схема на 220В, потолочный, люстра
Содержание статьи:
Светодиодные осветительные приборы нашли широкое применение в организации не только бытового освещения, но и уличного, промышленного. Обусловлено это несколькими весомыми достоинствами, а именно – неприхотливостью в обслуживании, ремонтопригодностью, экологичностью и экономичностью. Светодиодная люстра своими руками обязательно найдет применение в доме, главное изготовить ее с соблюдением всех правил безопасности.
Схемы подключения светодиодных ламп на 220 В
Светодиодная лампа 220 своими руками
Существует несколько схем, по которым можно изготовить самодельную люстру из светодиодов. Прежде чем приступать к работе, важно определиться со способом сборки. Выделяют два основных, каждый из них имеет свои преимущества и недостатки.
Применение диодного моста
Вариант с диодным мостом
Схема включает четыре основных диода, подсоединяются они разнонаправленно. Это обеспечивает возможность преобразовывать сетевой ток в пульсирующий.
Преобразование происходит следующим образом: синусоидальные полуволны при переходе по двум светодиодам изменяются, что приводит к потере полярности.
Во время сборки к плюсовому выходу перед мостом требуется подсоединять конденсатор, а перед минусовой клеммой – сопротивление силой в 100 Ом. Схема оснащается еще одним конденсатором, устанавливаемым позади моста, он необходим для сглаживания скачков напряжения в электросети.
Изготовление светодиодных лампочек
Самый простой в реализации способ – изготовление нового осветительного прибора на основе сломанного. Предварительно проверяют работоспособность каждой обнаруженной детали, сделать это можно с помощью аккумуляторной батареи мощностью 12 V.
Элементы, вышедшие из строя, подлежат обязательной замене. Для этого распаивают контакты, удаляют неисправные детали и на их место устанавливают новые. Во время выполнения работы важно учитывать правильную последовательность анодов и катодов, в противном случае прибор будет неработоспособным.
При самостоятельном изготовлении нужно в один ряд соединять по 10 диодов, учитывая правила полярности. Несколько таких цепей подсоединяются к проводам паяльником. Нужно, чтобы спаянные концы проводов не соприкасались, в противном случае это неизбежно приведет к замыканию и система выйдет из строя.
Самодельная лампа из светодиодов мягкого свечения
Отрицательная особенность LED-светильников – регулярное мерцание. Чтобы предотвратить это, вышеописанную схему дополнительно оснащают несколькими деталями. Таким образом, она в себя включает конденсаторы на 400 нФ и 10 мкФ, резисторы на 100 и 230 Ом, диодный мост.
Для защиты осветительного прибора от скачков напряжения в начало схемы перемещают резистор на 100 Ом, за ним припаивается конденсатор на 400 нФ, далее следует диодный мост и еще один резистор.
Устройства, оснащенные резисторным сопротивлением
Использование резистора для смягчения яркости светодиодов
Реализовать подобную схему под силу начинающему мастеру, у которого нет навыков.
Светильники, собранные по этой схеме, имеют более мягкое свечение. Достичь этого удается благодаря пульсации вспышек, которые не видны человеческим взглядом. Такие осветительные приборы чаще всего используются в виде настольных ламп.
Корпуса для светильников на светодиодах
Корпус для Led-ленты
Помимо правильной сборки схемы, нужно позаботиться о создании корпуса, в который она будет помещена. Существует несколько способов решения проблемы.
- Различные приспособления, изготовленные своими руками.
- Цоколи перегоревших ламп накаливания.
- Корпуса от перегоревших галогенных или энергосберегающих ламп.
Использование цоколя лампы накаливания имеет одно весомое преимущество – собранное своими руками светодиодное осветительное устройство легко закрутить в патрон и обеспечить этим необходимый теплообмен. При этом есть и весомый недостаток – светильник в конечном итоге имеет не очень эстетичный вид.
Самодельный светодиодный светильник
Самый практичный, безопасный и простой в реализации способ – поместить изготовленную схему в корпус энергосберегающей лампы. Предварительно перегоревшую лампочку следует разобрать и изъять из нее преобразовательную плату.
- Плату устанавливают непосредственно в цоколь. Для удобства реализации способа рекомендуется использовать обычную пластиковую крышку от бутылки с водой.
- Светодиодные лампочки помещают в отверстия, которые предварительно проделывают в крышке, расположенной под стеклянной колбой.
Чтобы упростить процесс размещения светодиодов, мастера используют кружочки из картона или пластика, в которых проделываются отверстия под диоды. Если работу выполнить аккуратно, конечный результат будет иметь довольно эстетичный вид.
В виде корпуса можно использовать галогенные лампы. Этот способ не получил широкого распространения, так как отсутствует возможность закрутить светильник в патрон.
Однако такая конструкция используется для изготовления различных самодельных индикаторов.
Материалы для изготовления самодельной светодиодной люстры
Необходимые материалы для изготовления светильника
Для изготовления светодиодного светильника потребуется купить отдельные светодиоды марки НК6 или ленты. Сила тока – 100-120 мА, напряжение 3-3,3 V.
Еще нужны выпрямительные светодиоды 1N4007 или диодный мост, предохранители, которые содержаться в цоколях старых приборов.
Обязательно необходим и конденсатор, напряжение и емкость которого полностью соответствуют техническим параметрам электросхемы. Если готовая плата не используется, дополнительно нужно позаботиться о каркасе, к которому будут крепиться все детали. Материал, из которого изготовлен самодельный каркас, должен быть теплоустойчивым и не проводящим ток. Для прикрепления деталей используют суперклей или жидкие гвозди.
Сборка светильников в корпусе со светодиодными лентами
Создание светильника своими руками
Прежде чем приступать к работе, важно ознакомиться с технологией изготовления светодиодных светильников.
Светодиодные лампочки с заводской подложкой, изготовленной из алюминия, подсоединяют к радиатору. В этом случае роль радиатора играет металлический или пластмассовый корпус светильника. Если применим последний вид, поверхности нужно обклеить алюминиевым скотчем для обеспечения качественного отвода тепла. Светодиоды в схеме спаиваются последовательно.
Поскольку светодиодные лампочки с подножкой, к радиатору они крепятся с помощью термоклея.
Сборка светодиодной лампы
Для оптимальной работы самодельного устройства, лампочки должны иметь следующие характеристические особенности:
- Светодиодный поток 140 люмен.
- Напряжение питания в пределах 3,2 – 3,4 вольта.
- Длина волны около 6 500 кельвинов, свет холодный.
- Потребляемый ток – 350 миллиампер.
Также потребуется светодиодный драйвер со следующими техническими характеристиками:
- Диапазон рабочей температуры колеблется в пределах от -45 до +75 градусов по Цельсию.
- Входное напряжение от 100 до 240 вольт.
- Выходной ток силой 300 миллиампер +- 5%.
- Выходное напряжение от 18 до 46 вольт.
Для бесперебойной и качественной работы устройства учитываются два основополагающих фактора – рабочее напряжение и ток светодиода. Еще работоспособность осветительного прибора зависит от потребляемого тока светодиодом, и выходного тока у драйвера.
Светодиодные лампочки не способны контролировать потребление тока, при прямом подключении к розетке устройство просто выходит из строя. Установка драйвера обязательна.
SMARTBUY IP20-25W для LED ленты (SBL-IP20-Driver-25W)
Когда все необходимые детали готовы, можно приступать к пайке схемы. На контактах светодиода нельзя долго держать горячий паяльник, это отрицательно скажется на их работоспособности.
Драйвер также монтируется внутри корпуса. Некоторые специалисты дополнительно рекомендуют корпус со схемой накрывать рассеивательным стеклом.
Декоративные самодельные светодиодные светильники имеют широкое распространение, поскольку их облик можно разнообразить специальной бумагой с разными изображениями, нитками, бусинами и тканью. Также на корпуса можно наносить глазурь или акриловые краски. Главное, преображая самодельный светильник, не забывать о безопасности эксплуатации. Приборы устанавливают, крепят на стену или подвешивают в прихожих, гостиных и кухне.
Светодиодные светильники использовать как основной источник освещения в комнате не рекомендуется. Предпочтительнее их применять в качестве вспомогательных или в виде подсветок различных элементов декора, например, статуэток или растений.
схема сборки ленты, выбор драйвера и блока питания
Один из современных источников декоративного и основного освещения –светодиодные ленты. Но большинству таких изделий необходимо питание: постоянное напряжение DC12В, а в розетках – переменное AC220В. Однако, кроме таких устройств, производители выпускают аппараты, предназначенные для работы от бытовой сети.
Светодиодная лента 220В
Конструкция светодиодной ленты
Полоса со светодиодами представляет собой печатную плату на гибкой основе из изоляционного материала. Вдоль этой полосы нанесены две токопроводящие полоски с контактными площадками. Между полосками расположены группы из светодиодов и токоограничивающего сопротивления. Все элементы соединяются последовательно и выполнены в корпусе SMD.
В самых распространённых полосах количество светодиодов в группе – три, и напряжение питания =12В. Эти группы отделены контактными площадками с отметкой линии отреза. Разрезать полосу можно только в этих местах. Если отрезать в другом месте, то разрезанная группа работать не будет.
Размер светодиодов и их количество в метре ленты может быть различным. От этого зависят яркость света и потребляемая мощность.
Устройство светодиодной ленты
Важно! Напряжение питания светодиодов должно быть постоянным и без пульсаций, иначе свет будет мерцать, что неприятно и вредно для глаз.
Светодиодная лента на 220В
Кроме лент 12В, есть полосы, рассчитанные на 24, 48, 110 и 220В. Количество диодов в неделимых отрезках, соответственно, 6, 12, 30 и 60 штук. Без трансформатора или другого блока питания, только через выпрямитель, в розетку включаются только ленты 220В.
Собираются такие устройства из светодиодов SMD 3528, 5050, 2835, 3014 и особоярких 5630. Режутся такие полосы только отрезками по 50 сантиметров или 60 последовательно соединённых диодов. Внешне эти устройства отличаются от обычных только маркировкой.
Основные параметры LED-лент 220В
Основными параметрами этих устройств являются:
- длина минимального отрезка;
- количество диодов, мощность и ток одного метра полосы;
- защищённость от погодных условий;
- цветовая температура белого света.
Устройства с питанием от сети 220В
В полосах с питанием от 220В используются SMD светодиоды, которым необходимо питание 3,5В. Поэтому они подключаются последовательно в количестве 60 штук. Режется такая полоска на отрезки, кратные 0,5 или 1 метру.
Полосы из светодиодов SMD 5630 потребляют мощность более 10 Вт/м и монтируются на металлическое основание, отводящее тепло. Повышенная яркость получается также установкой диодов в два ряда.
Хотя питающее напряжение равно напряжению сети, при включении в розетку свет будет моргать с частотой 50Гц. Даже при использовании выпрямительного моста свет будет мерцать. Необходимо дополнительно использовать конденсатор, сглаживающий пульсации и преобразовывающий пульсирующее напряжение в постоянное.
Если есть светодиодная лента 220в RGB, то подключение производится через такой же RGB-контроллер. Распространённые модели контроллеров рассчитаны на использование с =12В, поэтому желательно приобретать эти устройства в комплекте.
Схема подключения светодиодной ленты RGB
Как подключить светодиодную ленту к 220 вольт
Подключение устройства 220В аналогично подключению обычных лент. Длина отрезанного куска, в зависимости от модели, кратна 0,5 или 1 метру.
Выпрямитель состоит из четырёх диодов и конденсатора. Его можно изготовить своими руками или приобрести готовый в магазине или на радиорынке. Без конденсатора свет будет моргать с частотой 100Гц, что, согласно СаНПИНУ, недопустимо в жилых помещениях. Такие конструкции можно устанавливать в кладовке, лестничной клетке и других вспомогательных помещениях.
Подключение к сети 220В
Особенности
У этих устройств есть преимущества перед обычными, 12 вольтовыми приборами:
- не нужен дорогой блок питания;
- небольшой ток позволяет подключаться тонкими проводами;
- в продаже есть полоски со встроенным блоком питания, которые просто включаются в розетку.
Как и у любых устройств, у этих тоже есть недостатки:
- на всех элементах присутствует высокое напряжение, что требует тщательной изоляции;
- дешёвые устройства быстро выходят из строя и их нельзя отремонтировать заменой маленького участка из трёх диодов;
- длина отрезка может быть только кратной 100 или 50 сантиметрам;
- мерцание с частотой 100Гц не заметно глазам, но утомляет и вызывает головную боль.
Способы подключить светодиодную ленту 12В к сети 220В
При включении светодиодной полосы 12В просто в розетку она сгорит. Поэтому для включения таких устройств в бытовую сеть необходимы дополнительные устройства.
Импульсный блок питания
Такие устройства есть самодельные или фабричного производства – это лучший, хотя и самый дорогой вариант. Эти блоки обеспечивают постоянную величину напряжения и отсутствие видимых пульсаций.
Более дорогие устройства опционально оснащаются регулятором яркости света (диммером) и пультом ДУ.
Интересно. В качестве источника постоянного напряжения можно использовать компьютерный блок питания.
Питание устройств от трансформатора
В этих аппаратах находятся понижающий трансформатор 220/12, выпрямительный мост и конденсатор, сглаживающие пульсирующее напряжение после диодного моста.
Такой блок питания можно изготовить самостоятельно из питающего трансформатора от старого лампового приёмника или телевизора, если намотать на нём вторичную обмотку 12В и собрать в корпусе вместе с диодным мостом и конденсатором.
Бестрансформаторный блок питания
Короткий отрезок ленты, например, для ночника или настольной лампы, можно подключить без понижающего трансформатора, через токограничивающий конденсатор. По похожей схеме собраны недорогие светодиодные лампы.
Недостаток этих конструкций в том, что если обычное питающее устройство потребляет из сети ток, приблизительно в 20 раз меньше необходимого для питания светодиодов (за счёт понижающего трансформатора), то бестрансформаторное устройство потребляет полный ток светодиодной ленты. Поэтому подключать к такому блоку длинную LED-полосу нецелесообразно.
Емкость конденсатора С1 необходима 1,4mkF на 0,1А тока ленты, а напряжение от 300В. Тип – МГБО или К73. Требуется фильтрующий конденсатор С2 ёмкостью 20mkF на 0,1А тока и напряжением 15В.
Ток потребления уменьшается при соединении кусочков ленты последовательно. В этом случае он равен току отдельного кусочка. При соединении нескольких отрезков последовательно напряжение конденсатора С2 умножается на их количество.
Для определения тока конструкции необходимо:
- Количество светодиодов в метре ленты разделить на 3. Получится число неделимых отрезков;
- Мощность метра ленты разделить на число отрезков с тремя светодиодами и на 12В – напряжение питания. Получится ток потребления одного участка;
- Умножить ток одного отрезка на количество таких участков. Получается общий ток конструкции.
Ток диодов в выпрямительном мосте определяется током устройства, а напряжение 300В.
Например, в метре ленты SMD3528 плотностью 60 диодов содержится 10 участков по три светодиода. Один участок имеет мощность 4,8Вт/10-0,48Вт и ток, 0,48Вт/12V – 0,04А. В куске длиной 0,5 метра таких участков 5 общим током 0,2А. Следовательно, емкость С1 2.8mkF или меньше, а C2 – не меньше 40mkF.
Бестрансформаторный блок питания
Важно! На всех элементах такой конструкции, в том числе и на LED-ленте, присутствует высокое напряжение.
Последовательное подключение
Последовательное подсоединение отрезков светодиодной ленты позволяет обойтись без блока питания. Это получится при соблюдении некоторых условий:
- Количество светодиодов должно делиться на 60. Это необходимо, чтобы после разрезания получилось 20 отрезков по три диода;
- Все отрезки должны быть одинаковыми, с одним количеством одинаковых светодиодов. Иначе на куске с меньшим количеством или менее яркими диодами будет большее напряжение, и он быстро выйдет из строя.
Подключается конструкция через диодный мост и фильтрующий конденсатор, аналогично безтрансформаторному блоку питания.
Подключение 12 вольтовой ленты к сети 220В
Светодиодная лента 220 вольт – это удобное осветительное устройство, которое имеет множество применений, благодаря своим преимуществам, а питание таких приборов от выпрямителя вместо блока питания позволяет сэкономить на его приобретении.
Видео
Как подключить светильник через выключатель самостоятельно.
В любой квартире время от времени может появиться необходимость в выполнении работ по электромонтажу. Среди них чаще всего приходится сталкиваться с вопросом как подключить светильник через выключатель самостоятельно. Работа эта достаточно простая и можно выполнить все действия своими руками, не обращаясь к помощи электриков.
Кроме элементарных знаний в области электротехники, важно учесть некоторые рекомендации, распространяющиеся на подготовительные работы, которые следует выполнить, перед тем как подключить светильник с выключателем, и сам процесс будущего монтажа.
До того, как вы начнете выполнять подключение, обязательно продумайте, какой будет схема размещения всех электрических приборов и аккуратно нарисуйте ее. Далее разрешается приступать к выполнению установки электрического оборудования в квартире.
Подготовительные работы
Перед тем, как приступить к выполнению всех действий следует приобрести правильный выключатель для светильника, качественную распределительную систему, изоленту и соединительные кабели.
После этого обязательно отключается напряжение всей питающей сети. Все, что для этого следует сделать – отключить автомат, затем при помощи специального прибора убедиться в том, что напряжение действительно отсутствует.
Пошаговая инструкция
- Выполните установку коробки. Сборка в ней осуществляется в в соответствии со схемой. Процесс монтажа выполняется методом скрытой проводки.
Монтаж скрытой проводки.
- Самостоятельно проведите монтаж установочной коробки и автоматического электроприбора, расположенного в силовом щитке, который обеспечивает защиту электрической цепи от замыкания.
- Все электроприборы соединяются между собой при помощи трехжильного универсального кабеля. Его сечение не должно быть меньше 1,5 мм. При помощи него соединяется распределительная коробка с подрозетником. Обязательно необходимо оставить запас для выполнения следующей разделки.
Такая таблица поможет подобрать оптимальные параметры.
- При помощи кабелей выполняется надежное закрепление приобретенной распределительной коробки, выбранных электрических аппаратов.
Подключение светильника и выключателя
Отвечая на вопрос как правильно подключить выключатель и светильник, необходимо подчеркнуть, что последовательная сборка схемы светильника с розеткой, любым выключателем происходит с обязательным соблюдением ряда условий.
Схема подключения светильника и выключателя.
Подключение даже самого простого прибора должно выполняться лишь при разрыве фазы. При выключении цепь автоматически размыкается и, как следствие, к лампе прекращается подача напряжения. Используя распределительную коробку без дополнительных подключений происходит соединение светильника с проводом, который носит название нулевого. Фаза, проходя через установленный электрический прибор предоставляет возможность управления лампой, осуществления обслуживания, последующего ремонта светильника в случае необходимости.
От автомата идет первоначальный фазный провод. Его нужно соединить с аналогичным проводом, направленным к выключателю. Другая фаза должна быть быстро соединена проводом питающего типа, который также далее подключается к лампе.
Далее визуально осматривается схема соединения лампочки с двумя светильниками / одним и на этом этапе вы должны убедиться в том, что все надежно и главное последовательно соединено. В итоге, все скрутки должны быть уплотнены при помощи любых плоскогубцев, дополнительных трубок, зафиксированы простой изолентой. Все кабели, которые использовались для установки и подключения понадобятся уже в дальнейшей работе и поэтому складываются в коробке максимально аккуратно.
Важный момент. Проводка должна быть размещена в строгом соответствии с правилами. Сначала к коробке подводится главный питающий кабель, а потом другие провода, которые идут к лампочке.
Как итог, все рабочие жилы любой лампы будут соединенными через приобретенный выключатель с проводкой в помещении.
Так легко решается проблема того, как подключить два к одному выключателю, если у него лишь одна клавиша. При этом действие данной схемы распространяется в том числе на подключение двухклавишного выключатель на два светильника.
Схема подключения двойного выключателя
Человек, который ранее не сталкивался с вопросом самостоятельного подключения торшера с выключателем на корпусе может испытывать при выполнении работ некоторые сложности. Поэтому перед установкой стоит внимательно прочитать прилагаемую инструкцию о том, как выполняется подключение к светильнику выключателя во избежание различных ошибок, которые допускают люди, впервые решившие заняться электропроводкой самостоятельно.
Как подключить двухклавишный выключатель.
Первоначально устанавливается и подключается к защитному устройству основной трехжильный кабель питающего типа. Один провод обязательно должен быть подключен к системе действующего заземления, в том случае если ранее такая система была предусмотрена. Не забудьте обесточить всю электрическую сеть в помещении. Это выполняется электриками перед тем, как они приступают к выполнению работ. От устройства защитного типа проводник далее направляется в распределительную коробку, затем аккуратно он подводится к выбранному выключателю, состоящему из двух клавиш.
Следите за тем, чтобы при запасах проводов обязательно в каждой из точек соединения они были 10 см и более. После этого заводится каждый из проводов прямо к светильнику.
Обязательно концы всех используемых при монтаже проводов очищаются от изоляции и, учитывая цвет изоляции токоведущих жил, аккуратно соединяются. В завершение установки проверяется верно ли были выполнены подключения.
Как подключить светильник через выключатель от розетки
Отвечая на вопрос, как происходит подключение светильника через выключатель от розетки стоит отметить, что используется классическая схема: фазный провод самостоятельно необходимо прервать, нулевой провод подключить к любому источнику, который был выбран для освещения.
Схема подключения выключателя от розетки.
Пошаговая инструкция
- В не зависимости от того, в вашем доме 1 или 2 выключателя, первое, что следует сделать – это обесточить домашнюю электросеть.
- Осуществляется установка коробки. В нее заводятся все имеющиеся жилы, подведенные ранее к электроприбору, а также провода от розетки, монтаж которой был выполнен.
- Одна жила от установленного электроприбора должна быть подключена надежно к нулевому контакту, а фаза соответственно заходит уже к выключателю. Вторая фаза распределительной коробки в любом случае подводится вами к другому контакту прибора. Сделать это следует так, чтобы получился разрыв. Включение, как и любое выключение питания у цепи является следствием разрыва.
Решив установить дома светодиодный светильник большое значение при монтаже будет играть верный выбор сечения кабеля. На выбор сечения будет оказывать влияние метод, выбранный для прокладки. Если вы хотите добиться желаемого результата в максимально короткий срок, то желательно пользоваться при выполнении работ таблицей.
Итоги
Для условий управления различным освещением в помещении используются отличные друг от друга выключатели света. Выбор схемы конкретного подключения первоочередно зависит исключительно существующих конструктивных особенностей. Самыми популярными являются модели, которые обеспечивают замыкание / размыкание гальванической цепи.
Список электрических схем светодиодов и световых приборов
Взаимодействие с другими людьми Ночник на батарейкахЭта схема может использоваться в качестве ночника, когда розетка электросети недоступна для подключения когда-либо работающего небольшого устройства с неоновой лампой. Чтобы обеспечить минимальное потребление заряда батареи, используется одна ячейка 1,5 В и простые удвоители напряжения приводят в действие пульсирующий сверхяркий светодиод: потребляемый ток составляет менее 500 мкА. Дополнительный фоторезистор отключает цепь при дневном свете или при включении комнатных ламп, что позволяет дополнительно экономить ток.Это устройство будет непрерывно работать около 3 месяцев на обычном элементе размера AA или около 6 месяцев на элементе щелочного типа, но при добавлении схемы фоторезистора время работы будет удвоено или, что весьма вероятно, втрое. IC1 генерирует прямоугольную волну с частотой около 4 Гц. C2 и D2 образуют удвоители напряжения, необходимые для повышения напряжения батареи до пикового значения, способного управлять светодиодом …. [подробнее]
Схема танцующих светодиодовБазовая схема включает до десяти светодиодов последовательно, следуя ритму музыки или речи, улавливаемому маленьким микрофоном.Расширенная версия может управлять до десяти полос, состоящих из пяти светодиодов каждая, при напряжении питания 9 В. IC1A усиливает примерно в 100 раз аудиосигнал, улавливаемый микрофоном, и управляет IC1B, действующим как детектор пикового напряжения. Его выходные пики синхронны с пиками входного сигнала и часов IC2, кольцевого декадного счетчика, способного последовательно управлять до десяти светодиодов …. [подробнее]
Свет любезностиЭта схема предназначена для того, чтобы позволить пользователю выключить лампу с помощью выключателя, расположенного далеко от кровати, что дает ему достаточно времени, чтобы лечь, прежде чем лампа действительно выключится…. [подробнее]
Схема регулятора яркости для небольших ламп и светодиодовЭто устройство было разработано по запросу; для управления силой света четырех ламп накаливания (т. е. кольцевого осветителя) с питанием от двух батареек AA или AAA, для съемки крупным планом с помощью цифровой камеры. Очевидно, что его можно использовать по-другому, по желанию. IC1 генерирует прямоугольный сигнал частотой 150 Гц с переменной скважностью. Когда курсор P1 полностью повернут к D1, выходные положительные импульсы, появляющиеся на выводе 3 IC1, очень узкие. … [подробнее]
Темный активированный светодиод или мигалка лампыВ этой схеме используется довольно необычный мультивибратор Bowes / White с эмиттерной связью. Частота колебаний составляет около 1 Гц и задается значением C1. Светодиод начинает мигать, когда фоторезистор почти не горит. Начало мигания можно установить путем подстройки R2 …. [подробнее]
Аварийный свет, управляемый ИС, с цепью зарядного устройстваВот принципиальная схема управляемого ИС аварийного освещения с зарядным устройством или просто инвертора переменного тока от 12 В до 220 В.Показанная здесь схема является схемой аварийного освещения, управляемой ИС. Его основные особенности: автоматическое включение света при сбое сети и зарядное устройство с защитой от перезарядки. Когда сеть отсутствует, реле RL2 находится в обесточенном состоянии, питая аккумуляторную батарею от секции инвертора через свои замыкающие контакты и переключатель S1 …. [подробнее]
Принципиальная схема двух мигающих светодиодовВот принципиальная схема двух мигающих светодиодов для различных приложений (например, для создания моделей) и для отдыха. Регулируемая скорость мигания с помощью двух потенциометров. Это совокупность нескольких активных и пассивных компонентов. Эта схема очень проста в сборке (хорошая идея для новичков) и может быть построена на печатной плате общего назначения или на плате Veroboard. Полное изображение и схема этого проекта показаны ниже … [подробнее]
Игра в кости со светодиодамиКаждый уважающий себя домашний мастер изготавливает электронные кубики со светодиодами в виде точек. Тогда вам больше не нужно бросать кости — просто нажмите кнопку.Электроника также гарантирует, что никто не сможет попытаться улучшить свою удачу, играя в кости. Жаль для неудачников! Эта схема доказывает, что электронный кристалл, построенный с использованием стандартных компонентов, можно сделать довольно компактным. Ключевым компонентом здесь является цифровой счетчик типа 4060 (IC1) …. [подробнее]
Схема цепи заднего фонаря безопасности велосипедаЭта схема была разработана для обеспечения четко видимого света, образованного 13 высокоэффективными мигающими светодиодами, расположенными в псевдовращающемся порядке. Благодаря низкому напряжению, низкому разряду батареи и небольшому размеру устройство подходит для установки на велосипедах в качестве фонаря или для ношения на бегунах / ходунках. IC1 — это CMos-версия микросхемы 555 IC, подключенная как нестабильный мультивибратор, генерирующий прямоугольную волну с коэффициентом заполнения 50% на частоте около 4 Гц …. [подробнее]
12 В диммерДиммер довольно необычен в караване или на лодке. Здесь мы расскажем, как это сделать. Поэтому, если вы хотите иметь возможность регулировать настроение, когда развлекаете друзей и знакомых, эта схема позволяет вам это сделать.Спроектировать диммер на 12 В — непростое дело. Диммеры, которые вы найдете у себя дома, предназначены для работы от переменного напряжения и используют это переменное напряжение в качестве основной характеристики для своей работы. Поскольку теперь нам нужно начать с 12 В постоянного тока, мы должны сами генерировать переменное напряжение … [подробнее]
Цепь мигающих ламп переменного тока 220 ВЭта схема предназначена как надежная замена термически активируемым выключателям, используемым для мигания елочных ламп. Устройство, состоящее из Q1, Q2 и соответствующих резисторов, запускает SCR. Сроки обеспечивают R1, R2 и C1. Чтобы изменить частоту мигания, не изменяйте значения R1 и R2: вместо этого установите значение C1 от 100 до 2200 мкФ …. [подробнее]
Ультраяркая светодиодная лампаЭта сверхяркая светодиодная лампа белого цвета работает от сети переменного тока 230 В с минимальным энергопотреблением. Его можно использовать для освещения VU-метров, SWR-метров и т.д. Сверхъяркие светодиоды, доступные на рынке, стоят от 8 до 15 рупий.Эти светодиоды излучают яркий белый свет 1000-6000 мКд, как сварочная дуга, и работают от напряжения 3 В, 10 мА. Их максимальное напряжение составляет 3,6 вольт, а сила тока — 25 мА. При обращении со светодиодами следует соблюдать антистатические меры … [подробнее]
Двухпроводной пилотный фонарьЭта схема разрабатывается по запросу и может быть полезна тем, кто хочет, например, чтобы красный светодиод светился, когда прибор включен, и зеленый светодиод, когда тот же прибор выключен. Любой прибор, работающий от сети, может контролироваться этой схемой при условии, что для SW1 используется подходящий сетевой выключатель, способный выдерживать ток полной нагрузки. Когда SW1 замкнут, нагрузка и D4 находятся под напряжением, Q1 насыщается и замыкает D3, таким образом предотвращая его освещение …. [подробнее]
Солнечная лампа с использованием PR4403PR4403 является усовершенствованным родственником драйвера светодиода PR4402 40 мА. У него есть дополнительный вход под названием LS, который можно перевести в низкий уровень для включения светодиода.Это позволяет очень легко построить автоматическую светодиодную лампу с использованием аккумуляторной батареи и солнечного модуля. Вход LS подключен непосредственно к солнечному элементу, что позволяет использовать модуль в качестве светового датчика одновременно с зарядкой аккумулятора через диод. С наступлением темноты падает и напряжение на солнечном модуле: когда оно ниже порогового значения, PR4403 включается. В течение дня аккумулятор заряжается, и при включенном светодиоде драйвер потребляет всего 100 мкА …. [подробнее]
Принципиальная схема плавного миганияОбычные светодиодные мигалки внезапно включают и выключают светодиод, что через некоторое время может немного раздражать.Схема, показанная здесь, более щадящая для глаз: интенсивность света меняется очень медленно и синусоидально, помогая создать расслабленное настроение. На схеме изображен фазосдвигающий генератор с регулируемым источником тока на выходе. Схема способна последовательно управлять двумя светодиодами, не влияя на ток …. [подробнее]
Переносной мигалкой лампыПеред вами портативный мощный мигающий электрический светильник накаливания.По сути, это двойной мигающий индикатор (чередующийся мигатель), который может обрабатывать две отдельные нагрузки 230 В переменного тока (лампы L1 и L2). Схема полностью транзисторная и работает от батарей. Схема автономного генератора реализована на двух маломощных и малошумящих транзисторах Т1 и Т2. Один из двух транзисторов всегда в проводящем состоянии, а другой блокируется …. [подробнее]
Один из девяти секвенсоровЭта новая схема использует мигающий светодиод как вход часов для декадного счетчика 4017.Типичные светодиоды (например, DSE cat Z-4044) мигают с частотой около 2 Гц, поэтому выходы Q0-Q9 будут циклически повторяться с этой частотой. Например, Q0 включится на полсекунды, затем Q1, затем Q2 и т. Д. До Q8, затем он снова начнется с Q0. Можно использовать до девяти выходов. Если вам нужно меньше выходов, подключите более ранний выход к MR, контакт 15. Если MR не используется, подключите его к 0V …. [подробнее]
Многоцветный светодиод HDБольшинство корпусов ПК имеют только один светодиод для индикации доступа к жесткому диску, при этом светодиод подключается к материнской плате через двухконтактный разъем.Однако этот индикатор работает только с дисками IDE, и если установлен контроллер диска SCSI, его активность не будет заметно заметна. Эта небольшая схема решает эту проблему с помощью многоцветного светодиода. Светодиод активности интерфейса IDE обычно управляется подключенным устройством через один или несколько каскадов с открытым коллектором …. [подробнее]
Схема светодиода, работающего от сетиВот простая и мощная светодиодная схема, которая может работать напрямую от сети переменного тока с напряжением 100 В и 230 В переменного тока.Схема может использоваться как локатор сетевого питания или ночник и т. Д. Резистор R1, R2 и конденсатор C1 обеспечивают необходимое ограничение тока. Схема достаточно защищена от скачков и скачков напряжения …. [подробнее]
Цепь светодиода или лампы миганияЭта схема была разработана для обеспечения того, чтобы лампы постоянного света, уже подключенные к цепи, стали мигать. Просто вставьте цепь между существующей лампой и отрицательным питанием.Это устройство особенно подходит для автомобильных или панельных контрольных ламп, оно может управлять лампами мощностью до 10 Вт . … [подробнее]
Светодиод или лампа Pulsar CircuitЭта схема управляет светодиодом в импульсном режиме, то есть светодиод выходит из выключенного состояния, постепенно загорается, затем постепенно гаснет и т. Д. Этот режим работы обеспечивается генератором треугольной волны, образованным двумя операционными усилителями, содержащимися в очень дешевом 8-контактном разъеме. Корпус DIL IC. Q1 обеспечивает текущую буферизацию, чтобы получить лучшую нагрузку на привод.R4 и C1 — это компоненты синхронизации: с использованием значений, указанных в списке деталей, общий период составляет около 4 секунд …. [подробнее]
Светодиодный сигнализатор высокой интенсивностиЭта схема была разработана как сигнальная лампа для предупреждения участников дорожного движения об опасных ситуациях в темноте. В качестве альтернативы он может действовать как велосипедный фонарь (в соответствии с правилами дорожного движения и законодательством). Белые светодиоды рекомендуется использовать только в том случае, если цепь используется в качестве переднего велосипедного фонаря (т.е.е. для освещения дороги) и красные светодиоды только при использовании в качестве заднего фонаря. В течение дня две солнечные батареи на 1,6 В заряжают две батареи AA. В темноте напряжение солнечных элементов исчезает, и батареи автоматически питают цепь. Частота мигания составляет примерно одну в секунду, а время включения светодиода составляет примерно 330 мс …. [подробнее]
Мигающие глазаЭта схема была специально разработана как забавный гаджет на Хэллоуин. Его следует разместить сзади значка или булавки с типичным изображением персонажа Хэллоуина, например.г. тыква, череп, черная кошка, ведьма, привидение и т. д. Два светодиода закреплены на месте глаз персонажа и будут более или менее ярко светиться, следуя ритму музыки или речи, улавливаемой из окружения маленьким микрофоном. Два транзистора обеспечивают необходимое усиление и приводят в действие светодиоды …. [подробнее]
Принципиальная схема затухающих светодиодовЭта схема управляет двумя светодиодными полосами в импульсном режиме, т.е. одна светодиодная лента выходит из выключенного состояния, постепенно загорается, затем постепенно гаснет и т. Д.в то время как другая светодиодная лента делает наоборот. На каждую полосу можно собрать от 2 до 5 светодиодов при напряжении питания 9 В. Два операционных усилителя, входящие в состав IC1, образуют генератор треугольных волн … [подробнее]
Автоматический аварийный свет малой мощностиВот аварийный свет на основе белых светодиодов, который имеет следующие преимущества. 1-Он очень яркий из-за использования белых светодиодов. 2-Свет включается автоматически при сбое питания и выключается при возобновлении подачи питания.3-Имеет собственное зарядное устройство. Когда аккумулятор полностью заряжен, зарядка автоматически прекращается. Блок питания зарядного устройства построен на трехконтактном регулируемом стабилизаторе IC LM317 (IC1), а секция драйвера светодиода построена на транзисторе BD140 (Q2) …. [подробнее]
12-ступенчатый неоновый секвенсор (NE-2 / NE-51)Эта схема аналогична светодиодным часам с 12 неоновыми индикаторными лампами вместо светодиодов. Он работает от 2 ячеек Ni-CAD большой емкости (2.5 вольт), которые сохранят его на пару недель. Высокое напряжение (70 В) для неоновых ламп получается от небольшого импульсного источника питания с использованием прямоугольного генератора Шмитта 74HC14, переключающего транзистора высокого напряжения и индуктора высокой добротности 10 мГн …. [подробнее]
Двухпроводная сигнальная лампаЭта схема была разработана для обеспечения того, чтобы лампы постоянного света, уже подключенные к цепи, стали мигать. Просто вставьте цепь между существующей лампой и отрицательным питанием.Это устройство особенно подходит для автомобильных или панельных контрольных ламп, оно может управлять лампами мощностью до 10 Вт …. [подробнее]
Тройной стробоскопЭта схема позволяет наблюдать движение между другими стробоскопами. Генерация прямоугольного сигнала основана на NE555. Эта схема требует маломощного источника питания, который состоит из простого трансформатора TR1, традиционного выпрямительного моста и стабилитрона …. [подробнее]
Диммер света TRIACЭта небольшая схема может использоваться для приглушенного света мощностью до 350 Вт.В нем используется простая, стандартная схема TRIAC, которая, по моему опыту, выделяет очень мало тепла. Обратите внимание, что эту схему нельзя использовать с люминесцентными лампами …. [подробнее]
Объяснение 4 простых схем бестрансформаторного источника питания
В этом посте мы обсуждаем 4 простых в сборке, компактных простых схемах бестрансформаторного источника питания. Все схемы, представленные здесь, построены с использованием теории емкостного реактивного сопротивления для понижения входного напряжения сети переменного тока.Все представленные здесь конструкции работают независимо без трансформатора или без трансформатора .
Концепция бестрансформаторного источника питания
Как следует из названия, бестрансформаторная схема источника питания обеспечивает низкий постоянный ток от сети высокого напряжения переменного тока без использования трансформатора или катушки индуктивности.
Он работает за счет использования высоковольтного конденсатора для снижения сетевого переменного тока до необходимого более низкого уровня, который может подходить для подключенной электронной схемы или нагрузки.
Характеристики напряжения этого конденсатора выбраны таким образом, чтобы его пиковое значение действующего напряжения было намного выше, чем пиковое напряжение сети переменного тока, чтобы гарантировать безопасную работу конденсатора. Пример конденсатора, который обычно используется в цепях бестрансформаторного питания, показан ниже:
Этот конденсатор подключается последовательно с одним из входов сети, предпочтительно с фазовой линией переменного тока.
Когда сетевой переменный ток поступает на этот конденсатор, в зависимости от номинала конденсатора, реактивное сопротивление конденсатора вступает в действие и ограничивает сетевой переменный ток от превышения заданного уровня, как указано номиналом конденсатора.
Однако, несмотря на то, что ток ограничен, напряжение нет, поэтому, если вы измеряете выпрямленный выход бестрансформаторного источника питания, вы обнаружите, что напряжение равно пиковому значению сетевого переменного тока, что составляет около 310 В, и это может насторожить любого нового любителя.
Но поскольку конденсатор может значительно снизить уровень тока, с этим высоким пиковым напряжением можно легко справиться и стабилизировать, используя стабилитрон на выходе мостового выпрямителя.
Мощность стабилитрона должна выбираться соответствующим образом в соответствии с допустимым уровнем тока конденсатора.
ВНИМАНИЕ: прочтите предупреждающее сообщение в конце сообщения
Преимущества использования схемы бестрансформаторного источника питания
Идея недорогая, но очень эффективная для приложений, требующих малой мощности для работы.
Использование трансформатора в источниках питания постоянного тока, вероятно, довольно распространено, и мы много слышали об этом.
Однако одним из недостатков использования трансформатора является то, что вы не можете сделать его компактным.
Даже если текущие требования к вашей схеме невысоки, вы должны включить тяжелый и громоздкий трансформатор, что сделает работу действительно громоздкой и беспорядочной.
Схема бестрансформаторного источника питания, описанная здесь, очень эффективно заменяет обычный трансформатор для приложений, требующих тока ниже 100 мА.
Здесь на входе используется высоковольтный металлизированный конденсатор для необходимого понижения напряжения сети, а предыдущая схема представляет собой не что иное, как простые мостовые конфигурации для преобразования пониженного переменного напряжения в постоянное.
Схема, показанная на схеме выше, представляет собой классическую конструкцию, может использоваться как источник питания постоянного тока 12 В для большинства электронных схем.
Однако, обсудив преимущества вышеупомянутой конструкции, стоит обратить внимание на несколько серьезных недостатков, которые может включать эта концепция.
Недостатки схемы бестрансформаторного источника питания
Во-первых, схема не может выдавать сильноточные выходные сигналы, но это не будет проблемой для большинства приложений.
Еще один недостаток, который, безусловно, требует некоторого внимания, заключается в том, что данная концепция не изолирует цепь от опасных потенциалов сети переменного тока.
Этот недостаток может иметь серьезные последствия для конструкций с оконечными выводами или металлическими шкафами, но не имеет значения для устройств, у которых все покрыто непроводящим корпусом.
Следовательно, начинающие любители должны работать с этой схемой очень осторожно, чтобы избежать поражения электрическим током. И последнее, но не менее важное: вышеупомянутая схема позволяет скачкам напряжения проходить через нее, что может вызвать серьезное повреждение цепи под напряжением и самой цепи питания.
Однако в предложенной простой схеме бестрансформаторного источника питания этот недостаток разумно устранен путем введения различных типов стабилизирующих каскадов после мостового выпрямителя.
Этот конденсатор заземляет мгновенные скачки высокого напряжения, таким образом эффективно защищая связанную с ним электронику.
Как работает схема
Работу этого источника питания без преобразования можно понять по следующим пунктам:
- При включении сетевого входа переменного тока конденсатор C1 блокирует вход сетевого тока и ограничивает его до более низкого уровня. уровень, определяемый значением реактивного сопротивления C1.Здесь можно приблизительно принять значение около 50 мА.
- Однако напряжение не ограничено, и поэтому полные 220 В или что-либо еще на входе может достигать следующей ступени мостового выпрямителя.
- Мостовой выпрямитель выпрямляет эти 220 В постоянного тока до более высоких 310 В постоянного тока из-за преобразования среднеквадратичного значения в пиковое значение сигнала переменного тока.
- Это 310 В постоянного тока мгновенно понижается до постоянного низкого уровня с помощью следующего каскада стабилитрона, который шунтирует его на значение стабилитрона. Если используется стабилитрон 12 В, он станет 12 В и так далее.
- C2 наконец фильтрует 12 В постоянного тока с пульсациями в относительно чистый 12 В постоянного тока.
1) Базовая бестрансформаторная конструкция
Давайте попробуем более подробно разобраться в функциях каждой из частей, используемых в приведенной выше схеме:
- Конденсатор C1 становится наиболее важной частью схемы, так как он является единственным который снижает высокий ток из сети 220 В или 120 В до желаемого более низкого уровня, чтобы соответствовать выходной нагрузке постоянного тока. Как показывает практика, каждая отдельная микрофарада этого конденсатора будет обеспечивать выходную нагрузку током около 50 мА.Это означает, что 2 мкФ обеспечит 100 мА и так далее. Если вы хотите узнать расчеты более точно, вы можете обратиться к этой статье.
- Резистор R1 используется для обеспечения пути разряда для высоковольтного конденсатора C1 всякий раз, когда цепь отключена от сетевого входа. Потому что C1 может сохранять в себе сетевой потенциал 220 В, когда он отсоединен от сети, и может вызвать удар высоким напряжением у любого, кто дотронется до контактов вилки. R1 быстро разряжает C1, предотвращая любую подобную аварию.
- Диоды D1 — D4 работают как мостовой выпрямитель для преобразования слаботочного переменного тока от конденсатора C1 в слаботочный постоянный ток. Конденсатор C1 ограничивает ток до 50 мА, но не ограничивает напряжение. Это означает, что постоянный ток на выходе мостового выпрямителя является пиковым значением 220 В переменного тока. Это можно рассчитать как: 220 x 1,41 = 310 В постоянного тока приблизительно . Итак, у нас на выходе моста 310 В, 50 мА.
- Однако напряжение 310 В постоянного тока может быть слишком высоким для любого устройства с низким напряжением, кроме реле.Следовательно, стабилитрон соответствующего номинала используется для переключения 310 В постоянного тока на желаемое более низкое значение, такое как 12 В, 5 В, 24 В и т. Д., В зависимости от характеристик нагрузки.
- Резистор R2 используется как токоограничивающий резистор. Вы можете почувствовать, когда C1 уже существует для ограничения тока, зачем нам R2. Это связано с тем, что во время периодов мгновенного включения питания, то есть, когда входной переменный ток впервые подается на схему, конденсатор C1 просто действует как короткое замыкание в течение нескольких миллисекунд.Эти несколько начальных миллисекунд периода включения позволяют полному высокому току 220 В переменного тока войти в цепь, чего может быть достаточно, чтобы разрушить уязвимую нагрузку постоянного тока на выходе. Чтобы этого не произошло, введем R2. Однако лучшим вариантом могло бы быть использование NTC вместо R2.
- C2 — это конденсатор фильтра, который сглаживает пульсации 100 Гц от выпрямленного моста до более чистого постоянного тока. Хотя на схеме показан высоковольтный конденсатор 10uF 250V, вы можете просто заменить его на 220uF / 50V из-за наличия стабилитрона.
Схема печатной платы для объясненного выше простого бестрансформаторного источника питания показана на следующем изображении. Обратите внимание, что я также включил место для MOV на печатной плате со стороны входа сети.
Пример схемы для приложения светодиодного декоративного освещения
Следующая схема бестрансформаторного или емкостного источника питания может использоваться в качестве схемы светодиодной лампы для безопасного освещения второстепенных светодиодных цепей, таких как маленькие светодиодные лампы или светодиодные гирлянды.
Идею запросил г-н.Jayesh:
Требования к спецификации
Струна состоит из примерно 65-68 светодиодов с напряжением 3 В, соединенных последовательно примерно на расстоянии, скажем, 2 фута, такие 6 струн связаны вместе, чтобы образовать одну струну. расположение лампы составляет 4 дюйма в окончательной веревке. итак всего 390 — 408 светодиодных лампочек в финальной тросе.
Итак, пожалуйста, предложите мне наилучшую схему драйвера для работы.
1) одна строка из 65-68 строк.
или
2) полная веревка из 6 ниток вместе.
у нас есть еще одна веревка из 3-х струн. Струна состоит из примерно 65-68 светодиодов с напряжением 3 В, соединенных последовательно примерно на расстоянии, скажем, 2 фута, такие 3 струны связаны вместе, чтобы образовать одну струну, поэтому расположение лампочки получается, что длина последней веревки составляет 4 дюйма. итак всего 195-204 светодиодных лампочки в готовом тросе.
Итак, пожалуйста, предложите мне наилучшую схему драйвера для работы.
1) одна строка из 65-68 строк.
или
2) полная веревка из 3-х струн вместе.
Пожалуйста, предложите лучшую надежную схему с устройством защиты от перенапряжения и посоветуйте, какие дополнительные устройства необходимо подключить для защиты схем.
, и обратите внимание, что на принципиальных схемах указаны значения, необходимые для того же, поскольку мы не являемся техническим специалистом в этой области.
Схема
Схема драйвера, показанная ниже, подходит для управления любой цепочкой светодиодных ламп , имеющей менее 100 светодиодов (для входа 220 В), каждый светодиод рассчитан на 20 мА, 3,3 В, 5 мм светодиоды:
Здесь вход конденсатор 0,33 мкФ / 400 В определяет количество тока, подаваемого на светодиодную цепочку. В этом примере это будет около 17 мА, что примерно соответствует выбранной светодиодной цепочке.
Если один драйвер используется для большего количества параллельных цепочек светодиодов 60/70, то просто указанное значение конденсатора может быть пропорционально увеличено для поддержания оптимального освещения светодиодов.
Следовательно, для двух параллельно включенных последовательностей требуемое значение будет 0,68 мкФ / 400 В, для трех строк вы можете заменить его на 1 мкФ / 400 В. Аналогично, для 4-х струн его необходимо увеличить до 1,33 мкФ / 400 В и так далее.
Важно : Хотя я не показал ограничивающий резистор в конструкции, было бы неплохо включить резистор 33 Ом 2 Вт последовательно с каждой цепочкой светодиодов для дополнительной безопасности.Его можно было вставить где угодно последовательно с отдельными струнами.
ПРЕДУПРЕЖДЕНИЕ: ВСЕ ЦЕПИ, УКАЗАННЫЕ В ДАННОЙ СТАТЬЕ, НЕ ИЗОЛИРОВАНЫ ОТ СЕТИ переменного тока, ПОЭТОМУ ВСЕ СЕКЦИИ ЦЕПИ ОПАСНЫ ПРИ ПОДКЛЮЧЕНИИ К СЕТИ AC …….. Теперь давайте посмотрим, как обычный емкостной источник питания может быть преобразован в бестрансформаторный источник питания со стабилизированным напряжением или переменным напряжением, применимый практически ко всем стандартным электронным нагрузкам и схемам.Идея была предложена г-ном Чанданом Мэйти. Если вы помните, я уже общался с вами раньше с комментариями в вашем блоге. Бестрансформаторные схемы действительно хороши, я протестировал пару из них и использовал светодиоды мощностью 20 Вт, 30 Вт. Теперь я пытаюсь добавить контроллер, вентилятор и светодиоды вместе, поэтому мне нужен двойной источник питания. Примерная спецификация: Номинальный ток 300 мAP1 = 3.3-5 В 300 мА (для контроллера и т. Д.) P2 = 12-40 В (или более высокий диапазон), 300 мА (для светодиода) Но я не могу заморозить способ получения 3,3 В без использования дополнительного конденсатора. 1. Можно ли поставить вторую схему с выхода первой? 2. Или второй мост TRIAC, который нужно разместить параллельно первому, после конденсатора, чтобы получить 3.3-5V Буду рад, если вы любезно поможете. Спасибо, Функцию различных компонентов, используемых на различных этапах показанной выше схемы с управляемым напряжением, можно понять со следующих точек: Напряжение сети выпрямляется четырьмя 1N4007 диоды и фильтруется конденсатором 10 мкФ / 400 В. Выходной сигнал на 10 мкФ / 400 В теперь достигает около 310 В, что является пиковым выпрямленным напряжением, достигаемым от сети. Сеть делителей напряжения, сконфигурированная на основании TIP122, обеспечивает снижение этого напряжения до ожидаемого уровня или требуемого уровня на выходе источника питания. Вы также можете использовать MJE13005 вместо TIP122 для большей безопасности. Если требуется 12 В, потенциометр 10 кОм может быть установлен для достижения этого на эмиттере / земле TIP122. Конденсатор 220 мкФ / 50 В гарантирует, что во время включения база получает мгновенное нулевое напряжение, чтобы поддерживать ее в выключенном состоянии и защищать от первоначального скачка напряжения. Катушка индуктивности также гарантирует, что в течение периода включения катушка обеспечивает высокое сопротивление и предотвращает попадание любого броска тока внутрь цепи, предотвращая возможное повреждение цепи. Для достижения 5 В или любого другого прилагаемого пониженного напряжения можно использовать регулятор напряжения, такой как показанная 7805 IC. Вышеупомянутая схема, использующая эмиттерный повторитель, может быть дополнительно улучшена за счет применения источника питания истокового повторителя МОП-транзистора вместе с дополнительным каскадом регулирования тока с использованием транзистора BC547. Полную принципиальную схему можно увидеть ниже: Третий интерес объясняет важность Обнаружение перехода через нуль в емкостных бестрансформаторных источниках питания для полной защиты от бросков импульсных токов при включении сетевого выключателя. Идея была предложена г-ном Фрэнсисом. Я с большим интересом читал статьи о бестрансформаторных источниках питания на вашем сайте, и, если я правильно понимаю, основная проблема — это возможный пусковой ток в цепи при включении, и это вызвано тем, что включение не всегда происходит при нулевом напряжении цикла (переход через ноль). Я новичок в электронике, и мои знания и практический опыт очень ограничены, но если проблема может быть решена, если реализован переход через нуль, почему бы не использовать компонент перехода через нуль для управления им, например, оптотриак с переходом через ноль. Входная сторона Optotriac имеет малую мощность, поэтому можно использовать резистор малой мощности для понижения сетевого напряжения для работы Optotiac. Поэтому на входе оптотриака конденсатор не используется. Конденсатор подключен к выходу, который будет включаться симистором, который включается при переходе через нуль. Если это применимо, это также решит проблемы с высокими требованиями к току, поскольку Optotriac, в свою очередь, может без каких-либо проблем управлять другим более высоким током и / или напряжением TRIAC. В цепи постоянного тока, подключенной к конденсатору, больше не должно быть проблем с пусковым током. Было бы неплохо узнать ваше практическое мнение и спасибо, что прочитали мою почту. С уважением, Как справедливо указано в приведенном выше предположении, вход переменного тока без контроля перехода через нуль может быть основной причиной броска импульсного тока в емкостных бестрансформаторных источниках питания. Сегодня, с появлением сложных оптоизоляторов драйвера симистора, переключение сети переменного тока с контролем перехода через нуль больше не является сложной задачей и может быть легко реализовано с использованием этих устройств. Драйверы симисторов серии MOC представлены в виде оптопар и являются специалистами в этом отношении и могут использоваться с любым симистором для управления сетью переменного тока посредством обнаружения и контроля перехода через ноль. Драйверы симисторов серии MOC включают в себя MOC3041, MOC3042, MOC3043 и т. Д., Все они почти идентичны по своим рабочим характеристикам с небольшими различиями в размах напряжений, и любой из них может быть использован для предлагаемого приложения контроля перенапряжения в емкостных источниках питания. Обнаружение и выполнение перехода через ноль обрабатываются внутри этих блоков оптических драйверов, и нужно только настроить силовой симистор с ним для наблюдения за предполагаемым управляемым срабатыванием при переходе через ноль интегральной схемы симистора. Прежде чем исследовать схему бестрансформаторного питания симистора без перенапряжения с использованием концепции управления переходом через ноль, давайте сначала вкратце разберемся, что такое переход через нуль, и связанные с ним особенности. Мы знаем, что потенциал сети переменного тока состоит из циклов напряжения, которые возрастают и падают с изменением полярности от нуля до максимума и наоборот по заданной шкале.Например, в нашей сети переменного тока 220 В напряжение переключается с 0 на пиковое значение +310 В) и обратно до нуля, затем идет вниз от 0 до -310 В и обратно к нулю, это происходит непрерывно 50 раз в секунду, составляя переменный ток 50 Гц. цикл. Когда сетевое напряжение близко к мгновенному пику цикла, то есть около 220 В (для 220 В) на входе сети, оно находится в самой сильной зоне с точки зрения напряжения и тока, и если происходит включение емкостного источника питания в этот момент можно ожидать, что все 220 В выйдет из строя через источник питания и связанную с ним уязвимую нагрузку постоянного тока.Результатом может быть то, что мы обычно наблюдаем в таких блоках питания … то есть мгновенное сгорание подключенной нагрузки. Вышеупомянутые последствия обычно наблюдаются только в емкостных бестрансформаторных источниках питания, потому что конденсаторы имеют характеристики короткого замыкания в течение доли секунды при воздействии напряжения питания, после чего они заряжаются и настраиваются до заданного значения. выходной уровень Возвращаясь к проблеме пересечения нуля в сети, в обратной ситуации, когда сеть приближается или пересекает нулевую линию своего фазового цикла, ее можно рассматривать как самую слабую зону с точки зрения тока и напряжения, и можно ожидать, что любое устройство, включенное в этот момент, будет полностью безопасным и не подверженным скачкам напряжения. Следовательно, если емкостный источник питания включается в ситуациях, когда вход переменного тока проходит через нулевую фазу, мы можем ожидать, что выходной сигнал источника питания будет безопасным и не будет иметь импульсного тока. Схема, показанная выше, использует драйвер оптоизолятора симистора MOC3041 и сконфигурирована таким образом, что при каждом включении питания он срабатывает и инициирует подключенный симистор только во время первого перехода фазы переменного тока через ноль, а затем поддерживает нормально включенным переменный ток до тех пор, пока питание не будет отключено и снова не включено. Обращаясь к рисунку, мы можем увидеть, как крошечный 6-контактный MOC 3041 IC соединен с симистором для выполнения процедур. Вход на симистор подается через высоковольтный токоограничивающий конденсатор 105/400 В, нагрузку можно увидеть, подключенную к другому концу источника через конфигурацию мостового выпрямителя для достижения чистого постоянного тока на предполагаемой нагрузке, которая может светодиод. При включении питания сначала симистор остается выключенным (из-за отсутствия привода затвора), как и нагрузка, подключенная к мостовой сети. Напряжение питания, полученное на выходе конденсатора 105/400 В, достигает внутреннего ИК-светодиода через контакт 1/2 оптической микросхемы. Этот вход контролируется и обрабатывается внутри в соответствии с откликом светодиодного ИК-света … и как только обнаруживается, что поданный цикл переменного тока достигает точки пересечения нуля, внутренний переключатель мгновенно переключает и запускает симистор и сохраняет систему включенной в течение оставшуюся часть периода, пока блок не будет выключен и снова включен. При описанной выше настройке при каждом включении питания оптоизолирующий симистор MOC обеспечивает включение симистора только в тот период, когда сеть переменного тока пересекает нулевую линию своей фазы, что, в свою очередь, отлично поддерживает нагрузку. безопасный и свободный от опасного всплеска спешки. Здесь обсуждается комплексная схема емкостного источника питания с детектором перехода через ноль, ограничитель перенапряжения и регулятор напряжения, идея была представлена г-ном Чами. Разработка усовершенствованной схемы емкостного источника питания с Обнаружение пересечения нуля Привет, Свагатам. Это моя конструкция емкостного источника питания с защитой от перенапряжения с переходом через ноль и стабилизатором напряжения, я постараюсь перечислить все мои сомнения. 1-Я не уверен, нужно ли менять BT136 на BTA06 для обеспечения большего тока. 2-Q1 (TIP31C) может обрабатывать только 100 В макс. Может его стоит поменять на транзистор 200В 2-3А?, Вроде 2SC4381. 3-R6 (200R 5W), я знаю, что этот резистор довольно маленький и это моя ошибка 4-Некоторые резисторы были изменены в соответствии с вашими рекомендациями, чтобы сделать его способным к напряжению 110 В. Может быть, резистор 10 кОм должен быть меньше? Если вы знаете, как заставить его работать правильно, я буду очень рад исправить это. Если он работает, я могу сделать для него печатную плату, и вы можете опубликовать ее на своей странице (бесплатно, конечно). Спасибо, что нашли время и просмотрели мою полную неисправностей схему. Хорошего дня. Chamy Оценка дизайна Здравствуйте, Chamy, мне кажется, что ваша схема в порядке. Вот ответы на ваши вопросы: 1) да BT136 следует заменить на более мощный симистор. Swagatam Ссылка: Zero Crossing Circuit Это 4-е простое, но интеллектуальное решение реализовано здесь с использованием IC 555 в ее моностабильном режиме для управления резким скачком напряжения в безтрансформаторном источнике питания через концепция схемы переключения при переходе через нуль, в которой входная мощность от сети может поступать в схему только во время перехода сигнала переменного тока через нуль, что исключает возможность скачков напряжения.Идею предложил один из заядлых читателей этого блога. Будет ли работать бестрансформаторная схема с нулевым переходом для предотвращения начального пускового тока, не позволяя включаться до точки 0 в цикле 60/50 герц? Многие твердотельные реле, которые дешевы, менее 10,00 индийских рупий и имеют встроенную возможность. Также я хотел бы управлять 20-ваттными светодиодами с этой конструкцией, но я не уверен, какой ток или насколько горячие конденсаторы получат, я полагаю, это зависит от того, как светодиоды подключены последовательно или параллельно, но допустим, что конденсатор рассчитан на 5 амперы или 125 мкФ конденсатор нагреется и взорвется ??? Как читать спецификации конденсаторов, чтобы определить, сколько энергии они могут рассеять. Вышеупомянутый запрос побудил меня искать связанную конструкцию, включающую концепцию переключения перехода через нуль на основе IC 555, и натолкнулся на следующую превосходную схему бестрансформаторного источника питания, которую можно было бы использовать для убедительного устранения всех возможных шансов на скачки напряжения. Важно сначала изучить эту концепцию, прежде чем исследовать предлагаемую бестрансформаторную схему без перенапряжения. Все мы знаем, как выглядит синусоида сетевого сигнала переменного тока.Мы знаем, что этот синусоидальный сигнал начинается с отметки нулевого потенциала и экспоненциально или постепенно повышается до точки пикового напряжения (220 или 120), а оттуда экспоненциально возвращается к отметке нулевого потенциала. После этого положительного цикла осциллограмма опускается и повторяет вышеуказанный цикл, но в отрицательном направлении, пока снова не вернется к нулевой отметке. Вышеупомянутая операция выполняется примерно от 50 до 60 раз в секунду в зависимости от характеристик электросети. Однако вышеупомянутой ситуации можно избежать, если нагрузка сталкивается с переключателем во время перехода через нуль, после которого экспоненциальный рост нагрузки не представляет никакой угрозы для нагрузки. Именно это мы и попытались реализовать в предлагаемой схеме. Ссылаясь на приведенную ниже принципиальную схему, 4 диода 1N4007 образуют стандартную конфигурацию мостовых выпрямителей, катодный переход создает пульсацию 100 Гц по линии. Вышеупомянутый потенциал также подается на базу Q1 через резистор 100 кОм. IC 555 сконфигурирован как моностабильный MV, что означает, что его выход будет высоким каждый раз, когда его контакт №2 заземлен. Для периодов, в течение которых напряжение сети переменного тока выше (+) 0,6 В, Q1 остается выключенным, но как только форма сигнала переменного тока касается нулевой отметки, то значение ниже (+) 0.6 В, Q1 включает заземляющий контакт № 2 ИС и обеспечивает положительный выход контакта № 3 ИС. Выход IC включает SCR и нагрузку и сохраняет его включенным до истечения времени MMV, чтобы начать новый цикл. Время включения моностабильного может быть установлено путем изменения предустановки 1M. Большее время включения обеспечивает больший ток нагрузки, делая ее ярче, если это светодиод, и наоборот. Условия включения этой бестрансформаторной схемы питания на основе IC 555, таким образом, ограничиваются только тогда, когда переменный ток близок к нулю, что, в свою очередь, гарантирует отсутствие скачков напряжения при каждом включении нагрузки или цепи. Если вы ищете бестрансформаторный источник питания для приложения драйвера светодиодов на коммерческом уровне, то, вероятно, вы можете попробовать концепции, описанные здесь. Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам. 5 Вт QH-5W -. 1-2 3 : 1-2 3 : ~ 85-277 (AC85-277V) /: 3-6,6 / 600 ± 5% (),: 231513, 40, 60 + 19 1 120 3+ 100 10+ 90 100+ 85 LD220-1 — ( AP3706M ).3 1 : 1 3, 3 1, 1 1 : ~ 85-265 /: 12 / 320-350 (),: 231615 + > 20 1 100 2+ 90 10+ 85 500+ 65 LD12-1 — ( PT4115 / CL6808 / MC34063 / CL6807 / BP1360 ).1-3 1 : 1-3 1 : ~ 12-18 / 8-30 /: 3-11 / 300-320 (),: 141710 + 40 1 80 10+ 60 100+ 50 500+ 45 LD12-3 — ( PT4115 / CL6808 / MC34063 / CL6807).1-3 3 : 1-3 3 : ~ 12-18 / 8-30 /: 3-11 / 600-630 (),: 141710 + 20 1 80 10+ 60 100+ 50 500+ 45 LD12-5 — ( BP1601 ).4-7 1 : 4-7 1 : ~ 12-18 / 8-30 /: 12-24 / 300-320 (),: 231311, 65 + 41 1 120 10+ 100 100+ 80 500+ 75 20 Вт QH-JY7-10X3 — ( BP1808 ).7-10 3 : 7-10 3 : ~ 24-80 (AC24-60V, DC24-80V) /: 22-34 / 600 ± 5% (),: 211815, 12, 65 4 + 7 1 150 10+ 140 100+ 120 10 Вт QH-10W — ( BP3122 ).3-4 3 : 3-4 3 : ~ 85-277 (AC85-277V) /: 9-14 / 600 ± 5% (),: 301717, 60, 90 11 + 20 1 150 10+ 130 100+ 110 20 Вт QH-20LP12-20X1 — (QH7938).12–20 1 : 12-20 1 : ~ 85-277 (AC85-277V) /: 35-68 / 300 ± 5% (),: 472015, 90, 90 20 + 48 1-9 250 10-99 210 > 100 180 20 Вт QH-20LP6-10X3 — (QH7938).6-10 3 : 6-10 3 : ~ 85-277 (AC85-277V) /: 18-33 / 600 ± 5% (),: 472015, 90, 90 20 + 53 1-9 250 10-99 210 > 100 180 20 Вт QH-20LP6-10X3 IP20 — (QH7938).6-10 3 : 6-10 3 : ~ 85-277 (AC85-277V) /: 18-33 / 600 ± 5% (),: 472015, 90, 90 20 + 8 1-9 280 10-99 240 > 100 220 20 Вт QH-20LP3-6X3 — (QH7938).3-6 3 : 3-6 3 : ~ 85-277 (AC85-277V) /: 9-20 / 900 ± 5% (),: 472015, 90, 90 20 + 19 1-9 250 10-99 210 > 100 180 T8 25W QH-25W-24S-T8 изолированный — (QH7938) Коэффициент мощности CE> 0.95. 12-24 1 : 25 : ~ 85-277 (AC85-277V) /: 35-82 / 300 ± 5% (),: 1401710 30 + 5 1-9 480 10-99 440 > 100 410 36 Вт QH-40LP20-36X1W — (QH7938) PF> 0.95. 20-36 1 : 36 : ~ 85-277 (AC85-277V) /: 60-120 / 300 ± 5% (),: 852724, 210, 210 50 + 39 1-9 360 10-99 320 > 100 270 36 Вт QH-40LP10-18X3W — (QH7938) PF> 0.95. 10-18 3 : 36 : ~ 85-277 (AC85-277V) /: 30-60 / 600 ± 5% (),: 852724, 210, 210 50 + 20 1-9 360 10-99 320 > 100 270 36 Вт QH-40LP6-12X3W — (QH7938) PF> 0.95. 6-12 3 : 36 : ~ 85-277 (AC85-277V) /: 18-40 / 900 ± 5% (),: 852724, 210, 210 50 1-9 360 10-99 320 > 100 270 36 Вт QH-40LP6-12X3W-adj — (QH7938) PF> 0.95. 6-12 3 : 36 — : ~ 85-277 (AC85-277V) /: 18-40 / 60-900 ± 5% (),: 852724, 210, 210, 200 79 1-9 800 10-99 760 > 100 720 60 Вт QH-60LP18-30X3W — (QH7938) PF> 0.95. 18-30 3 : 60 : ~ 85-277 (AC85-277V) /: 54-100 / 600 ± 5% (),: 1102624, 310, 310 80 + 19 1–4 700 5-9 650 10-99 600 > 100 560 60 Вт QH-60LP10-20X3W — (QH7938) PF> 0.95. 10-20 3 : 61 : ~ 85-277 (AC85-277V) /: 32-68 / 900 ± 5% (),: 1102724, 310, 310 80 1–4 700 5-9 650 10-99 600 > 100 560 60 Вт QH-60LP6-12X5W — (QH7938) PF> 0.95. 6-12 5 : 57 : ~ 85-277 (AC85-277V) /: 18-38 / 1500 ± 5% (),: 1102724, 310, 310 80 + 20 1–4 700 5-9 650 10-99 600 > 100 560 60 Вт QH-60LP18-30X3W IP20 — (QH7938) PF> 0.95. 18-30 3 : 63 : ~ 85-277 (AC85-277V) /: 54-105 / 600 ± 5% (),: 1404528, 310, 310 120 + 10 1–4 820 5-9 770 10-99 720 > 100 690 60 Вт QH-60LP6-12X5W IP20 — (QH7938) PF> 0.95. 6-12 5 : 51 : ~ 85-277 (AC85-277V) /: 18-34 / 1500 ± 5% (),: 1404528, 310, 310 120 + 20 1-4 850 5-9 800 10-99 750 > 100 720 80 Вт QH-80WLC15-30X3W — (QH7938) PF> 0.95 TUV-EMC LVD CE. 18-30 3 : 80 : ~ 85-277 (AC85-277V) /: 56-100 / 800 ± 5% (),: 1243624, 210, 210 145 1-4 1200 5-9 1100 10-99 1000 > 100 900 80 Вт QH-80WLC15-30X3W-adj — (QH7938) PF> 0.95 TUV-EMC LVD CE. 18-30 3 : 80 — : ~ 85-277 (AC85-277V) /: 56-100 / 60-800 ± 5% (),: 1243624, 210, 210, 200 175 1-4 1800 5-9 1700 10-99 1400 > 100 1200 80 Вт QH-80LC12-20X3W — (QH7938) PF> 0.95 TUV-EMC LVD CE. 12-20 3 : 80 : ~ 85-277 (AC85-277V) /: 35-68 / 1200 ± 5% (),: 1684335, 210, 210 190 4-6. Темная энергия DE-18W12-18x1w .12-18 1 ( BP3167E ). Айши : 18 : ~ 90–260 /: 31-64 / 300 (),: 472118 + 20 1-9 130 10-99 120 100+ 110 LD12-9 — ( PT4115 ).10 : 10 (3 3) : 9-24 /: 9-11 / 850-950 (),: 261812, 65 + 43 1 130 3+ 120 10+ 100 100+ 90 ATB1140-12C321 (AT1140) — ( TB9961 , An9910B ).8–14 1 : 12 : ~ 50/75 /: 24-43 / 320 +/- 5% (),: 302016, 90 15 4-6. 1 370 3+ 340 10+ 300 100+ 260 ATB1140-06C321 (AT1140) — ( TB9961 , An9910B ) : 6 : ~ 30/45 /: 18-21 / 320 +/- 5% (),: 302016, 90 15 4-6. 1 370 3+ 340 10+ 300 100+ 260 ATB1140-06C651 (AT1140) — ( TB9961 , An9910B ) : 12 : ~ 30/45 /: 18-21 / 650 +/- 5% (),: 302016, 90 15 4-6. 1 370 3+ 340 10+ 300 100+ 260 ATB1140-06C961 (AT1140) — ( TB9961 , An9910B ) : 18 : ~ 30/45 /: 18-21 / 960 +/- 5% (),: 302016, 90 15 4-6. 1 370 3+ 340 10+ 300 100+ 260 ACC3630 ALPCB — ( HY3660 ). 8-12 1. : 12 : AC / DC 12-24 /: 24-36 / 300 (),: 402410, 100 15 + 2 1 200 3+ 180 10+ 160 100+ 130 ACC3660 ALPCB — ( HY6630 ).12-18 1. : 18 : AC / DC 12-24 /: 36-60 / 300 (),: 662812, 100 25 + 2 1 350 3+ 320 10+ 300 100+ 270 HG-2412 .9-12 1. : 12 : 12-24 /: 27-42 / 300-320 (),: 372215, 110 14 + 8 1 250 3+ 220 10+ 200 100+ 180 HG-2412 .4-6 3. : 12 : 12-24 /: 15-21 / 500 (),: 372215, 110 14 + 10 1 240 3+ 210 10+ 190 100+ 170 ATB1500-24321 (AT1500) — (HV9912NG).5-12 8-24 1-3 : 12/24 : 11-28 /: 15-42 (12) 30-85 (24) / 290-320 (),: 603117, 90 35 + 230 1 550 3+ 500 10+ 440 100+ 410 ATB1600-24C651 (AT1600) — (HV9912NG).10–26 3 : 48 : 24-28 /: 28-80 / 650 +/- 5% (),: 684125, 200 90 + 140 1 600 3+ 550 10+ 500 100+ 470 Понижающий модуль DC-DC : 15 : 12-24 /: 0,8-17, 1,8-2,5-3,3-5-9-12 / 3 (),: 20177 1-2 100 3-9 80 10+ 70 MT3608 Повышающий модуль DC-DC : 56 : 2-24 /: 5-28 / 2 (),: 301711 1-2 100 3-9 80 10+ 70 LM2596 Понижающий DC-DC : 75 : 4-35 /: 1-34 / 5 (),: 655627 1-2 100 3-9 80 10+ 70 LD12-20 — ( XL6005 + ME4410 ).20 : 20 : 12 /: 30-38 / 600 (),: 773720 + 10 1-2 450 3-9 420 10+ 370 LD12-30 — ( XL6005 + ME4410 ).30 : 30 : 12 /: 30-34 / 950 (),: 773720 1 460 2+ 450 5+ 430 10+ 410 LD12-50A -. 50 (TL494 + 2xIRF3205 + 90T03GH) : 50 : 12-34 /: 38 / 450-1600 (),: 705020, 140, 240 + 5 1-2 550 3-9 500 10+ 450 60-700-87 : 60 (253) : ~ 176-264 /: 40-87 / 700 (),: 2003230 195 1-2. 1 840 2+ 760 5+ 690 10+ 640 50-350-140 : 50 (401) : ~ 176-264 /: 70-140 / 350 (),: 2003831 + 4 1 720 2+ 650 5+ 580 10+ 540 60-1000-60 : 60 (175) : ~ 176-264 /: 60/1000 (),: 2003732 1-2. 1 1000 2+ 900 5+ 820 10+ 770 LST 30-390 : 33 (271) : ~ 176-264 /: 22-85 / 390 (),: 2023127 + 2 1 700 2+ 680 LST 35-300 : 35 (371) : ~ 176-264 /: 30-116 / 220-300 10 (),: 2023127 1 700 2+ 680 LST 35-350 : 35 (301) : ~ 176-264 /: 30-90 / 300-390 10 (),: 2023127 1 700 2+ 680 LST 35-350 : 33 (291) : ~ 176-264 /: 33-90 / 350 (),: 2023127 1 680 2+ 660 LST 40-700 : 40 (201) : ~ 176-264 /: 28-60 / 700 (),: 2024027 1 700 2+ 680 LST 50-350 (PF> 0.97) : 49 (451) : ~ 176-264 /: 50-140 / 350 (),: 2024027 1 700 2+ 680 LST 50-390 (PF> 0,97) : 51 (421) : ~ 176-264 /: 70-130 / 390 (),: 2024027 1 700 2+ 680 LST 60-700 : 60 (281) : ~ 176-264 /: 40-85 / 700 (),: 2024027 1 770 2+ 750 AT1430.5 1 : 3 2/5 1 : ~ 85-265 : 500/320 (),: 402016 + 5 1 200 2+ 190 5+ 180 .Снятые с производства светодиодные драйверы 3 Вт HG2203. 3 : 1 3 : ~ 90–260 /: 3-4 / 580 (),: 211513 4-6. 500+ 65 LD12-40 -.40 : 40 : 12-34 /: 38/1300 (),: 705020 4-6. 1-2 550 3-9 520 10+ 510 LD12-50 -. 50 : 50 : 12-34 /: 38/1500 (),: 705020 4-6. 1-2 500 3-9 480 10+ 450 ЛДГП-20 -. 20 : 20 : ~ 85-265 /: 18/1300 (),: 703520 + 1 1 310 2+ 300 10+ 280 LD12-10M — ( AX2001 / A ).10 : 10 : 12 /: 11/950 (),: 43239 2-3. 1 210 2+ 200 10+ 190 LD12-15 -.6 3 : 15 (53) : 12 /: 18/640 (),: 804024 4-6. 1 500 2+ 480 10+ 460 LD12-7 -. 7 1 : 7 (71) : 12 /: 25/320 (),: 252013 1 180 2+ 170 10+ 150 LD12-10 — ( MC34063 ).10 : 10 : ~ 12 / 12-24 /: 12/950 (),: 704016 4-6. 1 270 2+ 260 10+ 250 ЛДГП-10 — ( AP3706M ). 10 : 10 : ~ 85-265 /: 12/950 (),: 704020 4-6. 1 220 2+ 200 10+ 190 ЛДГП-10ПФК. 10 : 10, PF> 0,9 : ~ 85-265 /: 12/1000 (),: 764024 + 1 1 290 2+ 285 10+ 270 ЛД220М-7.7 1 : 7 : ~ 85-265 /: 27/350 (),: 483018 4-5. 1 190 2+ 170 5+ 160 LD220-5 ( AP3706M ). 5 1 : 5 : ~ 85-265 /: 19/350 (),: 301812 + 2 1 140 2+ 130 LD220-7.7 1 : 5-7 : ~ 85-265 /: 17-28 / 350 (),: 552617 + > 25 1 200 2+ 190 10+ 180 LD220-15. 15 1 : 15 : ~ 85-265 /: 24-54 / 300-320 (),: 421817 4-6. 1 180 2+ 170 5+ 150 LD220-12. 12 1 : 12 : ~ 85-265 /: 46 / 320-350 (),: 702625 4-5. 1 220 2+ 210 5+ 200 LDR220-7 ( VIPer22A ).7 1 : 7 : ~ 85-265 /: 26 / 320-350 (),: 414116 + 4 1 200 2+ 190 5+ 180 LD220-4 ( VIPer22A ) : 4 : ~ 85-265 /: 17/350 (),: 311716 4-5. 1 120 2+ 110 AT1140 : 6 1/6 3 : 12/24 : 320/640 (),: 302015 4. 10+ 220 100+ 190 AT1141 : 6 1/3 3 : 12/24 : 320/640 (),: 322014 4. 10+ 210 100+ 180 AT1151 : 7 1 : 12 : 320 (),: 321912 4. 10+ 210 100+ 180 AT1500 : 15 1/24 1/5 3/10 3 : 12/24 : 320/640 (),: 603119 4. 10+ 380 100+ 340 AT1600 : 5 3/10 3 : 12/24 : 320/640 (),: 784025 4. 10+ 420 100+ 380 AT1000 : 3 1/3 2/3 3/3 4/3 5 : 12 : 320/620/750/1200/1600 (),: 43239 4. 10+ 230 100+ 180 AT1361 PFC : 24 1/36 1/12 3 : ~ 85-265 : 320/640 (),: 1423422 4. 10+ 400 20+ 380 AT1380 PFC : 18 1/6 3 : ~ 85-265 : 320/640 (),: 1322517 4. 10+ 330 30+ 310 LD220-18 PFC (PF> 0,9). 18 1 : 18 (181) : ~ 100–240 /: 65/320 (),: 1322617 2-4. 1 350 2+ 330 10+ 300 LD220-36 PFC (PF> 0.95). 36 1 : 36 (361) : ~ 100–240 /: 130/320 (),: 1433025 2-4. 1 460 2+ 450 10+ 430 AT1610 : 24 1/8 3 : ~ 85-265 : 320/640 (),: 683825 4. 10+ 360 30+ 330 AT6053 : 8-25 : ~ 220 : 128/192/256/320/384 (),: 2101813 4. 10+ 260 50+ 230 AT6070 : 8-25 : ~ 220 : 128/192/256/320/384 (),: 2531815 4. 10+ 270 50+ 240 LD12-100 Повышающий модуль DC-DC : 100 : 10-33 /: 11-35 / 10 (),: 655627 3-4. 1-2 600 3-9 550 10+ 500 LD12-150 Повышающий модуль DC-DC : 150 : 10-32 /: 11-35 / 10 (),: 655627 3-4. 1-2 380 3-9 330 10+ 280 Ниже приведена очень простая принципиальная схема полной мощности и очень яркой светодиодной ночной лампы, которая может работать непосредственно от сети 230 В переменного тока, 50 Гц. ВЫХОД 229: ВЫХОД229. Инструкция: Общие вопросы об этой цепи: Второй (принципиальная схема), который я пробовал, вот результат. в реальном (я не делал схему на печатной плате, поэтому я говорю, что будьте осторожны) напряжение питания отключено. Напряжение питания включено и светодиоды Другой вид Разработано и подготовлено Автор: Васим Хан 2). к бестрансформаторному источнику питания со стабилизированным напряжением
Технические характеристики
Я решил использовать вашу вторую цепь, как упоминалось https://homemade-circuits.com/2012/08/ high-current-transformerless-power.html Конструкция
Принципиальная схема
Использование полевого МОП-транзистора
Видео-подтверждение защиты от перенапряжения
3) Цепь бестрансформаторного источника питания с нулевым переходом
Технические характеристики
Фрэнсис Конструкция
О оптопарах MOCxxxx
Что такое переход через нуль в сети переменного тока
Как это работает
Как контролируется импульсный ток
Улучшение вышеуказанной конструкции
(я знаю, что это будет дорого для конденсаторов, но это только для целей тестирования)
, я действительно хотел поставить резистор 1 кОм.А вот с резистором 200R 5W
работать будет?
2) TIP31 следует заменить транзистором Дарлингтона, например, TIP142 и т. Д., Иначе он может работать неправильно.
3) при использовании Дарлингтона базовый резистор может иметь высокое значение, может быть, резистор 1 кОм / 2 Вт будет вполне нормальным.
Однако дизайн сам по себе выглядит излишним, гораздо более простую версию можно увидеть ниже https://homemade-circuits.com/2016/07/scr-shunt-for-protecting-capacitive-led.html
С уважением 4) Импульсный бестрансформаторный источник питания с использованием IC 555
Технические характеристики
Что такое переключение с переходом через ноль:
Поскольку именно эта форма сигнала входит в цепь, любая точка формы сигнала, кроме нуля, представляет потенциальную опасность выброса при включении из-за наличия в форме сигнала высокого тока. Работа цепи
Вышеупомянутая частота 100 Гц снижается с помощью делителя потенциала (47 кОм / 20 кОм) и подается на положительную шину IC555. На этой линии потенциал соответствующим образом регулируется и фильтруется с помощью D1 и C1. Принципиальная схема
для приложения драйвера светодиодов
О компании Swagatam
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь! ДЕШЕВЛЕ — ()
+ + + + + + + + 230 В, 50 Гц переменного тока (или 110 В, 60 Гц), главный светодиод, мощный НОЧНОЙ ЛАМПЫ Принципиальная схема.
, 230 В, 50 Гц, переменного тока (или 110 В, 60 Гц), основной светодиод, мощный НОЧНОЙ ЛАМПЫ Принципиальная схема.
Обратите внимание, что , если вы хотите сделать эту схему дома, внимательно прочтите все инструкции.
Кроме того, если у вас есть самолет для использования этой схемы на 110 В 60 Гц вместо 230 В, 50 Гц или вы хотите изменить эту схему, см. Раздел «Общие вопросы об этой цепи» под «инструкцией».
Также Обратите внимание, что — это две принципиальные схемы, поэтому рекомендуется — первая . второй (как я пытался) предназначен для экспериментальных только для , поэтому не пробуйте второй дома.Я не буду нести ответственности за любые убытков / убытков . Пожалуйста, будьте осторожны потому что ваша безопасность лучше всего.
Описание, важные инструкции и данные приведены ниже (шаг за шагом).
(щелкните изображение, чтобы увеличить)
ДАННЫЕ:
Светодиод 24 Нет (3.2 В / 25 мА каждый)
C1 = 0,22 мкФ / 1000 В ( Тип полиэстера)
R1 = 1 кОм / 3 Вт
ВХОД:
230 В переменного тока
50 Гц
(щелкните изображение, чтобы увеличить)
(щелкните изображение, чтобы увеличить)
(щелкните изображение, чтобы увеличить)
(щелкните изображение, чтобы увеличить)
Авторские права: https: // www.