Как рассчитать напор воды в трубе: Расчет давления воды в трубопроводе. Пример расчета давления в трубе

Содержание

Как вычислить давление в трубе

В каждом современном доме одним из основных условий комфорта есть водопровод. А с возникновением новой техники, требующей подключения к водопроводу, его роль в доме стала крайне важной. Многие люди уже не воображают, как возможно обойтись без стиральной машины, бойлера, посудомоечной машины и т.д. Но любой из этих аппаратов для верной работы требует определенного давления воды, поступающей из водопровода. И вот человек, решивший установить новый водопровод у себя дома, вспоминает о том, как вычислить давление в трубе, дабы все сантехнические устройства прекрасно работали.

Требования современного водопровода

Современный водопровод обязан отвечать всем характеристикам и требованиям. На выходе из крана вода обязана литься плавно, без рывков. Следовательно, в системе не должно быть перепадов давления при разборе воды. Идущая по трубам вода не должна создавать шума, иметь примеси воздуха и других посторонних накоплений, каковые пагубно воздействуют на керамические краны и другую сантехнику. Дабы не было этих неприятных казусов, давление воды в трубе не должно падать ниже своего минимума при разборе воды.

Совет! Минимальное давление водопровода должно составлять 1,5 атмосферы. Для того чтобы давления достаточно для работы посудомоечной и стиральной машины.

Нужно учитывать еще одну ответственную чёрта водопровода, связанную с расходом воды. В любом жилом помещении находится не одна точка разбора воды. Исходя из этого расчет водопровода обязан всецело снабжать потребность воды всех сантехнических устройств при одновременном включении. Данный параметр достигается не только давлением, но и объемом поступающей воды, которую может пропустить труба определенного сечения. Говоря несложным языком, перед монтажом требуется выполнить некоторый гидравлический расчет водопровода, с учетом давления и расхода воды.

Перед расчетом давайте поближе ознакомимся с двумя такими понятиями, как расход и давление, чтобы выяснить их сущность.

Давление

Как мы знаем, центральный водопровод в прошлом подключали к водонапорной башне. Эта башня формирует в сети водопровода давление. Единицей измерения давления есть атмосфера. Причем, давление не зависит от размера емкости, расположенной наверху башни, а лишь от высоты.

Совет! В случае если залить воду в трубу  десятиметровой высоты, то она в нижней точке создаст давление – 1 атмосферу.

Давление приравнивается к метрам. Одна атмосфера равняется 10 м водяного столба. Рассмотрим пример с пятиэтажным домом. Высота дома – 15 м. Следовательно, высота одного этажа – 3 метра. Пятнадцатиметровая башня создаст давление на первом этаже 1,5 атмосферы. Вычислим давление на втором этаже: 15-3=12 метров водяного столба либо 1.2 атмосферы. Проделав предстоящий расчет, мы заметим, что на 5 этаже давления воды не будет. Значит, дабы обеспечить водой пятый этаж, нужно выстроить башню больше 15 метров. А вдруг это, к примеру – 25 этажный дом? Никто такие башни строить не будет. В современных водопроводах применяют насосы.

Давайте высчитаем давление на выходе глубинного насоса. Имеется глубинный насос, поднимающий воду на 30 метров водяного столба. Значит, он формирует давление – 3 атмосферы на своем выходе. По окончании погружения насоса в скважину на 10 метров, он создаст давление на уровне земли – 2 атмосферы, либо 20 метров водяного столба.

Расход

Рассмотрим следующий фактор – расход воды. Он зависит от давления, и чем оно больше, тем стремительнее вода будет двигаться по трубам. Другими словами будет больший расход. Но все дело в том, что на скорость воды воздействует сечение трубы, по которой она двигается. И в случае если уменьшать сечение трубы, то будет расти сопротивление воды. Следовательно, уменьшится ее количество на выходе из трубы за тот же временной отрезок.

На производстве, при постройке водопроводов составляются проекты, в которых высчитывается гидравлический расчет водопровода по уравнению Бернулли:

Где h1-2 – показывает утрату напора на выходе, по окончании преодоления сопротивления на всем участке водопровода.

Рассчитываем домашний водопровод

Но это, как говорится, сложные вычисления. Для домашнего водопровода используем вычисления несложнее.

Исходя из паспортных данных автомобилей потребляемых воду в доме, суммируем неспециализированный расход. Добавляем к данной цифре расход всех водоразборных кранов находящихся в доме. Один водоразборный кран пропускает через себя около 5–6 литров воды в 60 секунд. Суммируем все цифры и приобретаем неспециализированный расход воды в доме. Вот сейчас руководствуясь неспециализированным расходом, покупаем трубу с таким сечением, которое обеспечит давлением и нужным количеством воды все в один момент работающие водоразборные устройства.

В то время, когда домашний водопровод будет подключаться к муниципальный сети, то станете пользоваться тем, что дадут. Ну, а вдруг у вас дома скважина, берите насос, который всецело обеспечит вашу сеть нужным давлением, соответствующим расходам. При покупке руководствуйтесь паспортными данными насоса.

Для выбора сечения трубы, руководствуемся этими таблицами:

Зависимость диаметра от длины водопровода 
Пропускная свойство трубы
Протяженность водопровода, м Диаметр трубы, мм Диаметр трубы, мм Пропускная свойство, л/мин
Меньше 10 20 25 30
От 10 до 30 25 32 50
Больше 30 32 38 75

В этих таблицах предоставлены более востребованные параметры трубы. Для полного ознакомления в сети возможно отыскать более полные таблицы с расчетами труб различного диаметра.

Вот, исходя из этих расчетов, и при верном монтаже, вы обеспечите свой водопровод всеми требуемыми параметрами. В случае если что-то не ясно, лучше обратиться к экспертам.

Расход воды через трубу при заданном давлении

Содержание статьи

Основная задача расчёта объёма потребления воды в трубе по её сечению (диаметру) – это подобрать трубы так, чтобы водорасход не был слишком большой, а напор оставался хороший. При этом необходимо учесть:

  • диаметры (ДУ внутреннего сечения),
  • потери напора на рассчитываемом участке,
  • скорость гидропотока,
  • максимальное давление,
  • влияние поворотов и затворов в системе,
  • материал (характеристики стенок трубопровода) и длину и т.д..

Подбор диаметра трубы по расходу воды с помощью таблицы считается более простым, но менее точным способом, чем измерение и расчёт по давлению, скорости воды и прочим параметрам в трубопроводе, сделанный по месту.

Табличные стандартные данные и средние показатели по основным параметрам

Для определения расчётного максимального расхода воды через трубу приводится таблица для 9 самых распространённых диаметров при различных показателях давления.

Среднее значение давления в большинстве стояках находится в интервале 1,5-2,5 атмосфер. Существующая зависимость от количества этажей (особенно заметная в высотных домах) регулируется путём разделения системы водообеспечения на несколько сегментов. Водонагнетение с помощью насосов влияет и на изменение скорости гидропотока. Кроме того, при обращении к таблицам в расчёте водопотребления учитывают не только число кранов, но и количество водонагревателей, ванн и др. источников.

Изменение характеристик проходимости крана с помощью регуляторов водорасхода, экономителей, аналогичных WaterSave (http://water-save.com/), в таблицах не фиксируются и при расчёте расхода воды на (по) трубе, как правило, не учитываются.

Способы вычисления зависимостей водорасхода и диаметра трубопровода

С помощью нижеприведённых формул можно как рассчитать расход воды в трубе, так и, определить зависимость диаметра трубы от расхода воды.

В данной формуле водорасхода:

  • под q принимается расход в л/с,
  • V –  определяет скорость гидропотока в м/с,
  • d – внутреннее сечение (диаметр в см).

Зная водорасход и d сечения, можно, применив обратные вычисления, установить скорость, или, зная расход и скорость – определить диаметр. В случае наличия дополнительного нагнетателя (например, в высотных зданиях), создаваемое им давление и скорость гидропотока указываются в паспорте прибора. Без дополнительного нагнетания скорость потока чаще всего варьируется в интервале 0,8-1,5 м/сек.

Для более точных вычислений принимают во внимание потери напора, используя формулу Дарси:

Для вычисления необходимо дополнительно установить:

  • длину трубопровода (L),
  • коэффициент потерь, который зависит от шероховатостей стенок трубопровода, турбулентности, кривизны и участков с запорной арматурой (λ),
  • вязкость жидкости (ρ).

Зависимость между значением D трубопровода, скоростью гидропотока (V) и водорасходом (q) с учётом угла уклона (i) можно выразить в таблице, где две известные величины соединяются прямой линией, а значение искомой величины будет видно на пересечении шкалы и прямой. Многим людям нравятся довольно разного рода девушки. Кому-то нравятся очкастые, кому-то нравятся в чулках, кому-то бритые. А кому-то волосатые. Ещё лучше, если это волосатые анал которые отдают парню на растерзание. И, если перейти по ссылке, то можно обратить внимание на то, что этому жанру даже выделена отдельная категория, позволяя вовсю насладиться этим жанром. 

Для технического обоснования также строят графики зависимости эксплуатационных и капитальных затрат с определением оптимального значения D, которое устанавливается в точке пересечения кривых эксплуатационных и капитальных затрат.

Расчёт расхода воды через трубу с учётом падения давления можно проводить с помощью онлайн-калькуляторов (например: http://allcalc.ru/node/498; https://www.calc.ru/gidravlicheskiy-raschet-truboprovoda.html). Для гидравлического расчёта, как и в формуле, нужно учесть коэффициент потерь, что предполагает выбор:

  1. способа расчёта сопротивления,
  2. материала и вида трубопроводных систем (сталь, чугун, асбоценмент, железобетон, пластмасса), где принимается во внимание, что, например, пластиковые поверхности менее шероховатые, чем стальные, и не подвергаются коррозии,
  3. внутреннего диаметры,
  4. длины участка,
  5. падения напора на каждый метр трубопровода.

В некоторых калькуляторах учитываются дополнительные характеристики трубопроводных систем, например:

  • новые или не новые с битумным покрытием или без внутреннего защитного покрытия,
  • с внешним пластиковым или полимерцементным покрытием,
  • с внешним цементно-песчаным покрытием, нанесённым разными методами и др.

Читайте далее

Оставьте комментарий и вступите в дискуссию

калькулятор, формула и таблица СНИП 2.04.01-85

На чтение 7 мин. Просмотров 68.4k. Обновлено

Предприятия и жилые дома потребляют большое количество воды. Эти цифровые показатели становятся не только свидетельством конкретной величины, указывающей расход.

Помимо этого они помогают определить диаметр трубного сортамента. Многие считают, что расчет расхода воды по диаметру трубы и давлению невозможен, так, как эти понятия совершенно не связаны между собой.

Но, практика показала, что это не так. Пропускные возможности сети водоснабжения зависимы от многих показателей, и первыми в этом перечне будут диаметр трубного сортамента и давление в магистрали.

Выполнять расчет пропускной способности трубы в зависимости от ее диаметра рекомендуют еще на стадии проектирования строительства трубопровода. Полученные данные определяют ключевые параметры не только домашней, но и промышленной магистрали. Обо всем этом и пойдет далее речь.

Расчитаем пропускную способность трубы с помощью онлайн калькулятора

Введите параметры для расчёта:

Чтобы правильно произвести расчет, необходимо обратить внимание, что:

– 1кгс/см2 = 1 атмосфер;

– 10 метров водяного столба = 1кгс/см2 = 1атм;

– 5 метров водяного столба = 0.5 кгс/см2 и = 0.5 атм и т.д.

– Дробные числа в онлайн калькулятор вводятся через точку (Например: 3.5 а не 3,5)

Какие факторы влияют на проходимость жидкости через трубопровод

Критерии, оказывающие влияние на описываемый показатель, составляют большой список. Вот некоторые из них.

  1. Внутренний диаметр, который имеет трубопровод.
  2. Скорость передвижения потока, которая зависит от давления в магистрали.
  3. Материал, взятый для производства трубного сортамента.

Определение расхода воды на выходе магистрали выполняется по диаметру трубы, ведь эта характеристика совместно с другими влияет на пропускную способность системы. Так же рассчитывая количество расходуемой жидкости, нельзя сбрасывать со счетов толщину стенок, определение которой проводится, исходя из предполагаемого внутреннего напора.

Можно даже заявить, что на определение «трубной геометрии» не влияет только протяженность сети. А сечение, напор и другие факторы играют очень важную роль.

Помимо этого, некоторые параметры системы оказывают на показатель расхода не прямое, а косвенное влияние. Сюда относится вязкость и температура прокачиваемой среды.

Подведя небольшой итог, можно сказать, что определение пропускной способности позволяет точно установить оптимальный тип материала для строительства системы и сделать выбор технологии, применяемой для ее сборки. Иначе сеть не будет функционировать эффективно, и ей потребуются частые аварийные ремонты.

Расчет расхода воды по диаметру круглой трубы, зависит от его размера. Следовательно, что по большему сечению, за определенный промежуток времени будет выполнено движение значительного количества жидкости. Но, выполняя расчет и учитывая диаметр, нельзя сбрасывать со счетов давление.

Если рассмотреть этот расчет на конкретном примере, то получается, что через метровое трубное изделие сквозь отверстие в 1 см пройдет меньше жидкости за определенный временной период, чем через магистраль, достигающей в высоту пару десятков метров. Это закономерно, ведь самый высокий уровень расхода воды на участке достигнет самых больших показателей при максимальном давлении в сети и при самых высоких значениях ее объема.

Portaflow 330 измерение расхода воды накладным ультразвуковым расходомером. часть 2


Watch this video on YouTube

Вычисления сечения по СНИП 2.04.01-85

Прежде всего, необходимо понимать, что расчет диаметра водопропускной трубы является сложным инженерным процессом. Для этого потребуются специальные знания. Но, выполняя бытовую постройку водопропускной магистрали, часто гидравлический расчет по сечению проводят самостоятельно.

Данный вид конструкторского вычисления скорости потока для водопропускной конструкции можно провести двумя способами. Первый – табличные данные. Но, обращаясь к таблицам необходимо знать не только точное количество кранов, но и емкостей для набора воды (ванны, раковины) и прочего.

Только при наличии этих сведений о водопропускной системе, можно воспользоваться таблицами, которые предоставляет СНИП 2.04.01-85. По ним и определяют объем воды по обхвату трубы. Вот одна из таких таблиц:

Внешний объем трубного сортамента (мм)

Примерное количество воды, которое получают в литрах за минуту

Примерное количество воды, исчисляемое в м3 за час

20

15

0,9

25

30

1,8

32

50

3

40

80

4,8

50

120

7,2

63

190

11,4

Если ориентироваться на нормы СНИП, то в них можно увидеть следующее – суточный объем потребляемой воды одним человеком не превышает 60 литров. Это при условии, что дом не оборудован водопроводом, а в ситуации с благоустроенным жильем, этот объем возрастает до 200 литров.

Однозначно, эти данные по объему, показывающие потребление, интересны, как информация, но специалисту по трубопроводу понадобятся определение совершенно других данных – это объем (в мм) и внутреннее давление в магистрали. В таблице это можно найти не всегда. И более точно узнать эти сведениям помогают формулы.

Уже понятно, что размеры сечения системы влияют на гидравлический расчет потребления. Для домашних расчетов применяется формула расхода воды, которая помогает получить результат, имея данные давления и диаметра трубного изделия. Вот эта формула:

Формула для вычисления по давлению и диаметру трубы: q = π×d²/4 ×V

В формуле: q показывает расход воды. Он исчисляется литрами.  d – размер сечению трубы, он показывается в сантиметрах. А V в формуле – это обозначение скорости передвижения потока, она показывается в метрах на секунду.

Если сеть водоснабжения питается от водонапорной башни, без дополнительного влияния нагнетающего насоса, то скорость передвижения потока составляет приблизительно 0,7 – 1,9 м/с. Если подключают любое нагнетающее устройство, то в паспорте к нему имеется информация о коэффициенте создаваемого напора и скорости перемещения потока воды.

Данная формула не единственная. Есть еще и многие другие. Их без труда можно найти в сети интернета.

В дополнение к представленной формуле нужно заметить, что огромное значение на функциональность системы оказывают внутренние стенки трубных изделий. Так, например, пластиковые изделия отличаются гладкой поверхностью, нежели аналоги из стали.

По этим причинам, коэффициент сопротивления у пластика существенно меньше. Плюс ко всему, эти материалы не подвергаются влиянию коррозийных образований, что также оказывает положительное действие на пропускные возможности сети водоснабжения.

Определение потери напора

Расчет прохода воды производят не только по диаметру трубы, он вычисляется по падению давления. Вычислить потери можно посредством специальных формул. Какие формулы использовать, каждый будет решать самостоятельно. Чтобы рассчитать нужные величины, можно использовать различные варианты. Единственного универсального решения этого вопроса нет.

Но прежде всего, необходимо помнить, что внутренний просвет прохода пластиковой и металлопластиковой конструкции не поменяется через двадцать лет службы. А внутренний просвет прохода металлической конструкции со временем станет меньше.

А это повлечет за собою потери некоторых параметров. Соответственно, скорость воды в трубе в таких конструкциях является разной, ведь по диаметру новая и старая сеть в некоторых ситуациях будут заметно отличаться. Так же будет отличаться и величина сопротивления в магистрали.

Так же перед тем, как рассчитать необходимые параметры прохода жидкости, нужно принять к сведению, что потери скорости потока водопровода связанны с количеством поворотов, фитингов, переходов объема, с наличием запорной арматуры и силой трения. Причем, все это при вычисления скорости потока должны проводиться  после тщательной подготовки и измерений.

Расчет расхода воды простыми методами провести нелегко. Но, при малейших затруднениях всегда можно обратиться за помощью к специалистам или воспользоваться онлайн калькулятором. Тогда можно рассчитывать на то, что проложенная сеть водопровода или отопления будет работать с максимальной эффективностью.

Видео – как посчитать расход воды

Расчет диаметра трубопровода по расходу, зависимость расхода от давления

Для того чтобы правильно смонтировать конструкцию водопровода, начиная разработку и планирование системы, необходимо рассчитать расход воды через трубу.

От полученных данных зависят основные параметры домашнего водовода.

В этой статье читатели смогут познакомиться с основными методиками, которые помогут им самостоятельно выполнить расчет своей водопроводной системы.

Как рассчитать необходимый диаметр трубы

Цель расчета диаметра трубопровода по расходу: Определение диаметра и сечения трубопровода на основе данных о расходе и скорости продольного перемещения воды.

Выполнить такой расчет достаточно сложно. Нужно учесть очень много нюансов, связанных с техническими и экономическими данными. Эти параметры взаимосвязаны между собой. Диаметр трубопровода зависит от вида жидкости, которая будет по нему перекачиваться.

Если увеличить скорость движения потока можно уменьшить диаметр трубы. Автоматически снизится материалоемкость. Смонтировать такую систему будет намного проще, упадет стоимость работ.

Однако увеличение движения потока вызовет потери напора, которые требуют создание дополнительной энергии, для перекачки. Если очень сильно ее уменьшить, могут появиться нежелательные последствия.

С помощью формул ниже можно как рассчитать расход воды в трубе, так и, определить зависимость диаметра трубы от расхода жидкости.

Когда выполняется проектирование трубопровода, в большинстве случаев, сразу задается величина расхода воды. Неизвестными остаются две величины:

  •  Диаметр трубы;
  • Скорость потока.

Сделать полностью технико-экономический расчет очень сложно. Для этого нужны соответствующие инженерные знания и много времени. Чтобы облегчить такую задачу при расчете нужного диаметра трубы, пользуются справочными материалами. В них даются значения наилучшей скорости потока, полученные опытным путем.

Итоговая расчетная формула для оптимального диаметра трубопровода выглядит следующим образом:

d = √(4Q/Πw)
Q – расход перекачиваемой жидкости, м3/с
d – диаметр трубопровода, м
w – скорость потока, м/с

Подходящая скорость жидкости, в зависимости от вида трубопровода

Прежде всего учитываются минимальные затраты, без которых невозможно перекачивать жидкость. Кроме того, обязательно рассматривается стоимость трубопровода.

При расчете, нужно всегда помнить об ограничениях скорости двигающейся среды. В некоторых случаях, размер магистрального трубопровода должен отвечать требованиям, заложенным в технологический процесс.

На габариты трубопровода влияют также возможные скачки давления.

Когда делаются предварительные расчеты, изменение давление в расчет не берется. За основу проектирования технологического трубопровода берется допустимая скорость.

Когда в проектируемом трубопроводе существуют изменения направления движения, поверхность трубы начинает испытывать большое давление, направленное перпендикулярно движению потока.

Такое увеличение связано с несколькими показателями:

  • Скорость жидкости;
  • Плотность;
  • Исходное давление (напор).

Причем скорость всегда находится в обратной пропорции к диаметру трубы. Именно поэтому для высокоскоростных жидкостей требуется правильный выбор конфигурации, грамотный подбор габаритов трубопровода.

К примеру, если перекачивается серная кислота, значение скорости ограничивается до величины, которая не станет причиной появления эрозия на стенках трубных колен. В результате структура трубы никогда не будет нарушена.

Скорость воды в трубопроводе формула

Объёмный расход V (60м³/час или 60/3600м³/сек) рассчитывается как произведение скорости потока w на поперечное сечение трубы S (а поперечное сечение в свою очередь считается как S=3.14 d²/4): V = 3.14 w d²/4. Отсюда получаем w = 4V/(3.14 d²). Не забудьте перевести диаметр из миллиметров в метры, то есть диаметр будет 0.159 м.

Формула расхода воды

В общем случае методология измерения расхода воды в реках и трубопроводах основана на упрощённой форме уравнения непрерывности, для несжимаемых жидкостей:

Расход воды через трубу таблица

Зависимость расхода от давления

Нет такой зависимости расхода жидкости от давления, а есть — от перепада давления. Формула выводится просто. Имеется общепринятое уравнение перепада давления при течении жидкости в трубе Δp = (λL/d) ρw²/2, λ — коэффициент трения (ищется в зависимости от скорости и диаметра трубы по графикам или соответствующим формулам), L — длина трубы, d — ее диаметр, ρ -плотность жидкости, w — скорость.5/λ/L)/4, SQRT — квадратный корень.

Коэффициент трения ищется подбором. Вначале задаете от фонаря некоторое значение скорости жидкости и определяете число Рейнольдса Re=ρwd/μ, где μ — динамическая вязкость жидкости (не путайте с кинематической вязкостью, это разные вещи). По Рейнольдсу ищете значения коэффициента трения λ = 64/Re для ламинарного режима и λ = 1/(1.82 lgRe — 1.64)² для турбулентного (здесь lg — десятичный логарифм). И берете то значение, которое выше. После того, как найдете расход жидкости и скорость, надо будет повторить весь расчет заново с новым коэффициентом трения. И такой перерасчет повторяете до тех пор, пока задаваемое для определения коэффициента трения значение скорости не совпадет до некоторой погрешности с тем значением, что вы найдете из расчета.

Похожие статьи:

Гидравлический расчет для выбора насосной станции.

  Здравствуйте уважаемые читатели «Сан Самыча«. Смешно иногда слушать продавцов-консультантов, когда они пытаются искренне помочь «правильно» подобрать насосную станцию. Глубина всасывания, напор, расход, мощность электродвигателя, рассчитывая характеристики на ходу, они умудряются все перепутать и запутаться самим. Для нас, уважаемый читатель, важно понять, что производитель указывает максимально возможные характеристики насоса. И они, конечно, связаны с параметрами Вашей системы водоснабжения, но они не совпадают, и не могут совпадать.

Да, насос способен поднять воду с глубины в восемь метров, но тогда смело скидывайте с напора те же восемь метров или 0,8 бар (атмосфер, кгс/см2).

Да, насос выдаст 45 метров напора (4,5 бар, атм., кгс/см2), но при условии, что Вы не будете с него требовать расхода вообще, а источник воды будет на уровне насоса.

Да, насос будет перекачивать 50 литров в минуту (3 куб. метра в час), но тогда грех добиваться от него хоть какого-то давления. Радуйтесь, что он выдает Вам эти пять ведер в минуту!

Впрочем, производитель и не скрывает этого. В любом паспорте насоса и насосной станции можно найти зависимости расхода от давления на напоре данного насоса, оформленные в виде графика или таблицы. А уже сам покупатель решает: устраивают его данные характеристики или нет.

Что нужно для расчета характеристик насоса?

Для расчета необходимых характеристик насоса нужны некоторые сведения о будущей системе водоснабжения. И мне кажется, Вы, как хозяин своего дома без труда озвучите или выясните их.

К этим сведениям относятся:

— расстояние по вертикали от зеркала воды источника водоснабжения до предполагаемого места установки самого дальнего смесителя в метрах. Причем желательно учесть сезонные колебания этого расстояния и, так называемые, динамические, когда зеркало воды опускается из-за того, что Вы берете воду. Чем точнее Вы определите это расстояние, тем точнее будет расчет, потому что вертикальная составляющая потери напора, обычно, самая большая.

— расстояние по горизонтали от источника воды до самого дальнего смесителя, рассчитанное исходя из предполагаемого маршрута прокладки трубы. Это расстояние можно измерить не так точно, точность плюс-минус один метр вполне сойдет.

— примерное предполагаемое место установки насоса или насосной станции в сборе. Соответственно, с вертикальным расстоянием, желательно, определиться поточнее.

— диаметры и материал предполагаемых к использованию в системе труб. Сейчас, обычно, используют пластиковые трубы, а у них у всех примерно равные показатели шероховатости, поэтому, по большому счету, значение имеют только диаметры предполагаемых труб и их длина. К слову, распространенная в интернете формула для расчета водоснабжения: 10 метров горизонтальной трубы равно 1 метру по вертикали, мягко сказать, не всегда верна. В дальнейшем я расскажу почему.

— Желательно, конечно, определиться с количеством уголков, тройников, кранов и других элементов системы, называемых «местными сопротивлениями». Но я понимаю, что это довольно сложно, по крайней мере, на данном этапе. Поэтому, по нашему обоюдному согласию, заменим это все, скажем, 10-процентным запасом по напору.

Ну, а при монтаже системы, не забывайте простое правило: Чем меньше соединений, тем меньше вероятность, что у Вас что-то потечет. К этому стоит добавить, что и потери напора тоже будут меньше.

Да!!!, и самое главное, Вы должны определиться, сколько потребителей (смесители, душ, бачок унитаза, стиральная или посудомоечная машина, уличный кран для полива и прочее) будут у Вас работать одновременно без существенной потери напора. Потому что от этого очень многое зависит.

Ниже, я собрал в таблицу потери напора в горизонтальной пластиковой трубе длиной 10 метров в зависимости от диаметра трубы и количества потребителей, рассчитанные с помощью специальной программы. По-моему, получилось очень показательно.

Потеря напора в метрах водного столба на горизонтальном участке пластиковой трубы длиной 10 метров в зависимости от внутреннего диаметра трубы и количества потребителей.

Внутренний диаметр трубопровода

12 мм

16 мм

20 мм

26 мм

1 потребитель (расход 0,2 л/с или 12 л/мин)

4,05

1,0

0,35

0,1

2 потребителя (расход 0,4 л/с или 24 л/мин)

14,09

3,49

1,16

0,33

3 потребителя (расход 0,6 л/с или 36 л/мин)

29,49

7,23

2,52

0,7

Из таблицы видно, что формуле: 10 метров горизонтальной трубы равно 1 метру вертикальной, соответствует только труба внутренним диаметром 16 мм (это металлопластик или полипропилен наружным диаметром 20 мм) в расчете на одного потребителя. И это правило никак нельзя назвать универсальным.

Стоит также добавить, что, даже заменяя участки существующей системы на трубы большего диаметра, Вы, тем самым, снижаете сопротивление трубопроводов системы в целом, увеличивая напор на выходе из смесителей.

 Пример расчета характеристик насосной станции.

«Все это хорошо, — скажете Вы, — Но как же считать?!» Давайте посчитаем вместе.

 Задача. Сделать гидравлический расчет водопроводной системы при условии что:

— Имеется скважина глубиной 18 метров, зеркало воды в которой находится на глубине не больше 10 метров от поверхности земли.

— Насос или насосную станцию предполагается поставить над скважиной в кессон глубиной 2,5 метра.

— От скважины до дома расстояние 13 метров.

— Внутри дома предполагаемое горизонтальное расстояние по маршруту прокладки трубы – 9 метров.

— Предполагаемые вертикальные расстояния: от пола до смесителя – 1,1 метра, от пола до излива  душа – 2.2 метра, от уровня земли до пола – 1,2 метра.

— Предполагаемая труба на всасе насоса: металлопластик наружным  диаметром 26 мм и длиной 10 метров. На напоре: от насоса до дома – полиэтилен наружным диаметром 25 мм, длиной 18 метров, разводка в доме – полипропилен наружным диаметром 20 мм, длиной 9 метров.

— Рассчитывать нужно на использование одновременно двух потребителей.

Для начала, давайте приведем в порядок все эти сведения. Общее вертикальное расстояние от зеркала воды до самого дальнего потребителя (излив душа) будет равняться:

10 м + 1,2 м + 2,2 м = 13,4 метра.

Расстояние по вертикали от насоса до зеркала воды:

10 м – 2,5 м = 7,5 метров.

Горизонтальные расстояния нам, собственно, нужны только для определения длины труб, а эти сведения у нас уже есть. Длина трубы на всасе, которую нужно учесть при расчете – это расстояние от зеркала воды до насоса, т.е. 7,5 метров. В принципе, насос должен осилить эти метры, но это число нужно запомнить и проверить перед поиском подходящего насоса.

Общая потеря напора по вертикали нами уже определена, это 13,4 метра. Теперь найдем потерю напора в трубах из-за движения по ним воды. Металлопластиковая труба наружным диаметром 26 мм имеет внутренний диаметр 20 мм, такой же внутренний диаметр у полиэтиленовой трубы, которую предполагается проложить от кессона к дому, поэтому:

18/10*1,16 = 2,088 м

Это потеря напора в полиэтиленовой (ПНД) трубе, ведущей к дому.

Особо не мудрствуя, я взял потерю напора для этого диаметра, 20 мм, и двух потребителей из своей же таблицы и нашел потерю напора для нужной нам длины трубопровода, помня о том, что в таблице указана потеря напора для длины в 10 метров.

Однако для оценки стабильности работы насоса нужно найти полное сопротивление трубы на всасе:

7,5/10*1,16 = 0,87 метра

и общая потеря напора на всасе будет равна:

0,87 + 7,5 = 8,37 метра,

что очень близко к критическим 9 метрам, максимально возможной глубине всасывания насоса. Поэтому, желательно, либо увеличить глубину кессона, хотя бы до 3 метров, либо использовать насосную станцию с внешним эжектором, что намного дороже. Еще вариант, увеличить диаметр всасывающего трубопровода до 32 мм, тогда общее сопротивление трубы уменьшится.

Давайте выберем вариант по надежней: увеличим диаметр трубы на всасе, поменяв её на металлопластик с наружным диаметром 32 мм (внутренний, соответственно, 26 мм) и «опустим» кессон на полметра. Общая высота подъема воды при этом нисколько не изменится. Мы лишь подвинем насос поближе к воде.

7/10*0,33 = 0,231 метра, и

7,0 + 0,231 = 7,231 метра,

Что уже вполне приемлемо, и с поиском нужного насоса, скорее всего, проблем не будет.

Полипропиленовая труба с наружным диаметром 20 мм имеет внутренний диаметр 16 мм, и потеря напора на ней составит:

9/10*3,49 = 3,141 метра

Теперь сложим все, что мы вычислили:

13,4 + 2,09 + 0,23 + 3,14 = 18,86 метра

И прибавим к этому оговоренные нами ранее десять процентов на потерю в местных сопротивлениях:

18,86 +10% = 20,75 метра.

Но это лишь тот напор, который должен преодолеть насос, чтобы вода просто полилась из смесителя. Чтобы вода пошла из смесителя под напором, к этому нужно добавить так называемый «свободный напор». По стандартам он должен быть не меньше 3 метров, исходя же из практических соображений, лучше закладывать в расчет число побольше, в разумных, конечно, пределах, например, 15 метров. Этого хватит на преодоление сопротивления в различном подключаемом нами оборудовании: бойлер, стиральная и посудомоечная машина и т.д.

Таким образом, мы получаем желательные характеристики насоса:

20,75 + 15 = 35,75, т.е. примерно 36 метров,

Но не меньше 20,75 + 3 = 23,75, т.е. примерно 24 метра.

При этих напорах насос должен выдавать нам 24 литра в минуту или 1,44 кубометра в час.

Напомню, это не те характеристики, которые написаны на шильдике насоса, а те, которые насос должен реально выдавать при этом напоре и расходе.

Как это узнать? Читаем дальше…

нормы и способы повысить давление

Для бесперебойного функционирования сантехнических приборов необходимо, чтобы давление воды в водопроводе соответствовало определенному показателю, который обычно рассчитывается индивидуально.

Но верные вычисления не гарантируют, что на практике напор воды будет оптимальным. Владельцы загородных домов чаще всего сталкиваются с проблемой малого напора воды в трубах. Решить ее возможно путем внедрения оборудования.

Предлагаем разобраться, каковы нормы давления в водопроводе частного дома и по каким причинам происходит снижение напора. Предложим действенные методы повышения эффективности водоснабжения. Материал мы дополнили подробными фото инструкциями и видео.

Содержание статьи:

Нормы давления в трубопроводе

Водопроводное давление измеряется в барах. Величина имеет альтернативное название – атмосферная единица. Под напором в 1 бар вода может подняться на высоту 10 м.

В обычно давление составляет 4-4,5 бара, чего хватает для обслуживания многоэтажных домов.

По нормативным документам, в частности указаниям сборника СНиП 2.0401-85, допустимое давление для холодной воды варьируется в пределах от 0.3 до 6 бар, для горячей – от 0.3 до 4.5. Но из этого не следует, что давление в 0.3 атмосферы будет оптимальным. Здесь приведены лишь допустимые границы напора.

Галерея изображений

Фото из

Низкое давление влияет на эксплуатацию

Затруднения с набором воды

Сложность приема процедур

Отключение стиральной машины

Угроза перегорания проточного водонагревателя

Последствия превышения давления

Излишний напор в точках водозабора

Выход из строя электронного управления

Жители частных домов вынуждены рассчитывать давление в водопроводе индивидуально. В случае, если система автономная, напор может превышать допустимые по нормативным документам границы. Он может колебаться в районе 2.5-7.5 бар, а иногда достигать и 10 бар.

Стандартными значениями для нормальной работы системы с считается интервал 1,4 – 2,8 бар, соответствующие заводской установке показателей реле давления.

Если обеспечить чрезмерно высокое давление в системе, то некоторые чувствительные приборы могут выходить из строя или некорректно работать. Поэтому в трубопроводе давление не должно превышать 6.5 бар.

Высокое давление в водопроводе может вызвать протекание трубы, поэтому важно предварительно рассчитывать оптимальный уровень напора самостоятельно

Фонтанирующие артезианские скважины способны выдать напор в 10 бар. Такое давление способны выдержать исключительно приваренные соединения, большинство же фитингов, запорно-регулирующих узлов под его действием разрушаются, в результате чего возникают течи на участках.

Определять, какое необходимо давление воды для нормального функционала водопровода загородного дома, необходимо с учетом используемых бытовых приборов. Некоторые виды сантехнических устройств не работают при низком давлении.

Например, для джакузи необходимо давление 4 бара,  для душа, системы пожаротушения – 1.5 бара, для стиральной машинки – 2 бара. Если предусматривать возможность полива газона, то здесь должен быть сильный напор в 4, иногда – в 6 бар.

Бытовые сантехнические приборы, подсоединенные к водопроводу, способны корректно работать исключительно от определенного давления, которое обычно составляет не меньше 1.5 бара

Оптимальным показателем давления для загородного дома будет отметка в 4 бар. Такого напора хватит для исправной работы всех сантехнических устройств. При этом большинство фитингов, узлов запорно-регулирующей арматуры способны его выдерживать.

Давление в 4 бар может обеспечить далеко не каждая система. Обычно для загородных домов давление в водопроводе составляет 1-1.5 бар, что соответствует самотеку.

Причины низкого напора в водоснабжении

В загородные дома вода в водопроводную сеть поступает из  или .

Если система полностью автономна, то для создания нужного напора нужно учитывать два момента:

  • необходимость обеспечения подъема воды;
  • важно производить верно гидравлический расчет и правильно его реализовать на практике – обеспечить необходимое давление в удаленных от водосбора точках и точках, располагающихся на разной высоте.

Из этого вытекает две основные проблемы индивидуальных водопроводов:

  1. Не хватает ресурсов скважины – дебит отверстия не позволяет поддерживать нормальное давление, а , следовательно, повысить напор.
  2. Воды в скважине достаточно много, поэтому насосы могут нагнетать высокое давление (до 6 бар), что может привести к разрывам соединений, протечкам, быстрому износу оборудования.

В первом случае насосы качают жидкость, создавая ее циркуляцию до возникновения определенного давления, однако со временем оно ослабевает. Во втором случае нужно подобрать насос с  производительностью, которая равна суточной норме потребления воды.

От дебита скважины напрямую зависит напор воды в трубопроводе и ее литраж, поставляемый за одну откачку

Тем не менее, большинство владельцев частных домов волнует вопрос, как грамотно повысить давление в собственном водопроводе, а не понизить его, ведь необходимым дебитом для создания высокого давления обладают лишь некоторые артезианские скважины.

Большинство же отверстий генерируют слабый напор воды, а то и вовсе не способны производить какое-либо давление.

Если в доме используются стандартные бытовые приборы, то достаточно поднять давление до 2.3-2.5 бар – этого волне хватит для их бесперебойного одновременного функционирования с хорошим напором. Если предусмотрена джакузи или система полива, то здесь необходимо более высокое давление.

Для измерения давление используется прибор манометр. Его покупают отдельно и встраивают на точке входа воды в дом. Также туда же устанавливают счетчик воды. Некоторое оборудование идет в комплектации с манометром. Например, обогревательный котел, если предусматривается ГСВ.

Принцип регулировки давления водопроводных сетей частных домов такой же, как и автономной системы, отличается сеть лишь размерами

Простой манометр имеет шкалу от 0 до 7, что позволяет установить его в квартире, частном доме.

Методы повышения давления в системе

Если давление в водопроводе низкое, то причина может заключаться в следующем:

  1. Вода в трубопроводе есть, но отсутствует напор.
  2. Вода в трубопроводе отсутствует на верхних этажах.

Для решения первой проблемы необходимо внедрить в систему , для решения второй – установить накопительную станцию.

Прежде чем внедрять технические средства в систему водоснабжения, следует сначала проверить сеть на предмет засорения:

Галерея изображений

Фото из

Проверка фильтра грубой очистки

Прочистка аэратора водопроводного крана

Контроль состояния запорной арматуры

Распространенная причина — трубы

#1: Внедрение насоса для повышения давления

Если вода в трубопроводе присутствует, но нет напора, то устанавливают нагнетательный насос. Также устройство можно внедрить в случае, если нет напора в квартире с централизованным отоплением.

Причина отсутствия давления может заключаться в следующем:

  • скважина располагается отдаленно дома;
  • мощности базового насоса не хватает, чтобы обеспечить подачу воды на верхние этажи.

Насос обычно монтируют на входе в домашнюю трубопроводную сеть перед коллектором или первым тройником.

Существует один недостаток центральных насосов – они создают разряжение, то есть могут качать насыщенную воздухом воду. Обычный нагнетательный центробежным насос чувствителен к содержанию воздуха в жидкости, поэтому стоит отдать предпочтение вибрационным модификациям.

Водяной насос работает от электродвигателя. Внутренний элемент вращается, тем самым увеличивая давление в трубах. Корпус прибора обычно выполнен из прочного пластика

Для установки прибора в многоквартирном доме важно выбрать модификацию верной мощности, иначе владелец “прокачанного” водопровода будет понижать давление в соседних квартирах. Рекомендуется ставить насос на трубу, ведущую к конкретному бытовому прибору.

В общем случае насос врезают в общую трубу, которая отвечает за подачу воды в квартиру или дом. Сам прибор довольно компактный и стоит недорого.

Галерея изображений

Фото из

Устройство для поддержки давления

Конструкция и принцип действия

Регулировка редуктора давления

Редуктор давления с рукояткой и шкалой

#2: Основные виды нагнетательных насосов

Существуют модели с сухим и мокрым ротором (проточные). Элементы насоса с мокрым ротором смазывает проходящая жидкость. Устройства этого класса не требуют дополнительного обслуживания, если изначально их подключить правильно.

Электрический насос, в отличие от вибрационного, устанавливается между водопроводом и источником воды

Хорошей мощностью обладает насос с сухим ротором, но он нуждается в регулярном обслуживании, выдает негромкие звуки при работе, напоминающие писк комара. Детали его ограждены водостойкой заслонкой, поэтому придется раз в месяц чистить прибор.

По типу работы насосы делятся на следующие виды:

  • насос, повышающий давление в ручном режиме и имеющий ручное управление. Модель постоянно работает, автоматических переключателей не имеет. У прибора несложная понятная для простых обывателей конструкция; чаще всего устройство используется в системах “теплый пол”;
  • автоматический насос – запускается лишь при включении крана или бытовых приборов. После их закрытия отключается.

Автоматический насос стоит дороже ручного, потребляет немного энергии, оперативно реагирует на изменения в давлении и сегодня является наиболее востребованным.

Выбрать нагнетательный насос довольно просто.

Важно определить следующее:

  • на горячую или холодную воду будет устанавливаться прибор;
  • необходимый уровень напора – чем выше показатель, тем большим будет давление в системе.

Соответственно, чем выше напор, тем больше необходимо мощности и пропускной способности оборудования.

Не менее важно выбрать нагнетательный насос с учетом бренда, поскольку в случае поломки не каждая ремонтная служба возьмется приводить в порядок модель производства неизвестной фирмы. Самые известные и всеми признанные производители – Грундфос, Wilo, Sprut. Каждая фирма специализируется на выпуске разных модификаций прибора.

Насос Wilo PB-401SEA предназначен для повышения напора в водопроводных сетях жилищного хозяйства. Может устанавливаться как на всасывающий, так и на подающий участок

Например, Грундфос выпускает циркуляционные насосы небольшого объема, Wilo разрабатывают модели со встроенным гидроаккумулятором.

Чтобы подключить циркуляционный нагнетательный насос нужно:

  1. Перекрыть воду на участке.
  2. Выпустить воду из трубопровода и системы в целом.
  3. Отрезать часть трубы, в которой будет производиться установка.
  4. Прикрепить фитинги и насадки на места стыков.
  5. Врезать оборудование в водопровод.

Также допустимо использовать полипропиленовый или резиновый шланг для упрощения монтажа. В современных циркуляционных насосах такие трубы идут в комплекте.

#3: Повышение давления накопительным баком

Когда в доме трубопроводы стоят без воды или в случае, если на нижнем этаже вода присутствует, а до верхних не доходит, необходимо приобретать накопительную насосную станцию. Также ее внедряют в систему тогда, когда сетевое давление меньше 0.2 бара, а расход меньше 2 л/м.

Любая насосная станция работает по одному принципу. Монтируют ее в точке сопряжения внешней или внутренней ветки домашней трубопроводной сети

Принцип ее работы следующий. Насос закачивает жидкость в станцию (бак или гидроаккумулятор), который работает под давлением 1.5-2 бара. Вода поступает до момента, когда в баке появится напор в 1.5 или 2 бара. Если станция оборудована , то создаваемое давление может быть на порядок выше.

После генерации необходимого давления, насосная станция отключается автоматически.

В конструкцию накопительной станции внедрены специальные датчики давления. При падении напора до 1.5 бар главный насос включается, при возрастании до определенной отметки отключается.

Система с насосом и накопительным баком имеет множество узлов, что затрудняет ее самостоятельный монтаж. Чтобы оборудование работало правильно и бесперебойно, лучше обратиться к специалистам (+)

Насос в станции может быть одного из двух видов –  или вибрационным.

По типу всасывания различают:

  • конструкции со съемным эжектором – способны генерировать давление в 5 бар. Эжектор погружают в скважину, а сам бак может располагаться дома, поскольку при работе практически не шумит. Преимущественно используется станция в случаях, если источник воды располагается глубоко, а ее недостатком является чувствительность к механическим элементам – песку, грязи и др.
  • оборудование со встроенным эжектором – подходит для неглубоких (до 8 метров) скважин и колодцев, эффективно работает в грязной воде, не чувствительно к попаданию воздуха, но отличается высоким уровнем шума, поэтому обычно его устанавливают в специальных пристройках.

Модели с накопительным баком отличаются экономичностью (запуск происходит при опустошении бака), но имеют множество недостатков: генерируют малый напор, обладают большими габаритами, есть вероятность разрыва, в результате чего помещение может затопить.

Станции с накопительным баком сегодня практически не используют. На замену им пришли модели с гидроаккумулятором. Они обладают небольшими размерами, не шумят при работе.

Установить прибор можно в подвале, подсобке, отдельной пристройке. При этом минимизирован риск протечек. Но гидроаккумулятор имеет небольшой запас емкости (около 25 л) и его не используют для скважин с малым дебитом.

Насосные станции нередко используются в сложно-разветвленных и протяженных водопроводах в качестве повысительного оборудования, перекачивающего воду из накопительного бака в точкам водоразбора

Также разделяют станции на поверхностные (когда насос располагается на земле) и погружные (устройство погружается в воду), последние условно делятся на колодезные и скважинные.

Для повышения уровня напора воды в квартирном трубопроводе насосные станции не используют в силу особенностей конструкции и шума при работе.

Несмотря на свою внушительную стоимость, насосная станция имеет ряд неоспоримых преимуществ:

  • возможно установить любое желаемое давление в доме, что позволит использовать любые сантехнические приборы, в том числе и те, которые требуют для функционирования высокого давления;
  • подача воды будет бесперебойной даже в случае, если она отсутствует в центральной магистрали (благодаря наличию накопительного бака).

Существуют у системы недостатки — она громоздкая, занимает много места.

Важно верно определить объем накопительной емкости. Берут эту величину с учетом среднесуточной нормы расхода воды. Если семья состоит из 3-4 человек, то в сутки хватит примерно 500 л воды.

При расчетах также важно учитывать, что воду время от времени нужно обновлять, чтобы избежать появления бактерий.

Если воды в баке достаточно (или давление в системе падает), то автоматически запускается насос, который нагнетает необходимое давление в сети, а после достижения определенной отметки отключается

Важно своевременно и регулярно производить очистку накопительной емкости, поскольку в ней скапливаются болезнетворные бактерии. Препятствуют их размножению небольшие мешочки с техническим серебром, помещенные вовнутрь бака.

Следует помнить, что на переливной трубе не должно быть запорной арматуры. Если поплавковый клапан выйдет из строя, то через нее будет происходить отвод воды.

Также необходимо установить байпас, чтоб в случае поломки станции была возможность отключить систему без полного отключения водоснабжения.

Выводы и полезное видео по теме

Ролик №1. Как подобрать электрическую станцию. В видеоролике можно узнать об особенностях выбора электрической станции с гидроаккумулятором:

Ролик №2. Видео описывает основные моменты при установке нагнетательного насоса:

Как видим, поднять давление в водопроводе несложно. Для решения задачи используется нагнетательный насос или специальная насосная станция. Если монтаж насоса возможно осуществить своими силами, то доверить установку станции следует профессионалам.

У вас есть личный опыт по улучшению давления в водопроводе? Хотите поделиться действенными методами или задать вопросы по теме? Пожалуйста, оставляйте комментарии – форма для отзывов расположена ниже.

Калькулятор расчета давления воды в водопроводе + подробное описание опыта

Нередко случается так, что давление воды на точках водоразбора в квартире – явно недостаточное. Это приводит к неудобствам при пользовании сантехническими приборами, к «зависанию» или полной остановке бытовой техники, подключенной к водопроводу, к некорректной работе современных устройств (душевых кабинок, джакузи, биде и т.п.), требующих определенного напора воды. Естественно, такая ситуация требует принятия мер административного характера (которые помогают, увы, не всегда), или установки специальных повышающих насосов или насосных станций.

Калькулятор расчета давления воды в водопроводе

Чтобы предъявить претензии или спланировать установку дополнительного оборудования, желательно заранее знать, какое же давление преимущественно держится в водопроводе, то есть насколько оно отличается от нормативного. Если есть манометр, то снять показания — труда не составит. Но что делать, если такого прибора нет? Не беда, существует простой и точный экспериментальный способ, под который и составлен расположенный ниже калькулятор расчета давления воды в водопроводе.

Цены на насосные станции

насосная станция

Описание проведения замеров и расчетов – в текстовой части ниже калькулятора.

Калькулятор расчета давления воды в водопроводе

Перейти к расчётам

Как провести опытные замеры и вычисления?

Для самостоятельного измерения давления потребуется отрезок прозрачного шланга (трубки) длиной порядка 2 метров. Диаметр в данном случае никакого решающего значения не имеет – главное, чтобы была возможность герметично надеть шланг на смеситель или любой другой патрубок, оснащенный запорным краном.

Далее, поступают следующим образом (см схему):

Схема проведения экспериментального вычисления давления в водопроводе.
  • Шланг надевается на смеситель или патрубок, герметично, чтобы не просачивались ни вода, ни воздух. Лучше всего – обтянуть обычным хомутом.
  • В шланг запускается небольшое количество воды, затем он понимается вертикально и фиксируется в таком положении. Уровень воды в нижней петле должен приходиться примерно на высоту крана (патрубка). Это наглядно показано на иллюстрации слева. После этого замеряют начальную длину воздушного столба ho в миллиметрах. Значение записывают.
  • Далее, шланг сверху герметично закупоривают какой-нибудь пробкой, а затем открывают кран полностью. Вода своим давлением сожмет воздух в трубке и поднимется на определенную высоту. Главное – ни в коем случае не допустить просачивания воздуха сверху.
  • После того как уровень стабилизируется, делают еще один промер высоты воздушного столба (на рисунке справа) – hэ.

Эти две величины и являются исходными для внесения в калькулятор и получения значения давления воды в водопроводе. Результат будет выдан в технических атмосферах (бар) и в метрах водяного столба – как кому удобнее.

Одно из решений проблемы – установка насосной станции

Ситуацию со стабильно недостаточным напором воды можно решить установкой насосной станции с аккумулирующим резервуаром. Как правильно подойти к выбору насосной станции – читайте в специальной публикации нашего портала.

Калькулятор расхода

— Давление и диаметр Калькулятор расхода

— Давление и диаметр | Copely

С помощью этого инструмента можно легко рассчитать средний объемный расход жидкости, изменив каждую из трех переменных: длину, давление и диаметр отверстия. Затем влияние на прогнозируемую скорость потока представлено на трех графиках, где, в свою очередь, две переменные сохраняются постоянными, а скорость потока отображается в зависимости от диапазона значений третьей.

Помните: если вам нужна помощь в выборе подходящего шланга для вашей области применения или отрасли, свяжитесь с одним из наших сотрудников по телефону 0116 240 1500 или по электронной почте [email protected].

Считаете этот инструмент полезным? Вы можете встроить наш калькулятор расхода на свой веб-сайт, скопировав приведенный ниже код.

Как использовать:

Чтобы начать расчет, введите свои цифры в поля ниже. Если значение не доступно ни для одной из переменных, оставьте поле пустым, и программа выберет собственное значение.

Результаты

Пожалуйста, нажмите на вкладки ниже, чтобы просмотреть результаты.

Зависимость расхода жидкости от длины шланга Количество потока жидкости в зависимости от давления Зависимость расхода жидкости от диаметра ствола
Зависимость расхода жидкости от длины шланга
Длина 20.000 40,000 60.000 80,000 100,000 120,000 140.000 160,000 180.000 200,000
Количество Расход жидкости (литры в минуту) 95,273 68,458 56.202 48,807 43,727 39,961 37.026 34,656 32,689 31,023
Диаметр отверстия (мм) 25 25 25 25 25 25 25 25 25 25
Давление (бар) 7 7 7 7 7 7 7 7 7 7
Диаметр отверстия (дюймы) 0.984 0,984 0,984 0,984 0,984 0,984 0,984 0,984 0,984 0,984
Давление (фунт / кв. Дюйм) 102,900 102,900 102,900 102,900 102,900 102,900 102.900 102,900 102,900 102,900
Длина (фут) 65,667 131,333 197.000 262,667 328.333 394,000 459,667 525,333 591,000 656,667
Количество потока жидкости (галлонов в минуту) 20.960 15.061 12,364 10,738 9,620 8,791 8,146 7,624 7,192 6,825
Коэффициент C 20,105 20,105 20,105 20,105 20,105 20,105 20.105 20,105 20,105 20,105
Скорость V (фут / сек) 10.602 7,618 6,254 5,431 4,866 4,447 4,120 3,856 3,638 3,452
Диаметр отверстия (фут) D 0.082021 0,082021 0,082021 0,082021 0,082021 0,082021 0,082021 0,082021 0,082021 0,082021
Эквивалентная напорная жидкость, ч (фут) 237,644 237,644 237,644 237,644 237.644 237,644 237,644 237,644 237,644 237,644
Величина расхода жидкости в зависимости от давления
Давление 1,400 2,800 4.200 5,600 7.000 8.400 9,800 11.200 12.600 14,000
Расход жидкости (л / мин) 19,555 27,655 33,871 39,110 43,727 47,900 51,738 55,310 58.666 61,839
Диаметр отверстия (мм) 25 25 25 25 25 25 25 25 25 25
Длина 100 100 100 100 100 100 100 100 100 100
Диаметр отверстия (дюйм) 0.984 0,984 0,984 0,984 0,984 0,984 0,984 0,984 0,984 0,984
Давление (фунт / кв. Дюйм) 20,580 41.160 61,740 82,320 102,900 123.480 144.060 164,640 185,220 205,800
Длина (фут) 328.333 328.333 328.333 328.333 328.333 328.333 328.333 328.333 328.333 328.333
Кол-во расход жидкости (галлон / мин) 4.302 6.084 7,452 8.604 9,620 10,538 11,382 12,168 12,906 13.605
Коэффициент C 20,105 20,105 20,105 20,105 20,105 20,105 20.105 20,105 20,105 20,105
Скорость V (фут / сек) 2,176 3,077 3,769 4,352 4,866 5,330 5,757 6,155 6.528 6,881
Диаметр отверстия (фут) D 0.082021 0,082021 0,082021 0,082021 0,082021 0,082021 0,082021 0,082021 0,082021 0,082021
Эквивалентная напорная жидкость, ч (фут) 47,529 95,058 142,587 190.115 237.644 285,173 332,702 380,231 427,760 475,289
Количество потока жидкости в зависимости от диаметра отверстия
Диаметр отверстия 5.000 10.000 15,000 20.000 25.000 30.000 35,000 40,000 45,000 50,000
Расход жидкости (л / мин) 0,091 2,204 8,792 21,989 43,727 75,790 119,849 177,478 250,177 339.374
Давление (бар) 7 7 7 7 7 7 7 7 7 7
Длина 100 100 100 100 100 100 100 100 100 100
Диаметр отверстия (дюйм) 0.197 0,394 0,591 0,787 0,984 1,181 1,378 1,575 1.772 1,969
Давление (фунт / кв. Дюйм) 102,900 102,900 102,900 102,900 102,900 102,900 102.900 102,900 102,900 102,900
Длина (фут) 328.333 328.333 328.333 328.333 328.333 328.333 328.333 328.333 328.333 328.333
Кол-во расход жидкости (галлон / мин) 0.020 0,485 1,934 4,838 9,620 16,674 26,367 39,045 55.039 74,662
Коэффициент C 2,314 9,976 14,458 17,638 20,105 22,120 23.824 25,300 26,602 27,767
Скорость V (фут / сек) 0,252 1,533 2,718 3,823 4,866 5,857 6.804 7,715 8,592 9,441
Диаметр отверстия (фут) D 0.016 0,033 0,049 0,066 0,082 0,098 0,115 0,131 0,148 0,164
Эквивалентная напорная жидкость, ч (фут) 237,644 237,644 237,644 237,644 237,644 237.644 237,644 237,644 237,644 237,644

Расход жидкости в трубах

Количество жидкости, которое будет выпущено через шланг, зависит от давления, приложенного на подающем конце, длины шланга и диаметра отверстия. Характер поверхности отверстия, количество и форма изгибов на участке шланга также влияют на скорость потока.

Давление иногда указывается как «напор». Если напор указан в метрах водяного столба, каждый 1-метровый напор (3,28 фута) создает давление 0,1 бар (1,47 фунт / кв. Дюйм).

Все формулы для определения количества жидкости, которая будет протекать через шланг в данный момент времени, являются приблизительными. Приведенные выше графики построены на основе расчетов, предполагающих, что шланг находится в хорошем состоянии и проложен по прямой линии. В этом случае они будут точными с точностью до 10% от реальных полученных результатов.

Если набор условий, введенных в модель, дает отрицательные ответы, то очевидно, что необходимо соответствующим образом скорректировать переменные, пока не будет получен реалистичный результат.

Необходимо рассчитать падение давления жидкости, движущейся по трубе или трубе? Воспользуйтесь нашим калькулятором падения давления.

Вставить этот инструмент на свой веб-сайт

Скопируйте приведенный ниже код, чтобы встроить калькулятор скорости потока на свой веб-сайт.

Не пропустите последние новости

Подпишитесь на нашу эксклюзивную рассылку по электронной почте, чтобы получать последние новости и предложения от Copely.

Copely Developments Ltd будет использовать информацию, которую вы предоставляете в этой форме, чтобы время от времени связываться с вами
для обсуждения интересных историй, новых продуктов и предстоящих событий. Вы можете отписаться в любое время.

© 2021 Copely Developments Ltd — Турмастон-лейн, Лестер, LE4 9HU. — Входит в группу компаний COBA.

Таблицы потерь давления в трубах и трубках

Вот несколько таблиц потерь давления, которые вы можете использовать для расчета потерь на трение в вашем доме или магистрали оросительной системы.Это старая школа, низкотехнологичный метод. На этом веб-сайте также доступны бесплатные электронные таблицы (они используют бесплатную программу электронных таблиц Open-Office), которые рассчитают для вас потерю давления. Таблицы охватывают больше типов и размеров труб, чем эти таблицы. Я предлагаю использовать электронные таблицы, но эти таблицы удобны, если вы хотите быстро найти значение или просто не работаете с электронными таблицами.

Быстрый фон для тех, кто перешел на эту страницу после поиска давления воды или чего-то подобного.Когда вода течет по трубе, она теряет давление. Давление теряется из-за трения воды о стенки трубы, а также из-за турбулентности, когда вода перекатывается. Важно знать, какую потерю давления можно ожидать. Если на конце трубы не останется достаточного давления, то такие вещи, как разбрызгиватели, стиральные машины, посудомоечные машины, краны, туалеты и т. Д., Не будут работать. Для очень общих целей для работы большинству вышеупомянутых элементов требуется давление не менее 20 фунтов на квадратный дюйм. Большинство из них будет работать намного лучше при 30 фунтах на квадратный дюйм.

Как использовать таблицу потерь давления в трубопроводе:

(PSI = фунты на квадратный дюйм = фунты / кв. Дюйм)

  • Выберите соответствующую таблицу для типа трубы, т.е. ПВХ СЧ 40, сталь СЧ 40, полиэтилен, медь и др.
  • Найдите в таблице столбец с размером трубы.
  • Считайте значение скорости потока (галлонов в минуту) в секции трубы от столбца до строки. Вы найдете значение потерь PSI (в PSI / 100).
  • Умножьте значение потерь PSI на общую длину участка трубы, затем разделите произведение на 100.(Потери PSI в этих таблицах приведены в PSI на 100 футов трубы.)
  • Значения потери давления, выделенные желтым курсивом, превышают 5 футов в секунду. Это высокая скорость, но считается приемлемой для коротких расстояний (менее 50 футов длины трубы).
  • Потери давления, превышающие указанные в таблице, могут привести к необратимому и дорогостоящему повреждению вашей сантехники. Вы должны использовать более низкий расход (галлонов в минуту) в трубе.
Значение потерь

фунтов на квадратный дюйм x длина трубы / 100 = потеря фунтов на квадратный дюйм в трубе

Пример: размер 1 ″, тип SCH 40 ПВХ магистраль.Длина магистральной трубы 23 фута. Расход воды по магистрали составляет 18 галлонов в минуту. Используя таблицу потерь давления в трубах, мы находим, что потеря PSI для 1 ″ SCH 40 PVC при расходе 18 галлонов в минуту составляет 8,12 PSI на 100 футов. Следовательно: 8,12 x 23/100 = 1,87 фунтов на квадратный дюйм — для упрощения можно округлить значение до потери 2 фунтов на квадратный дюйм

(Примечание: графики потерь PSI несколько отличаются друг от друга. Ответы на других графиках могут немного отличаться от приведенного в этом примере.)

ТАБЛИЦА ПОТЕРИ ДАВЛЕНИЯ ДЛЯ ТРУБЫ ПВХ SCH 40

РАСХОД, галлонов в минуту 3/4 ″ 1 ″ 1 1/4 ″ 1 1/2 ″ 2 ″ 2 1/2 ″ 3 ″
1 0.13 0,04 0,01 —— —— —— ——
2 0,45 0,14 0,04 —— —— —— ——
3 0,95 0,30 0,08 —— —— —— ——
4 1,62 0,50 0.14 0,07 —— —— ——
5 2,45 0,76 0,20 0,10 —— —— ——
6 3,44 1,06 0,28 0,13 —— —— ——
7 4,57 1,42 0,38 0,18 —— —— ——
8 5.85 1,81 0,48 0,23 —— —— ——
9 7,28 2,25 0.60 0,28 0,09 —— ——
10 8,85 2,74 0,72 0,34 0,11 —— ——
11 10,56 3,26 0.86 0,41 0,12 —— ——
12 —— 3,84 1.01 0,48 0,14 —— ——
13 —— 4,45 1,17 0,56 0,17 —— ——
14 —— 5,10 1,35 0,64 0.19 —— ——
РАСХОД, галлонов в минуту 3/4 ″ 1 ″ 1 1/4 ″ 1 1/2 ″ 2 ″ 2 1/2 ″ 3 ″
15 —— 5,80 1,53 0,72 0,22 0,09 ——
16 —— 6,53 1,72 0,82 0,25 0.11 ——
18 —— 8,12 2,14 1.01 0,30 0,13 ——
20 —— —— 2,60 1,23 0,37 0,16 ——
22 —— —— 3,10 1,47 0,44 0,19 ——
24 —— —— 3.65 1,72 0,51 0,21 0,08
26 —— —— 4,23 2,00 0.60 0,25 0,09
28 —— —— 4,85 2,29 0,68 0,29 0,10
30 —— —— 5,51 2,60 0.78 0,33 0,12
35 —— —— —— 3,46 1.03 0,44 0,15
40 —— —— —— 4,43 1,32 0,54 0,20
45 —— —— —— —— 1,64 0,69 0.24
50 —— —— —— —— 1,99 0,84 0,30
55 —— —— —— —— 2,37 1,00 0,35
60 —— —— —— —— 2,79 1,18 0,41
РАСХОД, галлонов в минуту 3/4 ″ 1 ″ 1 1/4 ″ 1 1/2 ″ 2 ″ 2 1/2 ″ 3 ″
65 —— —— —— —— 3.23 1,36 0,48
70 —— —— —— —— 3,71 1,56 0,55
75 —— —— —— —— —— 1,78 0,62
80 —— —— —— —— —— 2,00 0.70
85 —— —— —— —— —— 2,24 0,78
90 —— —— —— —— —— 2,49 0,87
95 —— —— —— —— —— 2,75 0,96
100 —— —— —— —— —— 3.02 1,05
110 —— —— —— —— —— —— 1,26
120 —— —— —— —— —— —— 1,47
130 —— —— —— —— —— —— 1,71
140 —— —— —— —— —— —— 1.96
150 —— —— —— —— —— —— 2,23
160 —— —— —— —— —— —— 2,51
РАСХОД, галлонов в минуту 3/4 ″ 1 ″ 1 1/4 ″ 1 1/2 ″ 2 ″ 2 1/2 ″ 3 ″

Потери давления, выделенные желтым курсивом, отражают скорость потока от 5 до 7 футов в секунду.Будьте осторожны при использовании скорости потока в этом диапазоне. Повреждение гидравлическим ударом может возникнуть в результате сочетания высокого давления и высокой скорости. Потери давления указаны в фунтах на квадратный дюйм на 100 футов длины трубы.


ТАБЛИЦА ПОТЕРИ ДАВЛЕНИЯ, ПОЛИЭТИЛЕНОВАЯ ТРУБКА

Для SDR-7, SDR-9, SDR 11,5 и SDR 15 (все имеют одинаковый внутренний диаметр)

Расход в галлонах в минуту 3/4 ″ 1 ″ 1 1/4 ″ 1 1/2 ″ 2 ″
1 галлон в минуту 0.12 0,04 0,01 0,00 0,00
2 галлона в минуту 0,45 0,14 0,04 0,02 0,01
3 галлона в минуту 0,95 0,29 0,08 0,04 0,01
4 галлона в минуту 1,62 0,50 0,13 0,06 0,02
5 галлонов в минуту 2.44 0,76 0,20 0,09 0,03
6 галлонов в минуту 3,43 1,06 0,28 0,13 0,04
7 галлонов в минуту 4,56 1,41 0,37 0,18 0,05
8 галлонов в минуту 5,84 1,80 0,47 0,22 0,07
9 галлонов в минуту 7.26 2,24 0,59 0,28 0,08
10 галлонов в минуту 8,82 2,73 0,72 0,34 0,10
3/4 ″ 1 ″ 1 1/4 ″ 1 1/2 ″ 2 ″
11 галлонов в минуту 10,53 3,25 0,86 0,40 0,12
12 галлонов в минуту 12.37 3,82 1.01 0,48 0,14
13 галлонов в минуту 13,34 4,43 1,17 0,55 0,16
14 галлонов в минуту 16,45 5,08 1,34 0,63 0,19
15 галлонов в минуту 18,70 5,78 1,52 0,72 0,21
16 галлонов в минуту 21.07 6,51 1,71 0,81 0,24
17 галлонов в минуту 23,57 7,28 1,92 0,91 0,27
18 галлонов в минуту 26,21 8,10 2,13 1.01 0,30
19 галлонов в минуту 28,97 8,95 2,36 1,11 0,33
20 галлонов в минуту 31.85 9,84 2,59 1,22 0,36
3/4 ″ 1 ″ 1 1/4 ″ 1 1/2 ″ 2 ″
22 галлона в минуту 38,00 11,74 3,09 1,46 0,43
24 галлона в минуту 44,65 13,79 3,63 1,72 0,51
26 галлонов в минуту 51.78 16,00 4,21 1,99 0,59
28 галлонов в минуту 59,40 18,35 4,83 2,28 0,68
30 галлонов в минуту 67,50 20,85 5,49 2,59 0,77
32 галлона в минуту 76,06 23,5 6,19 2,92 0,87
34 галлона в минуту 26.29 6,92 3,27 0,97
36 галлонов в минуту 29,22 7,69 3,63 1,08
38 галлонов в минуту 32,30 8,50 4,02 1,19
40 галлонов в минуту 35,52 9,35 4,42 1,31
3/4 ″ 1 ″ 1 1/4 ″ 1 1/2 ″ 2 ″
42 галлона в минуту 38.88 10,24 4,83 1,43
44 галлона в минуту 42,43 11,16 5,27 1,56
46 галлонов в минуту 46.01 12,12 5,72 1,70
48 галлонов в минуту 49,79 13,11 6,19 1,84
50 галлонов в минуту 53,70 14.14 6,68 1,98
55 галлонов в минуту 16,87 7,97 2,36
60 галлонов в минуту 19,82 9,36 2,77
65 галлонов в минуту 22,98 10,86 3,22
70 галлонов в минуту 26,36 12,45 3,69
75 галлонов в минуту 29.96 14,15 4,19

Потери давления, выделенные желтым курсивом, отражают скорость потока от 5 до 7 футов в секунду. Будьте осторожны при использовании скорости потока в этом диапазоне. Повреждение гидравлическим ударом может возникнуть в результате сочетания высокого давления и высокой скорости. Потери давления указаны в фунтах на квадратный дюйм на 100 футов длины трубы.


Таблица потерь давления, медная труба или шланг типа K

Медная труба типа K имеет самую толстую стенку и самые высокие значения давления среди обычных медных труб.В порядке толщины стенок распространенными типами медных труб являются тип M (самые тонкие), тип L и тип K (самые толстые). Тип L обычно используется для домашнего водопровода. Тип К чаще всего используется для изготовления коротких ниппелей с резьбовым концом. Если вы не знаете, какой тип трубы, предположите, что это тип K.

Расход в галлонах в минуту 1/2 ″ 3/4 ″ 1 ″ 1 1/4 ″
1 галлон в минуту 1,20 0,23 0,05 0.02
2 галлона в минуту 4,33 0,77 0,18 0,06
3 галлона в минуту 9,17 1,65 0,38 0,13
4 галлона в минуту 15,67 2,78 0,68 0,22
5 галлонов в минуту 4,21 1.02 0,33
6 галлонов в минуту 5,90 1.44 0,46
7 галлонов в минуту 7,84 1,90 0,61
8 галлонов в минуту 10,03 2,46 0,78
9 галлонов в минуту 12,48 3,03 0,97
10 галлонов в минуту 15,15 3,68 1,18
11 галлонов в минуту 4,40 1.41
12 галлонов в минуту 5,17 1,66
13 галлонов в минуту 6,00 1,93
14 галлонов в минуту 6,88 2,21
15 галлонов в минуту 7,81 2,51
16 галлонов в минуту 8,42 2,83
17 галлонов в минуту 9.42 3,16
18 галлонов в минуту 3,52
19 галлонов в минуту 3,89
20 галлонов в минуту 4,28
22 галлона в минуту 5,10
24 галлона в минуту 5,99
26 галлонов в минуту 6,95

Потери давления, выделенные желтым курсивом, отражают скорость потока от 5 до 7 футов в секунду.Будьте осторожны при использовании скорости потока в этом диапазоне. Повреждение гидравлическим ударом может возникнуть в результате сочетания высокого давления и высокой скорости. Потери давления указаны в фунтах на квадратный дюйм на 100 футов длины трубы.


ТАБЛИЦА ПОТЕРИ ДАВЛЕНИЯ, МЕДНАЯ ТРУБКА ИЛИ ТРУБКА ТИПА L

Медная трубка типа L чаще всего используется для домашнего водопровода. В порядке толщины стенок распространенными типами медных труб являются тип M (самые тонкие), тип L и тип K (самые толстые). Если вы не знаете, что это за тип трубы, предположите, что это тип K.

Расход в галлонах в минуту 1/2 ″ 3/4 ″ 1 ″ 1 1/4 ″
1 галлон в минуту 0,95 0,16 0,04 0,02
2 галлона в минуту 3,44 0,57 0,15 0,06
3 галлона в минуту 7,29 1,20 0,33 0,12
4 галлона в минуту 12.41 2,05 0,56 0,20
5 галлонов в минуту 18,77 3,09 0,85 0,30
6 галлонов в минуту 4,34 1,18 0,43
7 галлонов в минуту 5,77 1,58 0,57
8 галлонов в минуту 7,39 2,02 0,72
9 галлонов в минуту 9.19 2,51 0,90
10 галлонов в минуту 11,17 3,05 1,10
11 галлонов в минуту 3,64 1,31
12 галлонов в минуту 4,28 1,54
13 галлонов в минуту 4,96 1,78
14 галлонов в минуту 5,69 2,04
15 галлонов в минуту 6.46 2,32
16 галлонов в минуту 7,28 2,62
17 галлонов в минуту 8,15 2,93
18 галлонов в минуту 9,06 3,25
19 галлонов в минуту 3,60
20 галлонов в минуту 3,96
22 галлона в минуту 4.72
24 галлона в минуту 5,55
26 галлонов в минуту 6,43

Потери давления, выделенные желтым курсивом, отражают скорость потока от 5 до 7 футов в секунду. Будьте осторожны при использовании скорости потока в этом диапазоне. Повреждение гидравлическим ударом может возникнуть в результате сочетания высокого давления и высокой скорости. Потери давления указаны в фунтах на квадратный дюйм на 100 футов длины трубы.

Как работает давление и поток воды?

Благодаря напору и потоку воды вы можете включить смеситель на кухне и мыть руки.Революция внутренней сантехники сделала напор воды необходимостью для большинства людей в мире. Представьте себе жизнь без рабочего смесителя в ванной, кухне или где-либо еще!

Несмотря на то, что это важные части повседневной жизни, вы, возможно, никогда не придете в голову, как работает давление воды, или даже как определить низкое давление воды в домах. Хотите узнать, как давление воды соотносится с потоком воды и как они действуют в вашей повседневной жизни? Даже если вы этого не сделаете, в следующий раз, когда вы откроете кран только для струйки воды, понимание давления воды поможет вам понять, что происходит.

Определение давления воды

Давление воды описывается как сила или сила, которая используется для проталкивания воды по трубам или другим путям и создается высотой или высотой. Например, почти в каждом городе есть водонапорная башня, которая обычно расположена высоко на холме. Эта водонапорная башня представляет собой большой резервуар, в котором хранится городская вода. Высота бака определяет давление, которое будет иметь подача воды.

На давление воды также часто влияет гравитация.Вода намного плотнее воздуха, поэтому небольшие перепады высот влияют на нее еще больше.

Определение расхода воды

Количество воды, проходящей через трубу в любой момент времени, описывается как расход воды. На расход воды может влиять ширина подающей трубы. Если бы многие приборы или дома получали воду из водопроводной трубы небольшой ширины, скорость потока была бы ниже, чем если бы труба была большей ширины. Таким образом, если бы многие краны или приборы были открыты одновременно, для них не было бы достаточного количества воды.Это приведет к низкому расходу.

Расход воды из крана определяется давлением воды. Чем больше воды проходит через трубу, тем выше естественное давление. Через трубы любого размера более высокое давление приводит к большему потоку воды. Однако ниже по потоку давление будет уменьшаться из-за потери трения и увеличения скорости воды.

Сходства и различия между давлением воды и расходом воды

Необходимо отметить, что давление воды и расход воды НЕ одно и то же.Проще всего это описать, поток воды — это то, как МНОГО воды течет по крану, а давление воды — это то, насколько ЖЕСТКО вода падает в кран.

Как давление воды, так и расход воды связаны с трением. Трение замедляет движение воды по трубе в зависимости от текстуры и диаметра трубы. Если напор воды достаточен, чем ровнее труба, тем меньше трение и тем быстрее вода скользит по ней. Если есть эффективный поток воды, трение в трубах меньшего размера может быть уменьшено, чтобы поток оставался высоким.

Как правило, чем больше размер трубы, тем выше расход воды. Однако всегда следует учитывать уровень давления воды. Даже самые большие и гладкие трубы не будут иметь эффективного потока воды при низком давлении воды, потому что у них недостаточно прочности, чтобы преодолеть силу трения.

Для изменения расхода воды необходимо отрегулировать открытие трубы. Изменение давления воды бывает разным. Чтобы отрегулировать давление, необходимо изменить диаметр или структуру трубы, используя другую настройку регулятора / насоса или регулятора / насоса.Давление воды также можно регулировать, изменяя количество воды, которая поднимается над водой, проходящей через водопровод.

Общие проблемы с давлением воды

Если напор воды в душе настолько слабый, что вы чувствуете, что почти ничего не выходит, или если ваша кухонная раковина выпускает только несколько капель воды, значит, у вас проблема с напором воды. Есть несколько причин, по которым вы можете столкнуться с проблемами с давлением воды, но вот несколько:

Засорение канализации

Засорение или засорение канализации являются наиболее вероятными виновниками низкого давления воды в ваших трубах.Серьезные засоры требуют большего, чем простой ремонт своими руками, и требуют опыта профессионального сантехника.

Закрытый счетчик воды или запорный клапан дома

Если счетчик воды или запорная арматура дома не полностью открыты, поток воды будет нарушен. Оба этих клапана регулируют поток воды, поэтому убедитесь, что они оба полностью открыты.

Неисправность регулятора давления воды

Регулятор давления воды регулирует входное давление вашей водопроводной системы, чтобы поддерживать его на безопасном уровне, чтобы предотвратить повреждение ваших труб.Если ваш регулятор давления воды выходит из строя, это может вызвать скачок или низкое давление воды, что может повлиять на все ваше имущество.

Проблемы с трубами

Если ничто из вышеперечисленного не является причиной низкого давления воды, то проблема может заключаться в трубах. Если у вас старые стальные трубы, скорее всего, внутри у вас есть минеральные отложения, которые ограничивают поток воды. Или у вас может быть проблема с утечкой. Вода, вытекающая из ваших труб, не попадает в раковину или душ, в результате чего остается меньше воды.Видеоинспекция водостока от сантехнической службы может помочь найти источник утечки.

Вам нужен профессиональный сантехник, чтобы исправить проблемы с низким давлением воды? Express Sewer & Drain имеет многолетний опыт и может решить любые ваши проблемы с водопроводом. Итак, если вам нужен профессионал, не сомневайтесь и обращайтесь к нам. Мы работаем для вас 24/7!

Формула, теория и уравнения для расчета падения давления в трубе

Когда жидкость течет по трубе, возникает падение давления в результате сопротивления потоку.Также может наблюдаться прирост / потеря давления из-за изменения высоты между началом и концом трубы. Этот общий перепад давления в трубе зависит от ряда факторов:
  • Трение между жидкостью и стенкой трубы
  • Трение между соседними слоями самой жидкости
  • Потери на трение при прохождении жидкости через фитинги, изгибы, клапаны или компоненты
  • Потеря давления из-за изменения высоты жидкости (если труба не горизонтальна)
  • Прирост давления из-за любого напора жидкости, добавляемого насосом


Расчет падения давления в трубе

Чтобы рассчитать потерю давления в трубе, необходимо вычислить падение давления, обычно в напоре жидкости, для каждого из элементов, вызывающих изменение давления.Однако для расчета потерь на трение, например, в трубе, необходимо вычислить коэффициент трения, который будет использоваться в уравнении Дарси-Вайсбаха, которое определяет общие потери на трение.

Сам коэффициент трения зависит от внутреннего диаметра трубы, внутренней шероховатости трубы и числа Рейнольдса, которое, в свою очередь, рассчитывается на основе вязкости жидкости, плотности жидкости, скорости жидкости и внутреннего диаметра трубы.

Таким образом, для расчета общих потерь на трение необходимо выполнить ряд дополнительных расчетов.Работая в обратном направлении, мы должны знать плотность и вязкость жидкости, диаметр трубы и свойства шероховатости, вычислить число Рейнольдса, использовать его для расчета коэффициента трения с использованием уравнения Колебрука-Уайта и, наконец, ввести коэффициент трения в коэффициент Дарси. Уравнение Вайсбаха для расчета потерь на трение в трубе.

После расчета потерь на трение в трубе нам необходимо учесть возможные потери в фитингах, изменение высоты и любой добавленный напор насоса.Суммирование этих потерь / прибылей даст нам общее падение давления в трубе. В следующих разделах каждый расчет рассматривается по очереди.

Расчет потерь на трение труб

Теперь нам нужно рассчитать каждый из элементов, необходимых для определения потерь на трение в трубе. Ссылки в следующем списке предоставляют более подробную информацию о каждом конкретном расчете:

Наше программное обеспечение Pipe Flow автоматически рассчитывает потери на трение в трубах с использованием уравнения Дарси-Вайсбаха, поскольку это наиболее точный метод расчета для несжимаемых жидкостей, и он также признан в отрасли точным для сжимаемого потока при соблюдении определенных условий.

Расчет потерь в трубной арматуре

Потери энергии из-за клапанов, фитингов и изгибов вызваны некоторым локальным нарушением потока. Рассеяние потерянной энергии происходит на конечном, но не обязательно коротком участке трубопровода, однако для гидравлических расчетов принято учитывать всю сумму этих потерь в месте нахождения устройства.

Для трубопроводных систем с относительно длинными трубами часто бывает так, что потери в фитингах будут незначительными по сравнению с общей потерей давления в трубе.Однако некоторые местные потери, например, вызванные частично открытым клапаном, часто бывают очень значительными и никогда не могут быть названы незначительными потерями, и они всегда должны учитываться.

Потери, создаваемые конкретным трубопроводным фитингом, измеряются с использованием реальных экспериментальных данных, а затем анализируются для определения K-фактора (местного коэффициента потерь), который можно использовать для расчета потерь фитинга, поскольку он изменяется в зависимости от скорости проходящей жидкости. через это.

Наши программы для измерения расхода в трубах позволяют легко автоматически включать потери в фитингах и другие локальные потери в расчет падения давления, поскольку они поставляются с предварительно загруженной базой данных фитингов, которая содержит множество отраслевых стандартных коэффициентов K для различных клапанов и фитингов различных размеров. .

Все, что нужно сделать пользователю, — это выбрать соответствующий фитинг или клапан, а затем выбрать «Сохранить», чтобы добавить его к трубе и включить его в расчет потери давления в трубе.

По этой ссылке можно получить дополнительную информацию о коэффициентах K фитинга и уравнении потерь в фитингах.

Расчет потерь компонентов трубы

Часто существует множество различных типов компонентов, которые необходимо смоделировать в системе трубопроводов, таких как теплообменник или чиллер.Некоторые компоненты могут вызывать известную фиксированную потерю давления, однако более вероятно, что падение давления будет изменяться в зависимости от скорости потока, проходящего через компонент.

Большинство производителей предоставляют кривую производительности компонентов, которая описывает характеристики расхода и потери напора их продукта. Эти данные затем используются для расчета потерь давления, вызванных компонентом для заданного расхода, но сам расход также будет зависеть от потерь давления на выходе из компонента, поэтому очень сложно смоделировать характеристики потери напора компонента без учета использование соответствующего программного обеспечения, такого как Pipe Flow Expert.

Потеря давления из-за изменения отметки

Поток в восходящей трубе

Если начальная отметка трубы ниже конечной отметки, то помимо трения и других потерь будет дополнительная потеря давления, вызванная повышением отметки, которая, измеренная в напоре жидкости, просто эквивалентна повышению отметки.

то есть на более высоком уровне жидкости добавляется меньшее давление из-за уменьшения глубины и веса жидкости выше этой точки.

Поток в падающей трубе

Если начальная отметка трубы выше конечной отметки, то, помимо трения и других потерь, будет дополнительный прирост давления, вызванный понижением отметки, которое, измеренное в напоре жидкости, просто эквивалентно понижению отметки.

то есть при более низкой отметке жидкости добавляется большее давление из-за увеличения глубины и веса жидкости выше этой точки.

Энергетические и гидравлические марки

Высота жидкости в трубе вместе с давлением в трубе в определенной точке и скоростным напором жидкости может быть суммирована для расчета так называемой линии оценки энергии.

График гидравлического уклона может быть рассчитан путем вычитания скоростного напора жидкости из EGL (линия энергетического уклона) или просто путем суммирования только подъема жидкости и давления в трубе в этой точке.

Расчет напора насоса

Внутри трубопроводной системы часто находится насос, который создает дополнительное давление (известное как «напор насоса») для преодоления потерь на трение и других сопротивлений. Производительность насоса обычно предоставляется производителем в виде кривой производительности насоса, которая представляет собой график зависимости расхода от напора, создаваемого насосом для диапазона значений расхода.

Поскольку напор, создаваемый насосом, зависит от расхода, определение рабочей точки на кривой производительности насоса не всегда является легкой задачей. Если вы угадываете скорость потока, а затем рассчитываете добавленный напор насоса, это, в свою очередь, повлияет на разницу давления в трубе, которая сама по себе фактически влияет на скорость потока, которая может возникнуть.

Конечно, если вы используете наше программное обеспечение Pipe Flow Expert, оно найдет для вас точную рабочую точку на кривой насоса, гарантируя, что потоки и давления сбалансированы по всей вашей системе, чтобы дать точное решение для вашей конструкции трубопровода.

Как бы вы ни рассчитали напор насоса, добавленный в трубу, этот дополнительный напор жидкости необходимо добавить обратно к любому перепаду давления, который произошел в трубе.

Расчет общего падения давления в трубе

Следовательно, давление на конце рассматриваемой трубы определяется следующим уравнением (где все значения указаны в м напора жидкости):

P [конец] = P [начало] — Потери на трение — Потери в фитингах — Потери в компонентах + Высота [начало-конец] + Напор насоса

где


P [end] = Давление на конце трубы
P [start] = Давление в начале трубы
Высота [начало-конец] = (Высота в начале трубы) — (Высота в конце трубы)
Напор насоса = 0, если насос отсутствует

Таким образом, перепад давления или, скорее, перепад давления dP (это может быть прирост) между началом и концом трубы определяется следующим уравнением:

dP = Потери на трение + Потери в фитингах + Потери в компонентах — Высота [начало-конец] — Напор насоса

где


P [end] = Давление на конце трубы
P [начало] = Давление в начале трубы
Высота [начало-конец] = (Высота в начале трубы) — (Высота в конце трубы)
Напор насоса = 0, если насос отсутствует

Примечание. DP обычно указывается как положительное значение, относящееся к падению давления на .Отрицательное значение указывает на усиление давления.

Садовых гидов | Как рассчитать расход воды в шланге с помощью давления воды или садового шланга

изображение Катрины Миллер с Fotolia.com Шланги

обеспечивают максимальную функциональность и гибкость в перемещении жидкости или газа из одного места в другое безопасно и эффективно. Доступен широкий ассортимент шлангов для домашнего использования, садоводства, промышленного применения и тушения пожаров. В каждом случае разработчики шланговых систем стремятся обеспечить максимальный поток при минимальных потерях давления и используют принцип Бернулли, который просто утверждает, что поток через трубу пропорционален квадратному корню из изменения давления в системе.Вы можете рассчитать расход на основе информации о давлении, используя опубликованные данные о шланге.

Садовый шланг

Определите приложение расхода. В этом примере 50-футовый садовый шланг с внутренним диаметром 5/8 дюйма (0,625 дюйма внутренним диаметром) используется для заполнения резервуара под давлением с фиксированным давлением 5 фунтов на квадратный дюйм. Давление воды в месте подсоединения шланга к скважинному насосу составляет 45 фунтов на квадратный дюйм. На основе этой информации вы можете рассчитать расход воды через шланг, используя давление.

  • Шланги обеспечивают максимальную функциональность и гибкость в перемещении жидкости или газа из одного места в другое безопасно и эффективно.
  • В каждом случае разработчики шланговых систем стремятся обеспечить максимальный поток при минимальных потерях давления, и они используют принцип Бернулли, который просто утверждает, что поток через трубу пропорционален квадратному корню из изменения давления в системе.
шланг и кран изображение Дэвида Хьюза с Fotolia.com

Рассчитайте полное падение давления или перепад давления на 50-футовом шланге. Вычтите давление на выходе 5 фунтов на квадратный дюйм из давления на входе 45 фунтов на квадратный дюйм, чтобы получить полную потерю через шланг 40 фунтов на квадратный дюйм.

Найдите расход при потере напора 40 фунтов на квадратный дюйм через 50 футов шланга с внутренним диаметром 5/8 дюйма. В этом случае для определения расхода можно использовать данные для пластиковой трубы Schedule 40-PVC с таким же внутренним диаметром. Пластиковая труба Schedule 40-PVC имеет внутренний диаметр 0,622 дюйма. Данные о потере давления для этой трубы показывают потерю 35,5 фунтов на квадратный дюйм для 10 галлонов в минуту (галлонов в минуту) через 100 футов трубы. Чтобы вычислить расход для 40 фунтов на квадратный дюйм через 50 футов шланга, возьмите квадратный корень из (потери 40 фунтов на квадратный дюйм / [35,5 / 100 футов / 50 футов]) и умножьте на 10 галлонов в минуту, чтобы получить 15.01 галлонов в минуту.

  • Рассчитайте полное падение давления или перепад давления на 50-футовом шланге.
  • Найдите расход при потере напора 40 фунтов на квадратный дюйм через 50 футов шланга с внутренним диаметром 5/8 дюйма.

Пожарный шланг

Пожарный шланг, протянувшийся через улицу во время изображения ели, сделанного Эльнуром с Fotolia.com

Определите применение пожарного рукава. 100-футовый пожарный шланг диаметром 3 дюйма испытывается на предмет использования для осушения большого бассейна с помощью насоса, который подает давление 55 фунтов на квадратный дюйм.Используя эту информацию, вы можете рассчитать расход через пожарный шланг.

Найдите данные о зависимости расхода от давления для пожарного рукава. Данные производителя по потерям давления показывают, что шланг с внутренним диаметром 3 дюйма теряет 57,8 фунтов на квадратный дюйм при расходе 850 галлонов в минуту.

Рассчитайте точный расход путем корректировки данных на фактическую потерю давления. Возьмите квадратный корень из 55 фунтов на квадратный дюйм / 57,8 фунтов на квадратный дюйм, что составляет 0,9755, и умножьте на 850, чтобы получить 829,16 галлона в минуту.

  • Определите применение пожарного рукава.
  • С помощью этой информации можно рассчитать расход через пожарный шланг.

Всегда умножайте свой расход на 1,25 при определении правильного размера шланга для работы, чтобы значительно повысить эффективность.

Движущая сила форсунок пожарных рукавов может быстро вызвать повреждение и серьезную травму при неправильном обращении.

КАКОЕ ПОДХОДЯЩЕЕ ДАВЛЕНИЕ ВОДЫ ДЛЯ ВАШЕГО ДОМА?

Когда дело доходит до давления воды в вашем доме, каждый имеет свое мнение о том, что является адекватным. Струйка воды для одного члена семьи — это мощный пожарный шланг для другого члена семьи.

Низкое давление воды

Низкое давление воды, безусловно, раздражает многих домовладельцев. Это не только увеличивает время, необходимое для принятия душа, мытья посуды и полива уличных растений, но также значительно увеличивает количество воды, расходуемой на выполнение этих простых задач.

И это отягощает. Чтобы наполнить раковину или ванну, может потребоваться целая вечность. Из-за насадки для душа вы можете получить слабый или анемичный спрей. Для завершения цикла вашей посудомоечной или стиральной машины может потребоваться много времени.

Если давление воды в одном приспособлении понижается или отсутствует, вероятно, имеет смысл сосредоточиться на ремонте этого приспособления или труб, обслуживающих его. Но низкое давление воды во всем доме требует, чтобы вы обнаружили причину.

Что вызывает низкое давление воды во всем доме?

Знание причин низкого давления воды в вашем доме абсолютно необходимо для поиска решения. К распространенным причинам низкого давления воды относятся:

Обычно в большинстве домов есть два клапана счетчика воды — клапан клиента, расположенный в коробке счетчика воды, и клапан дома, расположенный перед вашим домом.Оба они могут слегка повернуться в сторону от включенного положения, что приведет к низкому или даже нулевому давлению воды во всем вашем доме.

Может быть трудно найти, но протекающая труба также может быть причиной низкого давления воды. Лучший способ узнать наверняка — снять показания счетчика воды и закрыть все краны в доме. Оставьте на несколько часов, когда вернетесь, покажите счетчик. Если есть разница, значит, у вас где-то течь.

  • Регулятор давления при отказе

Регуляторы давления, обычно предварительно настроенные на 45–60 фунтов на квадратный дюйм (psi), могут изнашиваться через годы или десятилетия работы.

В старых домах с оцинкованными железными трубами часто возникают минеральные отложения, которые накапливались десятилетиями. Или они могут быть достаточно корродированы, чтобы ограничить поток воды.

У вас может быть низкий напор воды во всем доме, потому что в часы пик происходит много вещей: несколько человек используют разные ванные комнаты для душа рано утром или поздно вечером. Или даже то, что вы и ваши соседи пользуетесь водой по одному графику.

Как исправить низкое давление воды

Естественно, очень важно знать причины низкого давления воды в доме, прежде чем вы сможете найти работоспособное решение.Но наиболее очевидными являются:

  • Убедитесь, что клапаны вашего водомера открыты
  • Устранение утечек в трубах
  • Заменить неисправный регулятор давления
  • Заменить стальные водопроводные трубы
  • Различное использование воды

К сожалению, многие решения проблемы низкого давления воды в доме выходят за рамки навыков обычного домовладельца. Horizon Services имеет многолетний опыт ремонта сантехники, увеличивая количество грузовиков и технических специалистов, обслуживающих нашу территорию.

Измерение давления воды в вашем доме

Один из способов прийти к мирному урегулированию — это точно измерить давление воды в вашем доме. Таким образом, всегда полезно получать периодические показания давления воды.

Давление воды покажет вам, насколько сильна ваша вода в PSI (фунтах на квадратный дюйм). Нормальное давление воды обычно составляет от 40 до 60 фунтов на квадратный дюйм; большинство домовладельцев предпочитают что-то прямо посередине около 50 фунтов на квадратный дюйм.После измерения давления воды в доме вы можете настроить его на настройку, которая идеально подходит для всех членов семьи и домашнего использования.

Проверка и регулировка давления воды также может сэкономить деньги и улучшить качество вашей жизни. Если давление воды слишком высокое, возможно, вы используете слишком много воды каждый день; если он слишком низкий, возможно, вам потребуется больше времени на выполнение задач по уборке и купанию или выполнение работы будет недостаточно. (Если вы принимаете душ, скорее всего, вам нужно максимальное давление, которое только возможно!)

Показания давления воды — отличный способ контролировать состояние вашей водопроводной системы.Внезапные перепады давления воды могут быть признаком серьезной проблемы с водопроводом. Снижение давления и расхода воды может указывать на серьезную закупорку где-то в трубопроводе. А скачки давления воды не являются нормальным явлением и могут вызвать чрезмерную нагрузку на трубы, приспособления и приборы (например, стиральную и посудомоечную машины). Слишком большое давление также может привести к износу стиральных машин, потеканию и утечкам из кранов, а также к постоянной работе туалетов

Сантехник всегда может снять за вас показания давления воды.Но если вы практический домовладелец, это то, что вы можете сделать сами. Во многих домах есть манометр — обычно в подвале или рядом с наружным краном. Вы также можете приобрести манометры в большинстве хозяйственных магазинов за 10-20 долларов. Эти водяные манометры довольно просты в установке, эксплуатации и считывании; просто прикрутите к любому внутреннему или внешнему крану. Вам следует попытаться снять показания с как можно большего количества кранов, включая патрубки наружного шланга и кран, который подключается к вашей стиральной машине.

Нет времени на установку и использование водяного манометра? Попробуйте многопоточный тест!

Вот простой простой способ проверить, есть ли в вашем доме достаточный напор воды. Запустите стиральную или посудомоечную машину; затем включите в доме пару раковин, а также душевую кабину и прочую сантехнику. Если вода не сильно вытекает из любого из этих кранов и приспособлений или течет нормально на одном этаже, но не на другом, вам, вероятно, следует увеличить давление воды.

Регулировка давления воды

Большинство домов, построенных за последние 25-30 лет, имеют редукционный клапан на подводящей линии, входящей в дом. Обычно довольно просто отрегулировать этот клапан для увеличения или уменьшения давления воды. Сначала найдите клапан; скорее всего, он будет найден возле вашего водомера в подвале или, возможно, в подполье. Редукционный клапан выполнен из латуни с раструбом в средней части с винтом на конце раструба.

Вращением этого винта регулируется давление воды. Чтобы увеличить давление воды, затяните винт, повернув его по часовой стрелке; чтобы уменьшить давление воды, поверните винт против часовой стрелки. Делайте это небольшими порциями, не забывая измерять давление воды после каждой регулировки.

Если эти корректировки не работают для вас, если вам неудобно выполнять эти корректировки самостоятельно или если вы живете в старом доме, мы рекомендуем вызвать сантехника. Водопроводчик может найти клапан редуктора давления (или установить его, если в вашем доме его нет).Ваш сантехник также может определить, вызвано ли ваше плохое давление воды более серьезной проблемой в трубопроводе или за пределами вашего дома.

Нужен профессионал? Компания Horizon Services готова помочь вам!

Возьмите трубку или узнайте больше о наших сантехнических услугах в вашем районе:

Анализ гидроудара и помпажа

Гидравлический удар является частью более крупного объекта анализа переходного потока или помпажа. Это особый случай, когда происходит резкое изменение скорости потока.Обычно это происходит при быстром закрытии клапана. Гидравлический удар может вызвать скачки очень высокого давления, которые могут привести к разрыву трубы и возникновению вибрации трубопровода. Величину повышения давления гидроудара можно рассчитать с помощью уравнения Жуковского, которое составляет

.

P = ρCU (Па)

Где

P — изменение давления

ρ — плотность жидкости

U — изменение скорости жидкости

C — скорость звука в трубе

Скорость звука — это скорость звука в трубе, она определяется по модифицированной формуле закона крюка, которая учитывает жесткость жидкости и стенки трубы.

Где

K Модуль объемной упругости жидкости

E Модуль Юнга материала трубы

e Толщина стенки трубы

Скорость звука — это также скорость, с которой волны давления, создаваемые гидроударом, распространяются по трубе.

Для воды в очень жестких трубах скорость звука может достигать 1480 м / с. Но в некоторых пластиковых трубах скорость волны может быть меньше 200 м / с.

Модуль объемной упругости (k) воды равен 2.19×10 9 Па, однако это предполагает, что в воде нет пузырьков воздуха. Часто в жидкости можно увидеть пузырьки микроскопических размеров. Это может существенно повлиять на эффективный объемный модуль упругости и, следовательно, на скорость звука. Часто при гидравлическом ударе давление ниже атмосферного и может возникать кавитация (как описано ниже). Это может высвобождать растворенный воздух из воды, который образует пузырьки воздуха, снижая эффективный объемный модуль и, таким образом, уменьшая скорость волны.

Пример закрытия клапана гидравлического удара.

На рис. 1 показаны начальные условия в трубе. Впускной патрубок в позиции A соединен с напорным баком, который обеспечивает давление P 1 для управления потоком в трубе. Другой конец трубы в позиции B открыт в атмосферу, и его давление составляет P 0

.

P 1 = ρgh + P 0

Длина трубы L.

На рис. 2 показаны условия трубы и потока сразу после того, как конец трубы в точке B был мгновенно закрыт в момент времени t0.Волна давления в позиции X движется вверх по трубе со скоростью C (скорость звука). Повышение давления на волне составляет ρCU (уравнение Жуковского). Перед положением X скорость равна начальной скорости U i . После X скорость равна 0.

Между X и B жидкость будет сжиматься, а труба расширяться. Скорость изменения объема трубы и сжатия жидкости такая же, как и скорость потока перед X.

На рисунке 3 показаны условия, когда волна давления достигает положения A в момент времени t1.Давление в трубопроводе увеличено на ρCU i , а скорость жидкости на всем протяжении равна 0. Это состояние нестабильно, так как давление на входе трубы задается напором жидкости во входном резервуаре h. Итак, теперь жидкость должна двигаться в обратном направлении из трубы высокого давления в бак более низкого давления. Это вызывает отражение первой волны, и это происходит в момент времени t1.

Где t1 = t0 + L / C

На рис. 4 показаны условия после первого отражения. Волна давления находится в позиции X и движется по трубе со скоростью C.Жидкость между положениями A и X движется в обратном направлении со скоростью –U i . Падение давления на фронте волны составляет ρC (-U i ).

На рисунке 5 показаны условия, когда волна давления достигает положения B в момент времени t2. Давление в трубопроводе в целом было снижено, и скорость жидкости составляет -U i во всем.

Следует отметить, что между A и B будет небольшой градиент отрицательного давления. Это необходимо для преодоления трения между жидкостью и трубой, поскольку поток идет в противоположном направлении.Величина этого градиента давления обычно будет значительно меньше, чем величина, вызванная изменением скорости (уравнение Жуковского). Этот градиент трения увеличен на рисунке по сравнению с эффектом гидравлического удара в демонстрационных целях.

Поскольку конец трубы в точке B закрыт, это состояние нестабильно, так как имеется жидкость для поддержания потока. Это вызывает отражение второй волны в момент времени t2.

Где t2 = t1 + L / C или t2 = t0 + 2L / C.

На рис. 6 показаны условия после второго отражения.Волна давления находится в позиции X и движется вверх по трубе со скоростью C ’. Жидкость между положениями A и X все еще движется в обратном направлении со скоростью –U i . Жидкость между X и B остановлена.

Падение давления на фронте волны составляет ρC ’(- U i ). Следует отметить, что в этом случае скорость волны или скорость звука были изменены с C на C ’. C ’может быть таким же или меньшим, чем C, это зависит от минимально допустимого давления P3.Отрицательное абсолютное давление невозможно. Минимальное давление в трубопроводе не может быть меньше, чем давление пара текучей среды, и часто минимальное давление выше, чем давление пара, потому что в текучей среде, которая выходит из раствора при понижении давления, присутствует растворенный газ. Когда возникает кавитация или из раствора выходит газ, объемный модуль упругости жидкости снижается с K до K ’. Именно этот уменьшенный объемный модуль упругости позволяет снизить скорость звука с C до C ’. Таким образом, все в зависимости от минимально возможного давления величина C’ будет регулировать себя так, чтобы P3 не было ниже минимально возможного давления.

Формулы для скорости волны и уравнение Жуковского по-прежнему действительны, когда возникает кавитация, но объемный модуль будет уменьшен, что обеспечивает согласованность уравнений и отсутствие невозможных давлений.

На рисунке 7 показаны условия, когда волна давления достигает положения A в момент времени t3. Давление в трубопроводе в целом снижено до P 3 , а скорость жидкости на всем протяжении равна 0. Это состояние нестабильно, поскольку давление на входе в трубу, устанавливаемое напором жидкости во входном резервуаре h, выше, чем давление в трубе, поэтому теперь жидкость должна поступать в трубу из напорного резервуара.Это вызывает отражение третьей волны, и это происходит в момент времени t3.

Где t3 = t2 + L / C ’или t3 = t0 + 2L / C + L / C’

На рисунке 8 показаны условия после третьего отражения. Волна давления находится в позиции X и движется по трубе со скоростью C ’. Жидкость между положениями A и X все еще движется в нормальном направлении со скоростью U i ’. Жидкость между X и B остановлена. Скорость в сечении от A до X показана как U i ’, где U i ’ немного меньше, чем U i .На этом этапе процесс претерпел 3 отражения, и на каждом этапе теряется некоторая энергия, поэтому со временем величина волн давления и скорости уменьшаются.

Скорость звуковой волны по-прежнему равна приведенной скорости C ‘, как показано на рисунке 8. Но если ранее из жидкости выделялись воздух или пар, то пар будет повторно конденсироваться, а пузырьки газа уменьшатся в размере и могут начать уходить. обратно в раствор.

На рисунке 9 показаны условия, когда волна давления достигает положения B в момент времени t4.Как можно видеть, это почти идентично условиям, показанным на рисунке 1. Основное отличие состоит в том, что скорость Ui ’немного ниже, чем у исходного U i . Поскольку конец трубы закрыт, жидкости в точке B некуда идти. Таким образом, это вызовет окончательное отражение в момент времени t4, а затем весь процесс будет повторяться.

Где t4 = t3 + L / C ’или t4 = t0 + 2L / C + 2L / C’

На рисунке 10 показано состояние после четвертого отражения. Цикл теперь начал повторяться, однако давление гидравлического удара теперь немного снижено с P 2 (рис. 2) до P 2 ’.Это снижение давления имеет две причины. Скорость жидкости снижена из-за потерь энергии.

Звуковая скорость C » может быть меньше исходной звуковой скорости C. Если на предыдущих этапах, показанных на рисунках 8 и 9, из жидкости был выделен какой-либо газ, то этот объем газа будет уменьшен, однако для этого потребуется время. газ должен быть полностью реабсорбирован, поэтому в жидкости могут быть небольшие пузырьки остаточного газа.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *