты, горизонтальные и наклонные.
- Вертикальные гидрогенераторы малой мощности обычно устанавливаются на низконапорных (до 100 об/мин) и средненапорных (от 100 до 200 об/мин) ГЭС. Также эта конструкция может применяться и в качестве быстроходной (свыше 200 об/мин).
Гидрогенераторы для малых ГЭС: схемы генераторов подвесного и зонтичного типа
- В вертикальных агрегатах может быть установлен подвесной или зонтичный тип генератора. Первый тип применяется при изготовлении устройств с вращением свыше 150 оборотов в минуту, а второй – ниже.
- Горизонтальные гидрогенераторы, которые размещаются в капсуле, омываются водой от прямоосного проточного тракта турбины. Поэтому они и называются капсульными.
Генератор подвесного типа
Характеристики гидрогенератора Куйбышевской ГЭС
Давайте разберем строение вертикального гидрогенератора на примере подвесного типа. Для наглядности прилагаем следующую схему.
Схематическое строение подвесного гидрогенератора
- Итак, как мы знаем, основной вращающейся частью любого генератора является ротор, который и представлен на схеме выше.
- На роторе закрепляются полюса с обмоткой постоянного тока. Ротор состоит из вала (19), на который насажена ступица (18), а также остова (16), и обода (13) с полюсами (12).
- Полюса ротора являются электромагнитами, которые, как и положено, состоят из металлического сердечника и токопроводящей обмотки.
- Полюса крепятся к ободу при помощи специальных хвостовиков, которые задвигаются в пазы на ободе и фиксируются при помощи клиньев.
- Сам обод состоит из штампованных элементов, сделанных из листовой стали, толщиной 4-5 миллиметров. Такая конструкция называется шихтованным ротором.
- Сердечники полюсов делаются похожим образом, только толщина стали составляет 1,5-2 миллиметра.
Шихтованный сердечник ротора
- Концы обмоток подводятся к контактным кольцам, через которые подключается питание для ротора, или другими словами – возбуждение. Иногда используется щеточный аппарат гидрогенератора, который, однако, менее надежен.
- Нижняя часть обода, с торца, оснащается тормозным кольцом (15), к которому при необходимости прижимаются тормозные колодки (14).
- Вал агрегата, при небольшом диаметре, изготавливается обычно цельнокованым, включая фланец (17). Если речь идет о более массивных конструкциях, то вал вместе с фланцем вытачиваются из отдельных поковок на заводе, после чего заготовки свариваются в одно целое.
- Вал обычно изготавливается полым. Данная особенность помогает осуществлять контроль за качеством сварки на этапе производства, а при введении в строй в отверстии располагают маслопроводы от системы, предназначенной для разворота лопастей (поворотно-лопастные гидротурбины).
- Через отверстие в валу также подается воздух под колесо жестколопастной гидротурбины, что позволяет уменьшить пульсации от давления в потоке.
Пассивная часть гидрогенератора – статор
- Вторая часть гидрогенератора, принимающая участие в непосредственной выработке тока – это статор. Данный элемент является пассивным, то есть не вращается, в отличие от того же ротора.
- Для гидрогенераторов ГЭС, из-за условий транспортировки, изготавливается разборным – из 2-6 частей, которые соединяются фланцами и болтами.
- Статор располагается внутри кожуха (7). Состоит он также из сердечника (10) и обмотки переменного тока (11) – в принципе обмотки переменного и постоянного токов только и отличаются тем, какой ток по ним протекает, то есть строение у них одинаковое.
- Статор помещается в прочный металлический корпус (9), дающий агрегату устойчивость и защищающий от внешних механических повреждений.
- Обмотка у статора бывает катушечной или стержневой. Все катушки соединяются в определенной последовательности, создавая фазы обмотки статора, коих, как помним, три штуки.
- Сердечник, с целью снижения индукционных потерь изготавливается из специальной электротехнической стали, высоколегированной, холоднокатаной. Он также является шихтованным и изготавливается из элементов толщиной 0,5 миллиметров. Данный элемент имеет определенный профиль, позволяющий удобно укладывать провода обмотки – конструкция также предусматривает наличие вентиляционных каналов, используемых для охлаждения установки.
Корпус гидрогенератора
- Корпус, в котором закреплен статор, монтируется на массивное бетонное основание через болтовые соединения.
- Ротор стоит на опорных конструкциях, которые состоят из подшипников, распорных домкратов и крестовин.
Интересно знать! Упорный подшипник называется подпятником.
Как видите, строение этой огромной машины ничем не отличается от любого другого компактного генератора, например, автомобильного. При вращении ротора, запитанный электромагнит, который, как вы понимаете, тоже вращается, заставит двигаться вслед за собой магнитное поле.
Далее в действие вступает закон электромагнитной индукции – в проводнике, перемещающемся перпендикулярно направлению электромагнитного поля, будет образовываться электродвижущая сила (ЭДС), которая при подключении внешней цепи с нагрузкой станет электрическим током.
Напомним, что нет никакой разницы, двигается ли проводник относительно магнитного поля, или все происходит наоборот – ЭДС всегда вырабатывается. Проводником в случае любого генератора является обмотка статора, которая соединяется с трансформатором, задающим получаемому току нужные параметры.
Все это значит, что применить гидрогенератор в домашних условиях будет довольно просто, если суметь правильно изготовить гидротурбину, о чем мы поговорим в нашей статье дальше.
Типы гидрогенераторов непромышленного назначения
Итак, мы поняли, что гидрогенератор – это устройство способное преобразовывать энергию движения воды в электрическую. Применяются такие устройства в основном на ГЭС, однако и небольшие модели, вырабатывающие сотни киловатт не стали редкостью, особенно в регионах, не обедненных водными ресурсами.
Давайте посмотрим, какие типы таких устройств можно сегодня приобрести в магазине, или сделать самому.
Станция гирляндного типа
Гирляндная станция
Поперек реки натягивается гибкий стальной трос, на который на манер гирлянды, вешается цепь из роторов (не путать с ротором генератора). Трос при этом играет роль вала вращения, один конец которого присоединен к валу генератора, а второй к свободно вращающемуся подшипнику качения.
- Такая конструкция очень эффективна и при условии, что скорость потока воды составляет 2,5 м/с, каждый гидроротор, способен передать до 2 кВт энергии.
- Данные агрегаты с успехом применялись еще в середине 20-го века, и часто изготавливались кустарными методами. Роль винтов могли выполнять обыкновенные консервные банки или пропеллеры.
- Сегодня можно приобрести готовые решения от заводов изготовителей, которые будут отличаться по условиям эксплуатации, эффективности, габаритам и прочему.
- Конструкция весьма проста, но применение ее на практике весьма затруднительно, в виду некоторых особенностей. Во-первых, «гирлянда» перегораживает речной поток, что может не понравиться вашим соседям или представителям органов по охране экологии и водных ресурсов. Во-вторых, если зимой река замерзает, агрегат становится бесполезным и его приходится демонтировать.
Совет! Гирляндные гидростанции возводятся преимущественно в безлюдных местах и на время, например, на летних пастбищах для скота, где энергию взять больше не откуда.
Гидрогенератор гирляндного типа погружной, рамный
Сегодня конструкция гирляндного гидрогенератора получила свое продолжение в виде погружных рамных устройств. Их преимущество в том, что они не преграждают все русло, плюс устройство можно расположить на дне водоема, где оно никому не будет мешать.
Такая станция способна вырабатывать до 9,3 МВт в месяц, что позволяет решать проблемы электрификации в населенных пунктах, удаленных от центральных магистралей.
Ротор Дарье
Если вы читали нашу предыдущую статью про вертикальные ветрогенераторы, то наверняка помните про конструкции роторов Дарье.
Ротор Дарье на ветрогенераторе
Данные устройства могут успешно применяться и в воде, правда, используют их в силу сложности эксплуатации в основном промышленные предприятия.
Такие роторы очень сложно раскрутить, ровно, как и остановить (происходит это только при замерзании реки). Сама конструкция обладает приличными показателями КПД.
Подводные пропеллеры
«Ветряк» под водой
Еще одна конструкция, сделанная по образу и подобию ветряного генератора, но теперь с вертикально расположенной осью – пропеллерный генератор. Ставятся они напротив потока, однако вращаются не за счет давящего напора воды, а по принципу возникновения подъемной силы, так же как это делает винт корабля или крыло самолета.
Водяное колесо, оснащенное лопастями
Самый старый из известных водяных двигателей
Конструкция водяного колеса известна человечеству еще со временен далекой античности, однако данный гидродвигатель применяется и сегодня, не потеряв ни капли актуальности. Эффективность данного двигателя целиком зависит от типа источника, на котором он установлен.
По этому критерию различают три типа:
- Нижнебойные или подливные – располагаются на мелководных реках так, что водяной поток толкает нижние лопасти.
- Среднебойные – конструкции, располагающиеся на реках с природными каскадами так, чтобы поток попадал приблизительно в центр вращающегося колеса.
- Верхнебойные или наливные – установить такую конструкцию можно под плотиной, высоким естественным порогом или трубой, чтобы поток воды падал на вершину колеса, заставляя его раскручиваться.
Несмотря на некоторые отличия, принцип работы всех вариантов одинаков – напор воды толкает лопасти, которые приводят в движение колесо, центральная ось которого соединена с валом. Далее подключается генератор – напрямую или через цепь передаточных устройств.
Наливное колесо под акведуком из металлической бочки
Именно эта конструкция используется чаще всего народными умельцами при изготовлении самодельных гидрогенераторов. Строение ее очень простое, что позволяет применять различные подручные материалы.
Промышленное производство водяные колеса тоже не забывает, и сегодня на рынке предлагаются очень эффективные модели, лопасти которых рассчитаны на работу при определенной скорости потока воды. Из чего можно сделать такое колесо, и как собирается сам генератор, мы разберем чуть позже.
Водный генератор в водопроводной трубе
А теперь несколько слов о последних достижениях мировой инженерной мысли.
Гидрогенераторы водопровод
Буквально каких-то 10 лет назад, американская компания Lucid Energy представила миру первые гидрогенераторы в водопроводе. Представители фирмы утверждают, что проблема энергоснабжения населения может быть частично решена за счет совершенно новой технологии, при которой гидрогенераторы приводятся в движение от водопровода. На фото выше показано строение подобного устройства.
- За основу был взят принцип деривационной гидроэлектростанции безнапорного типа. Вода приводит в движение лопасти ротора, который продолжает вращаться, оказывая потоку лишь небольшое сопротивление.
- Опробовать новинку было решено в американском городе Портленд штата Орегон. Компания принялась за установку в действующий водопровод с чистой питьевой водой мини турбин, располагающихся в специальных трубах.
Гидрогенераторы водопровода: процесс установки
- Самым главным преимуществом такой системы является ее абсолютная безопасность для окружающей среды. Получаемая электрическая энергия очень дешева, и включает в себя только стоимость установки оборудования и его дальнейшее периодическое обслуживание.
- При этом генераторы весьма эффективны, из-за того, что вода в трубах практически никогда не останавливается. Не повлияют на работу и такие внешние факторы, как капризы непогоды.
Настройка системы
- Несколько таких устройств хватает, чтобы полноценно обеспечить электроэнергией муниципальное учреждение, например, школу.
- В частности, в названном городе, за счет водопроводных гидрогенераторов на испытуемом участке было реализовано бесперебойное освещение улиц города. Согласитесь, весомое достижение.
- Недостатки у системы все-таки есть, и заключаются они в ограниченности мест для установки. Имеется в виду, что подходят только те участки водопровода (с достаточным уклоном), где вода движется не за счет электронасосов, а самотеком, иначе эффективность установки будет небольшой.
Транспортировка водопроводного гидрогенератора
Проблемы с гидрогенераторами
Авария на Саяно-Шушенской ГЭС
Как и любое другое устройство механического типа, гидрогенераторы имеют привычку ломаться и выходить из строя. Некоторые поломки конструкции можно счесть несущественными, но все-таки важными, а некоторые могут привести к разрушительным последствиям – вспомним знаменитую аварию на Саяно-Шушенской ГЭС в 2009 году, когда погибло 75 человек, был нанесен серьезный удар по экологии и помещение электростанции сильно пострадало.
- Частой причиной поломок становится вибрация гидрогенератора. Данный эффект возникает из-за неуравновешенности роторов, несимметричного воздействия электромагнитных сил, нарушения шабровки или центровки подшипников, появления трещин в фундаментной плите, удерживающей корпус агрегата.
Подпятник для гидрогенератора
- Вибрация на гидрогенераторах может наблюдаться в результате температурной нестабильности, когда при нагреве обмоток, неравномерных потоках охлаждающих газов (воздуха), и межвиткового замыкания, бочка ротора начинает неравномерно греться. Далее наблюдается изменение упругой линии прогиба ротора, то есть он теряет баланс вращения.
- Вибрация гидрогенераторов может быть также вызвана недостаточной жесткостью корпуса и изменением линии прогиба консольных концов ротора в местах расположения контактных колец.
- Даже незначительные вибрации на высоких оборотах ротора создают вредные нагрузки на подшипники и на сам ротор. Если генератор продолжит работать в таком режиме, то со временем могут перетереться провода обмотки, из-за чего последует межвитковое замыкание на роторе или статоре, способное вызвать полный выход агрегата из строя.
- Как видите, даже небольшая нестабильность в работе, не устраненная вовремя, способна привести к серьезным проблемам. Все это одинаково справедливо и для компактных устройств — повреждения гидрогенераторов идентичны, хотя последствия куда менее разрушительны.
- Устранение всех неисправностей гидрогенераторов промышленного образца описывается стандартами организации его собравшей.
- Ремонт обмоток гидрогенераторов, а также его механических частей выполняется только обученным, высококвалифицированным персоналом.
Создание собственного гидрогенератора
Изготовление промышленного гидрогенератора
Итак, добрались до самого интересного. Далее будет дана инструкция, как своими руками смастерить устройство, которое поможет существенно сэкономить на электроэнергии.
Самодельный гидрогенератор в действии
Наша основная задача – смастерить водяное колесо, которое нужно через привод соединить с валом генератора. Сам генератор можно также изготовить самостоятельно, либо задействовать готовое устройство, которое при имеющихся оборотах будет выдавать необходимую мощность.
Строение электрической части гидрогенератора ничем не отличается от вертикального ветряка, что мы рассматривали в прошлой статье. Поэтому, если вам интересно, как самому сделать генератор (и ротор, и статор) обязательно ее прочитайте. Нас же сейчас больше интересует механическая часть, которая сильно зависит от мощности водяного потока.
Водяное колесо из влагостойкой фанеры, применяемой в судостроительстве
- Чтобы собрать водяное колесо, вам понадобятся два одинаковых диска, лопасти и ступицы, за счет которых и будет происходить вращение. В крайнем случае, возможна установка центральной оси в виде круглой трубы.
- Боковые диски и лопасти можно изготовить из влагостойкой фанеры, но лучше всего сразу собирать конструкцию из металла, так как прослужит она не в пример дольше, однако цена решения будет не на много выше.
Колесо из металла будет служить дольше
- Удерживаться колесо будет за счет рамы, надежности которой должно хватить на то, чтобы выдержать вес колеса и напор водяного потока.
- Материал тут тоже можно взять любой – в приоритете металл, но и дерево будет хорошим решением, если оно достаточно плотное, например, вы возьмете дуб или лиственницу.
Сопло «турбины»
- Если поток воды в речушке слабоват, то для обеспечения нужных оборотов генератора не обойтись без сопла. В данном случае в качестве этого элемента приспособлен поддон, который аккумулирует водный поток и тем самым его усиливает.
Сопло можно сделать закрытым
- Конструкция устанавливается в воду, и располагается в зависимости от того, как течет вода. Лучше всего будет турбина наливного типа, но неплохо покажет себя и среднебойный вариант.
- Рама хорошо укрепляется за счет всевозможных укосов и растяжек. Пока происходит установка, придется изрядно подмочиться.
- Центральная ось вращения дополняется приводом. Он может быть прямым (ротор расположен на той же оси), ременным (самый простой и недорогой в реализации), цепным, шестереночным.
- К приводу подключается электрическая установка, от которой провода идут к аккумуляторам.
Проверка работоспособности
- От аккумулятора уже могут запитываться различные электрические устройства. Например, можно напрямую подключить систему освещения, рассчитанную на работу при низких напряжениях. Также можно установить инвертор, который позволит преобразовывать постоянный ток в переменный, для использования домашней техники.
Совет! Если вы используете в агрегате генератор переменного тока, то вам потребуется дополнить цепь выпрямителем в виде диодного моста, который к аккумулятору уже будет подавать постоянный ток.
На этом закончим наш обзор. Мы разобрали характеристики гидрогенераторов нескольких типов, посмотрели, как эти устройства могут быть собраны самостоятельно и узнали много чего интересного.
Решение об установке такого устройства поможет принять видео в этой статье, рассказывающее и показывающее основные требования к монтажу таких устройств.
Гидроэнергетика — Hydropower — qaz.wiki
Производство энергии за счет движения воды
Эта статья об общей концепции гидроэнергетики. Чтобы узнать об использовании гидроэнергии для производства электроэнергии, см. Гидроэлектроэнергия .Гидроэнергетика или водная энергия (от греч . Ὕδωρ , «вода») — это энергия, получаемая из энергии падающей или быстро текущей воды, которую можно использовать для полезных целей. С древних времен гидроэнергия от многих видов водяных мельниц использовалась в качестве возобновляемого источника энергии для орошения и работы различных механических устройств, таких как мельницы , лесопилки , текстильные фабрики, путевые молоты , док- краны , бытовые подъемники и рудные мельницы. Trompe , которая производит сжатый воздух от падающей воды, иногда используется для питания других машин на расстоянии.
В конце 19 века гидроэнергетика стала источником выработки электроэнергии . Крэгсайд в Нортумберленде был первым домом, работающим от гидроэлектроэнергии в 1878 году, а первая коммерческая гидроэлектростанция была построена на Ниагарском водопаде в 1879 году. В 1881 году уличные фонари в городе Ниагарский водопад питались от гидроэлектроэнергии.
С начала 20 века этот термин использовался почти исключительно в связи с современным развитием гидроэнергетики. Международные организации, такие как Всемирный банк, рассматривают гидроэнергетику как средство экономического развития без добавления значительного количества углерода в атмосферу, но плотины могут иметь значительные негативные социальные и экологические последствия .
История
Рудная мельница с прямым приводом, конец девятнадцатого векаСамые ранние свидетельства наличия водяных колес и водяных мельниц относятся к древнему Ближнему Востоку в 4 веке до нашей эры, в частности, в Персидской империи до 350 года до нашей эры, в регионах Ирака , Ирана и Египта .
В Римской империи водные мельницы были описаны Витрувием еще в первом веке до нашей эры. На мельнице Барбегал было шестнадцать водяных колес, перерабатывающих до 28 тонн зерна в сутки. Римские водяные колеса также использовались для пиления мрамора, например, на лесопилке в Иераполе в конце 3 века нашей эры. Такие лесопилки имели водяное колесо, которое приводило в движение две кривошипно-шатунные тяги для привода двух пил. Он также появляется в двух восточно-римских лесопильных заводах VI века, раскопанных в Эфесе и Герасе соответственно. Кривошипный механизм и соединительный стержень из этих римских мельниц превращает вращательное движение водяного колеса в линейное перемещение пильных дисков.
В Китае предполагалось, что его водные молотки и сильфоны еще во времена династии Хань (202 г. до н.э. — 220 г. н.э.) приводились в движение водяными лопатками , но более поздние историки полагали, что они приводились в действие водяными колесами на основании того, что вода совки не имели бы движущей силы, чтобы управлять своими сильфонами доменной печи . Доказательства наличия вертикальных водяных колес Хань можно увидеть в двух современных моделях погребальной посуды, на которых изображены гидравлические молоты. Самыми ранними текстами, описывающими это устройство, являются Цзицзюпский словарь 40 г. до н.э., текст Ян Сюн , известный как Фанъянь 15 г. до н.э., а также Синь Лунь, написанный Хуан Таном около 20 г. н.э. Это было также в течение этого времени , что инженер Ду Ши применил силу (с 31 AD.) Водяных колес на поршень — сильфона в ковки чугуна.
Сила волны воды, выпущенной из резервуара, использовалась для извлечения металлических руд методом, известным как замалчивание . Впервые этот метод был использован на золотых приисках Долокоти в Уэльсе с 75 года нашей эры, но был разработан в Испании на таких рудниках, как Лас Медулас . Замалчивание был также широко используется в Великобритании в средние века и более поздних периодов для извлечения свинца и олова руд. Позже он превратился в гидравлическую добычу, когда использовался во время Калифорнийской золотой лихорадки .
В мусульманском мире во время Золотого века ислама и арабской сельскохозяйственной революции (VIII – XIII века) инженеры широко использовали гидроэнергетику, а также раннее использование приливной энергии и большие гидравлические заводские комплексы. Разнообразие водных питанием промышленных мельниц использовались в исламском мире, в том числе Фуллинг мельницах, gristmills , бумажные фабрики , hullers , лесопилки , судовых мельниц , штемпеля мельниц , сталелитейных заводов , сахарных заводов , а также приливных мельницах . К XI веку в каждой провинции исламского мира были действующие промышленные фабрики, от Аль-Андалуса и Северной Африки до Ближнего Востока и Центральной Азии . Мусульманские инженеры также использовали водяные турбины , зубчатые передачи в водяных мельницах и водоподъемных машинах и первыми использовали плотины в качестве источника энергии воды, используемой для обеспечения дополнительной энергии водяным мельницам и водоподъемным машинам.
Исламский инженер — механик Аль-Джазари (1136–1206) описал конструкции 50 устройств, многие из которых приводились в действие водой, в своей книге «Книга знаний об изобретательных механических устройствах» , включая часы, устройство для подачи вина и пять устройств для подъема. вода из рек или бассейнов, хотя три из них используются животными, а один может питаться животными или водой. К ним относятся бесконечная лента с прикрепленными кувшинами , шадуф с приводом от коровы и возвратно-поступательное устройство с откидными клапанами.
В 1753 году французский инженер Бернар Форест де Белидор опубликовал « Архитектуру гидравлики», в которой описал гидравлические машины с вертикальной и горизонтальной осью. Растущий спрос на промышленную революцию также будет стимулировать развитие.
В гидравлических электрических сетях использовались трубы для подачи воды под давлением и передачи механической энергии от источника конечным пользователям. Источником энергии обычно был напор воды, которому также мог помочь насос. Они были широко распространены в викторианских городах Соединенного Королевства. Гидравлическая сеть была также развита в Женеве , Швейцария. Всемирно известный Jet d’Eau изначально проектировался как предохранительный клапан для сети.
В начале промышленной революции в Англии, вода является основным источником энергии для новых изобретений , таких как Ричард Аркрайт «s воды кадра . Хотя использование энергии воды уступило место энергии пара на многих крупных заводах и фабриках, она все еще использовалась в 18-19 веках для многих небольших операций, таких как привод сильфонов в небольших доменных печах (например, печь Dyfi ). и мельницы , такие как те, что построены в Сент-Энтони Фоллс , где используется 50-футовый (15 м) перепад в реке Миссисипи .
В 1830-х годах, на пике развития строительства каналов в США , гидроэнергетика обеспечивала энергию для транспортировки барж вверх и вниз по крутым холмам по наклонным железным дорогам . Поскольку железные дороги обогнали каналы для транспортировки, системы каналов были модифицированы и преобразованы в гидроэнергетические системы; история Лоуэлл, штат Массачусетс , является классическим примером коммерческого развития и индустриализации, построенное на доступность энергии воды.
Технологические достижения превратили открытое водяное колесо в закрытую турбину или водяной двигатель . В 1848 году Джеймс Б. Фрэнсис , работая главным инженером компании Lowell’s Locks and Canals, усовершенствовал эти конструкции и создал турбину с КПД 90%. Он применил научные принципы и методы испытаний к проблеме проектирования турбин. Его математические и графические методы расчета позволили уверенно спроектировать высокоэффективные турбины, точно соответствующие конкретным условиям потока на площадке. Френсис реакция турбина все еще находится в широком использовании сегодня. В 1870-х годах Лестер Аллан Пелтон разработал высокоэффективную импульсную турбину с колесом Пелтона , которая использовала гидроэнергетику высоконапорных водотоков, характерных для горных районов Калифорнии.
Расчет количества доступной мощности
Ресурс гидроэнергии можно оценить по его доступной мощности . Мощность зависит от гидравлического напора и объемного расхода . Напор — это энергия единицы веса (или единицы массы) воды. Статический напор пропорционален разнице высот, на которую падает вода. Динамический напор связан со скоростью движущейся воды. Каждая единица воды может сделать работу, равную ее весу, умноженному на голову.
Мощность, доступная от падающей воды, может быть рассчитана на основе расхода и плотности воды, высоты падения и местного ускорения свободного падения:
- W˙отытзнак равно-η (м˙грамм Δчас)знак равно-η ((ρV˙) грамм Δчас){\ displaystyle {\ dot {W}} _ {out} = — \ eta \ ({\ dot {m}} g \ \ Delta h) = — \ eta \ ((\ rho {\ dot {V}}) \ g \ \ Delta h)}
- где
Для иллюстрации: выходная мощность турбины с КПД 85%, расходом 80 кубических метров в секунду (2800 кубических футов в секунду) и напором 145 метров (480 футов) составляет 97 мегаватт:
- W˙отытзнак равно0,85×1000 (кг/м3)×80 (м3/s)×9,81 (м/s2)×145 мзнак равно97×106 (кг м2/s3)знак равно97 МВт{\ displaystyle {\ dot {W}} _ {out} = 0,85 \ times 1000 \ ({\ text {kg}} / {\ text {m}} ^ {3}) \ times 80 \ ({\ text { m}} ^ {3} / {\ text {s}}) \ times 9. {3}) = 97 \ {\ текст {MW}}}
Операторы гидроэлектростанций будут сравнивать общую произведенную электрическую энергию с теоретической потенциальной энергией воды, проходящей через турбину, для расчета эффективности. Процедуры и определения для расчета эффективности приведены в кодах испытаний, таких как ASME PTC 18 и IEC 60041. Полевые испытания турбин используются для подтверждения гарантированной производителем эффективности. Подробный расчет эффективности гидроэнергетической турбины будет учитывать потерю напора из-за трения потока в силовом канале или водоводе, подъем уровня воды в хвостовой части из-за потока, расположение станции и влияние различной силы тяжести, температуры и барометрического давления. давление воздуха, плотность воды при температуре окружающей среды и высота над уровнем моря передней и задней части. Для точных вычислений необходимо учитывать ошибки из-за округления и количества значащих цифр констант.
Некоторые гидроэнергетические системы, такие как водяные колеса, могут получать энергию из потока воды, не обязательно изменяя его высоту. В этом случае доступная мощность — это кинетическая энергия текущей воды. Водяные колеса с избыточным ударом могут эффективно улавливать оба типа энергии. Расход воды в ручье может сильно меняться от сезона к сезону. Разработка гидроэлектростанции требует анализа данных о потоках , иногда за десятилетия, для оценки надежного годового энергоснабжения. Плотины и водохранилища являются более надежным источником энергии за счет сглаживания сезонных изменений расхода воды. Однако водохранилища оказывают значительное воздействие на окружающую среду , как и изменение естественного потока реки. При проектировании дамб необходимо учитывать наихудший случай, «максимальное вероятное наводнение», которое можно ожидать на площадке; водосливной часто включаются в обводном наводнение обтекает плотину. Компьютерная модель гидравлического бассейна и записи осадков и снегопадов используются для прогнозирования максимального паводка.
Социальное и экологическое воздействие плотин
Крупные плотины могут разрушить речные экосистемы, покрыть большие площади суши, вызывая выбросы парниковых газов из-за гниющей подводной растительности, перемещать тысячи людей и влиять на их средства к существованию.
Использование гидроэнергии
Схема гидроэнергетики, использующая силу воды, льющейся с гор Брекон-Биконс в Уэльсе ; 2017 г. Сиси-одосьте питание от падающей воды перерывы спокойствия японского сада со звуком бамбукового коромысла ударяя камень.Механическая мощность
Водяные мельницы
Интерьер водяной мельницы Лайм-Реджис , Великобритания (14 век)Маунтвь или водяная мельница мельница , которая использует гидроэнергетику. Это конструкция, в которой используется водяное колесо или водяная турбина для управления механическими процессами, такими как фрезерование (шлифование) , прокатка или молоток . Такие процессы необходимы при производстве многих материальных товаров, включая муку , пиломатериалы , бумагу , текстиль и многие металлические изделия. Эти водяные мельницы могут содержать gristmills , лесопильные , бумажные фабрики , текстильные фабрики , молотковые , поездки ковки мельницы, прокатные станы , волочение проволоки мельницы.
Один из основных способов классификации водяных мельниц — это ориентация колес (вертикальная или горизонтальная), одна приводится в действие вертикальным водяным колесом через зубчатый механизм, а другая оснащена горизонтальным водяным колесом без такого механизма. Первый тип может быть далее разделен, в зависимости от того, где вода попадает на лопасти колеса, на мельницы с недокусом, недокусом, грудным выстрелом и обратным ударом (выстрел назад или назад). Другой способ классификации водяных мельниц — это существенная характеристика их местоположения: приливные мельницы используют движение прилива; Судовые мельницы — это водяные мельницы на борту корабля (и составляющие его).
Водяные мельницы влияют на речную динамику водотоков, в которых они установлены. Во время работы водяных мельниц каналы имеют тенденцию к отстаиванию , особенно подпор. Также в зоне затона усиливаются случаи затопления и отложения отложений в прилегающих поймах . Однако со временем эти эффекты нейтрализуются повышением берегов рек. Там, где были сняты мельницы, речной разрез увеличивается, а каналы углубляются.Сжатый воздух гидро
Там, где имеется большой напор воды, можно заставить генерировать сжатый воздух напрямую, без движущихся частей. В этих конструкциях падающий столб воды намеренно смешивается с пузырьками воздуха, образующимися в результате турбулентности или редуктора давления Вентури на высоком уровне всасывания. Он может упасть вниз по шахте в подземную камеру с высокой крышей, где сжатый воздух отделяется от воды и становится захваченным. Высота падающего водяного столба поддерживает сжатие воздуха в верхней части камеры, в то время как выпускное отверстие, погруженное ниже уровня воды в камере, позволяет воде вытекать обратно на поверхность на более низком уровне, чем забор. Через отдельный выход в крыше камеры подается сжатый воздух. Завод по этому принципу был построен на реке Монреаль в Рэггед-Шутес недалеко от Кобальта, Онтарио, в 1910 году и поставлял 5000 лошадиных сил на близлежащие рудники.
Гидроэлектроэнергия
Гидроэлектроэнергия — это применение гидроэнергии для производства электроэнергии. Сегодня это основное использование гидроэнергии. Гидроэлектростанции могут включать водохранилище (обычно создаваемое плотиной ) для использования энергии падающей воды или могут использовать кинетическую энергию воды, как в гидроэлектростанциях с руслом реки . Гидроэлектростанции могут различаться по размеру от небольших электростанций ( микрогидроэлектростанции ) до очень больших электростанций, поставляющих электроэнергию для всей страны. По состоянию на 2019 год пятерка крупнейших электростанций в мире — это обычные гидроэлектростанции с плотинами.
Гидроэлектроэнергия также может использоваться для хранения энергии в виде потенциальной энергии между двумя резервуарами на разной высоте с гидроэлектростанциями с накачкой . Вода закачивается в водохранилища в периоды низкого спроса, чтобы выпускать ее для выработки, когда потребность высока или выработка системы низкая.
Другие формы производства электроэнергии с помощью гидроэлектроэнергии включают генераторы приливных потоков, использующие энергию приливной энергии, генерируемой из океанов, рек и искусственных систем каналов, для выработки электроэнергии.
Смотрите также
Примечания
Ссылки
внешние ссылки
типов гидроэлектростанций | Министерство энергетики
Вы находитесь здесь
Главная »Типы гидроэлектростанцийЕсть три типа гидроэнергетических сооружений: водохранилище, водозабор и гидроаккумулятор.Некоторые гидроэлектростанции используют плотины, а некоторые — нет. На изображениях ниже показаны оба типа гидроэлектростанций.
Многие плотины были построены для других целей, позже были добавлены гидроэнергетики. В США около 80 000 плотин, из которых только 2400 вырабатывают энергию. Другие дамбы предназначены для отдыха, прудов для животноводческих хозяйств, защиты от наводнений, водоснабжения и ирригации.
Гидроэлектростанции варьируются по размеру от небольших систем для дома или деревни до крупных проектов по производству электроэнергии для коммунальных служб.Размеры гидроэлектростанций описаны ниже.
Водохранилище
Самым распространенным типом гидроэлектростанций является водохранилище. Водохранилище, обычно крупная гидроэнергетическая система, использует плотину для хранения речной воды в резервуаре. Вода, выпущенная из резервуара, проходит через турбину, вращая ее, которая, в свою очередь, приводит в действие генератор для производства электроэнергии. Воду можно выпускать либо для удовлетворения меняющихся потребностей в электроэнергии, либо для поддержания постоянного уровня в резервуаре.
ОТВОД
Водозабор, иногда называемый руслом реки, ведет часть реки через канал или водозабор. Это может не потребовать использования плотины.
НАСОСНОЕ ХРАНЕНИЕ
Другой тип гидроэнергетики, называемый гидроаккумулятором, работает как аккумулятор, накапливая электричество, вырабатываемое другими источниками энергии, такими как солнечная, ветровая и ядерная, для дальнейшего использования.Он накапливает энергию, перекачивая воду вверх в резервуар на более высоком уровне из второго резервуара на более низкой высоте. Когда спрос на электроэнергию низкий, насосный накопитель накапливает энергию, перекачивая воду из нижнего резервуара в верхний резервуар. В периоды высокого потребления электроэнергии вода сбрасывается обратно в нижний резервуар и вращает турбину, вырабатывая электричество.
РАЗМЕРЫ ГИДРОЭЛЕКТРИЧЕСКИХ СТАНЦИЙ
По размеру сооружения варьируются от крупных электростанций, снабжающих электроэнергией многих потребителей, до малых и микростанций, которые люди используют для собственных нужд или для продажи энергии коммунальным предприятиям.
Большая гидроэнергетика
Хотя определения различаются, Министерство энергетики определяет крупную гидроэнергетику как объекты мощностью более 30 мегаватт (МВт).
Малая гидроэнергетика
Хотя определения различаются, Министерство энергетики определяет малую гидроэнергетику как проекты, вырабатывающие 10 МВт или меньше энергии.
Микрогидроэлектростанция
Микрогидроэлектростанция имеет мощность до 100 киловатт. Небольшая или микрогидроэнергетическая система может производить достаточно электроэнергии для дома, фермы, ранчо или деревни.
Подписаться на The Water Wire
Электронный информационный бюллетень Water Power Technologies Office сообщает о возможностях финансирования, мероприятиях, публикациях и мероприятиях прямо на ваш почтовый ящик.
Офис гидроэнергетических технологий | Министерство энергетики
Перейти к основному содержанию- Национальные лаборатории
- Energy.gov Офисы
Поиск
Управление энергоэффективности и возобновляемых источников энергии- О EERE О EERE
- Инициативы
- О EERE О EERE
- Инициативы
- Услуги Услуги
- EfficiencyEfficiency
- Возобновляемые источники энергии Возобновляемые источники энергии
- Транспорт Перевозка
ВИДЫ ГИДРОСТАНЦИЙ
Имя пользователя *
Эл. адрес*
Пароль*
Подтвердите Пароль*
Имя*
Фамилия*
Страна Выберите страну … Аландские острова IslandsAfghanistanAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelauBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Санкт-Эстатиус и SabaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийского океана TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканского RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongo (Браззавиль) Конго (Киншаса) Кук IslandsCosta RicaCroatiaCubaCuraÇaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный Территорий нг КонгВенгрияИсландияИндияИндонезияИранИракОстров МэнИзраильИталия Кот-д’ИвуарЯмайкаЯпонияДжерсиИорданияКазахстанКенияКирибатиКувейтКиргизияЛаосЛатвияЛебанЛезотоЛиберияЛибияоЛихтенштейнЛихтенштейнЛитва ЮжныйAR, ChinaMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorwayOmanPakistanPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarRepublic из IrelandReunionRomaniaRussiaRwandaSão Tomé и PríncipeSaint BarthélemySaint HelenaSaint Китса и NevisSaint LuciaSaint Мартин (Голландская часть) Сен-Мартен (французская часть) Сен-Пьер и MiquelonSaint Винсент и GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия / Sandwich ОстроваЮжная КореяЮжный СуданИспанияШри-ЛанкаСуданСуринамШпицберген и Ян-МайенСвазилендШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛештиТогоТокелауТонгаТринидад и ТобагоТунисТурция ТуркменистанТуркс и Острова КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобритания (Великобритания) США (США) УругвайУзбекистанВануатуВатиканВенесуэлаВьетнамУоллис и ФутунаЗападная СахараЗападное СамоаЙеменЗамбияЗимбабве
Captcha *Регистрируясь, вы соглашаетесь с Условиями использования и Политикой конфиденциальности.*
Термоэлектрические электростанции могут предложить экономически конкурентоспособные возобновляемые источники энергии
Термоэлектрическая электростанция может использовать энергию, полученную от океанских волн, для перекачивания холодной воды через теплообменник / генератор у поверхности. Теплообменник изготовлен из термоэлектрических материалов, которые могут использовать температурный градиент между теплой и холодной водой для выработки электроэнергии. Предоставлено: Лю. (CC BY 3.0)(Физ.org) — новое исследование предсказывает, что крупномасштабные электростанции, основанные на термоэлектрических эффектах, таких как небольшая разница температур в океанской воде, могут вырабатывать электричество с меньшими затратами, чем фотоэлектрические электростанции.
Липин Лю, доцент Университета Рутгерса, предполагает, что термоэлектрические электростанции будут похожи на гигантские баржи, стоящие в тропическом океане, где электричество вырабатывается путем нагрева холодной глубокой воды теплой мелкой водой, нагретой солнцем.Лю опубликовал статью в журнале New Journal of Physics , в которой он анализирует возможность создания таких электростанций.
«Эта работа посвящена новой идее крупномасштабных зеленых электростанций, которые экономически используют самый большой доступный и устойчивый источник энергии на Земле», — сказал Лю Phys.org , говоря об океанах. Это связано с тем, что солнце нагревает поверхностную воду до температуры, которая в тропических регионах примерно на 20 К выше температуры воды на глубине 600 метров. По сути, поверхностные воды действуют как гигантский резервуар для хранения солнечной энергии.
Как объясняет Лю, термоэлектрические электростанции будут работать, собирая энергию океанских волн для перекачивания холодной воды с глубины в несколько сотен метров вверх по длинному каналу. Когда холодная вода приближается к поверхности, она попадает в теплообменник, где нагревается внешней водой. Теплообменник действует как электрический генератор, поскольку его трубки сделаны из термоэлектрических материалов, которые могут передавать тепло через свои стенки и напрямую преобразовывать разницу температур в электричество.
Крупномасштабные термоэлектрические электростанции морского базирования имеют много преимуществ. Во-первых, «топливо» или разница температур бесплатны, неограничены и легко доступны. Также растения не занимают места на суше. Поскольку у них нет движущихся твердых частей, они будут иметь низкие затраты на обслуживание. Кроме того, выходная мощность не зависит от времени суток и сезона. И, наконец, метод зеленый, так как не выделяет выбросов.
Термоэлектрическая электростанция также может использовать геотермальные источники для создания температурного градиента.Здесь горячая вода перекачивается в теплообменник / генератор, где охлаждается воздухом. Предоставлено: Лю. (CC BY 3.0)Мелкие термоэлектрические генераторы уже коммерчески используются в таких приложениях, как микроэлектроника, автомобили и производство электроэнергии в отдаленных районах. В этих конструкциях эффективность преобразования является наиболее важным фактором, поскольку на топливо приходится самая большая часть затрат. Большинство коммерческих устройств имеют эффективность преобразования от 5% до 10% от идеального КПД Карно, а современные устройства достигают КПД до 20%.Несмотря на то, что в настоящее время проводятся исследования для дальнейшего повышения эффективности, все еще существуют пределы того, насколько высоко она может подняться.
В своей новой статье Лю показывает, что крупномасштабным термоэлектрическим электростанциям не нужно работать с чрезвычайно высокой эффективностью, чтобы быть экономически конкурентоспособными; вместо этого ключом кроется в разработке простых структур, таких как ламинированные композиты, для поддержки массового производства.Эти улучшения сосредоточены на преобразовательной способности, которая, в отличие от эффективности, может быть увеличена на порядки. Другими словами, поскольку топливо предоставляется бесплатно и в неограниченных количествах, крупномасштабные термоэлектрические электростанции могут компенсировать своим размером то, чего им не хватает в эффективности.
Стоимость производства электроэнергии зависит от источника. По данным Министерства энергетики США, расчетная стоимость одного мегаватта электроэнергии в год в 2016 году для обычных угольных электростанций составит около 0,83 миллиона долларов по сравнению с 1 долларом.84 миллиона для фотоэлектрических электростанций. По оценкам Лю, термоэлектрическая электростанция может вырабатывать электроэнергию менее чем за 1,84 миллиона долларов, хотя точная оценка на данном этапе затруднена. Эта оценка относится к термоэлектрическому генератору, срок службы которого составляет 20 лет, и в качестве топлива используется океанская вода с разницей температур 10 К. Если вместо этого использовать воду из геотермальных источников, разница температур может составить 50 К или более, что приведет к еще большему увеличению мощности и снижению стоимости ватта.
В целом анализ показывает, что термоэлектрические электростанции выглядят очень многообещающе и могут внести свой вклад в решение мировых энергетических проблем. Лю планирует работать для достижения этой цели в будущих исследованиях.
«В настоящее время мы работаем над экспериментальным подтверждением прогнозируемого коэффициента мощности термоэлектрических композитов», — сказал Лю. «Как только это будет подтверждено, мы будем стремиться изготовить настольный прототип генератора, который использует ледяную воду и горячую воду в качестве« топлива »».
К недорогому «искусственному листу», производящему чистое водородное топливо
Дополнительная информация: Липин Лю.«Возможность создания крупномасштабных электростанций на основе термоэлектрических эффектов». Новый физический журнал . DOI: 10.1088 / 1367-2630 / 16/12/123019
© 2014 Phys.org
Ссылка : Термоэлектрические электростанции могут предлагать экономически конкурентоспособные возобновляемые источники энергии (2014, 19 декабря) получено 17 декабря 2020 с https: // физ.org / news / 2014-12-thermoelectric-power-экономически-конкурентоспособная-возобновляемая энергия.html
Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, никакие часть может быть воспроизведена без письменного разрешения.